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ABSTRACT: Connectivity describes the efficiency of material transfer between geomorphic system components such as hillslopes
and rivers or longitudinal segments within a river network. Representations of geomorphic systems as networks should recognize that
the compartments, links, and nodes exhibit connectivity at differing scales. The historical underpinnings of connectivity in geomor-
phology involve management of geomorphic systems and observations linking surface processes to landform dynamics. Current
work in geomorphic connectivity emphasizes hydrological, sediment, or landscape connectivity. Signatures of connectivity can
be detected using diverse indicators that vary from contemporary processes to stratigraphic records or a spatial metric such as
sediment yield that encompasses geomorphic processes operating over diverse time and space scales. One approach to measuring
connectivity is to determine the fundamental temporal and spatial scales for the phenomenon of interest and to make measurements
at a sufficiently large multiple of the fundamental scales to capture reliably a representative sample. Another approach seeks to char-
acterize how connectivity varies with scale, by applying the same metric over a wide range of scales or using statistical measures that
characterize the frequency distributions of connectivity across scales. Identifying and measuring connectivity is useful in basic and
applied geomorphic research and we explore the implications of connectivity for river management. Common themes and ideas that
merit further research include; increased understanding of the importance of capturing landscape heterogeneity and connectivity
patterns; the potential to use graph and network theory metrics in analyzing connectivity; the need to understand which metrics best
represent the physical system and its connectivity pathways, and to apply these metrics to the validation of numerical models; and
the need to recognize the importance of low levels of connectivity in some situations. We emphasize the value in evaluating bound-
aries between components of geomorphic systems as transition zones and examining the fluxes across them to understand landscape
functioning. © 2018 John Wiley & Sons, Ltd.

Introduction

Connectivity has become a widely used conceptual framework
within geomorphology. Our primary objectives in this paper

are to: (i) facilitate careful consideration of how to define and
measure connectivity and disconnectivity across diverse spatial
and temporal scales; (ii) explore the implications of connectivity,
including the situations in which connectivity provides a useful
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framework or new insight, potential signatures of connectivity in
geomorphic systems, and how connectivity can be used in
resource management; and (iii) highlight gaps in current under-
standing of connectivity and potential pathways for future
research. We first introduce some basic characteristics of con-
nectivity as viewed in a geomorphic context, then review both
the historical underpinnings of and recent work on connectivity
in geomorphology.We then discuss the challenges of identifying
and measuring connectivity, use river basins to illustrate the
management implications of connectivity, and conclude with
a summary of key questions and challenges to understanding
and using connectivity in a geomorphic context.

Connectivity in a geomorphic context

As the scientific study of surface processes and landforms, and as
a discipline that has largely developed from geology and physical
geography, geomorphology has come to focus upon the fluxes of
fluids (air, water) and sediment and the landforms resulting from,
and influencing, those fluxes. The term geomorphic systems rec-
ognizes couplings among seemingly discrete components of
Earth’s surface and near-surface environments, such as water
and sediment fluxes from hillslopes that govern the configuration
of river channels or fluxes of eolian dust that influence rates of soil
formation in geographically distant locations (Martignier et al.,
2013). Attention to fluxes of material through landscapes dates
to the founding of geomorphology as a discipline (Gilbert,
1880). The term connectivity has become widely used to de-
scribe these fluxes within the past two decades.
Several definitions of connectivity have been proposed

(Table I). We define connectivity as the efficiency of transfer
of materials between system components. Definition of system
components varies between disciplines, such as between geo-
morphology and ecology, and in relation to the material under
consideration (e.g. water versus sediment). Geomorphic sys-
tems can be represented as networks with compartments, links,
and nodes. Using a drainage basin as an example, hillslopes
and valley bottoms are compartments, channel segments are
links, and channel junctions are nodes.
Connectivity has value as a conceptual framing for investigat-

ing the spatial and temporal variability of fluxes because it directs
attention to: (i) interactions among geomorphic system compo-
nents that may appear to be isolated in time and space, such as
how relative base level fall triggers river incision and subsequent
hillslope adjustments over timespans of 103–104 years (Burbank
et al., 1996); (ii) the response of diverse geomorphic systems to
varying inputs, such as how water and sediment fluxes from indi-
vidual drainage basins respond to extreme storms as a function of
characteristics such as basin size, river network structure, and the
temporal sequence of extreme storms (Cenderelli and Wohl,
2003); (iii) the specific features of geomorphic systems that gov-
ern connectivity, such as the landforms that limit sediment fluxes
within a drainage basin (Fryirs et al., 2007a); and (iv) how human
alterations of geomorphic systems influence system behavior,
such as how flow regulation and associated changes in water
and sediment connectivity alter river geometry and biotic com-
munities. Connectivity also has value as a common framing
shared among disciplines (Tetzlaff et al., 2007; Werner and Mc-
Namara, 2007; Larsen et al., 2012; Puttock et al., 2013; Hauer
et al., 2016).
Connectivity is not an either/or attribute, but rather a contin-

uum. Consequently, representations of geomorphic systems as
networks must recognize that the compartments, links, and
nodes exhibit connectivity at differing spatial and temporal
scales and include diffuse and concentrated fluxes, and vari-
able rates of flux (Passalacqua, 2017).

Connectivity is typically limited to some degree through time
and across space, so that understanding of one extreme of the
continuum, disconnectivity, is equally important (Faulkner,
2008). Components or processes that are disconnected are
those that either are too remote from each other in space or
time, so that a change in one component or process does not
lead to change in another, or those in which a threshold must
be overcome to allow connectivity: a critical shear stress must
be exceeded to allow sediment transport, for example, or a
flow magnitude must be exceeded to overtop the channel
banks and laterally connect the channel and floodplain. The
end member of disconnectivity must be treated with caution
because something that is disconnected at a short time scale
may be connected at a longer time scale. In general, all mea-
sures of connectivity are dependent on time and space scales
and are relational in the sense of describing transfers between
components of a system (Grant et al., 2017).

Figure 1 illustrates the temporal aspect of connectivity in a
manner similar to Schumm and Lichty’s (1965) conceptualiza-
tion of variables changing between dependent and indepen-
dent status over diverse time scales. In this figure, sediment
transport is highly connected and continuous over longer time
and larger space scales, but disconnected in time and space
when considered over periods of years to decades that include
substantial periods of lower flow without sediment transport.
Analogously, the longitudinal profile may be continuously
adjusting to fluctuations in relative base level and thus longitu-
dinally connected over cyclic time scales, but segmented by
the presence of knickpoints and thus less longitudinally con-
nected over graded and steady time scales.

Investigations of connectivity and disconnectivity in geomor-
phic systems can focus on fluxes of different types of materials,
such as water (Bracken et al., 2013; Larsen et al., 2017) or sed-
iment (Fryirs et al., 2007a; Bracken et al., 2015; Li et al., 2016).
Investigations can emphasize features that enhance or limit
connectivity, such as landforms that create physical thresholds
which must be exceeded before material can move between
compartments (Kondolf et al., 2006; Fryirs et al., 2007a). Alter-
natively, investigations can emphasize the magnitude, dura-
tion, frequency, strength, timing, or spatial extent of
connectivity (Cote et al., 2009; Cavalli et al., 2013). Jaeger
and Olden (2012), for example, used electrical resistance sen-
sors to quantify the longitudinal extent and duration of stream
flow in an ephemeral channel network in Arizona, USA.

Framing connectivity in a geomorphic context provides a ba-
sis for considering both structural and functional components
of the landscape. What has been referred to as structural con-
nectivity is dependent on the position and spacing of landscape
units and the extent to which they are in contact or distant from
one another (Wainwright et al., 2011). Landscape units can
vary from entire mountain ranges or drainage basins down to
patches of land cover (e.g. forest versus grassland) or individual
grass clumps on a hillslope with spatially discontinuous vegeta-
tion cover. Structural connectivity influences the thresholds of
magnitude and duration necessary to create fluxes between in-
dividual landscape units. Floodplain wetlands adjacent to an
active channel and at lower elevations may require a lower
magnitude flood to achieve surface hydrologic connectivity
with the channel than do floodplain wetlands farther from
and/or higher than the channel (Galat et al., 1997; Poole
et al., 2002). The occurrence of longitudinally continuous flow
along intermittent or ephemeral channels in drylands depends
partly on the magnitude and duration of precipitation inputs,
but also on the structural connectivity governed by valley sur-
face and subsurface geometry as this geometry creates alluvial
reservoirs that must be saturated before surface flow occurs
(Falke et al., 2011; Jaeger and Olden, 2012).
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Table I. Definitions and quantitative metrics of connectivity (after Wohl, 2017, Tables I and II)

A)

Definition Reference

Connectivity in the context of landscape dynamics describes the transmission of matter and energy
among system components

(Harvey, 1987, 1997, 2001, 2002;
Godfrey et al., 2008)

Hydrological connectivity as the exchange of matter, energy, and biota between different elements of the
riverine landscape via the aqueous medium

Amoros and Roux, 1988

Hydrological connectivity can be defined as the physical linkage of water and sediment through the
fluvial system.

Hooke, 2003; Lesschen et al., 2009

Hydrologic connectivity refers to the water-mediated transfer of matter, energy, and/or organisms within
or between elements of the hydrologic cycle

Pringle, 2003

River hydrologic connectivity refers to the water-mediated fluxes of material, energy, and organisms
within and among components, e.g. the channel, floodplain, alluvial aquifer, etc. of the ecosystem

Kondolf et al., 2006

Static/structural connectivity: static elements of hydrological connectivity are spatial patterns, such as
hydrological runoff units, that can be categorized, classified, and estimated; spatial patterns in the
landscape (Turnbull et al., 2008)

Bracken and Croke, 2007

Dynamic/functional connectivity: describes both the longer term landscape developments, such as
changes following abandonment of agriculture, and short-term variation in antecedent conditions and
rainfall inputs to systems that result in nonlinearities in hillslope and catchment response to rainfall;
how spatial patterns interact with catchment processes to produce water transfer in catchments
(Turnbull et al., 2008)

Bracken and Croke, 2007

Process connectivity: the evolutionary dynamics of how systems operate; also defined as flow of
information among a system’s drivers, where information is a reduction of the uncertainty in a
variable’s state

Bracken and Croke, 2007;
Passalacqua, 2017; Ruddell and
Kumar, 2009

Three stages of landscape connectivity: coupled linkage when there is free transmission between
landscape units; partial coupling when a discontinuity between units results in pulses of sediment
movement; partly connected stage when there is a decrease of transmission due to impediments, but
some material can pass the impediment during an effective event; buffers hinder lateral connectivity,
barriers hinder longitudinal connectivity, and blankets hinder vertical connectivity

Fryirs et al., 2007a; Jain and
Tandon, 2010

Initiation of a shallow groundwater table across hillslope, riparian, and stream zones Jencso and McGlynn, 2011
Hydrologic connectivity describes connection, via the subsurface flow system, between the riparian
zone and the upland zone, which occurs when the water table at the upland–riparian zone interface is
above the confining layer (Also presents 10 other definitions from the literature, categorized with
respect to water cycle or landscape features at the watershed scale, and landscape features, spatial
patterns, and flow processes at the hillslope scale)

Bracken et al., 2013

Sediment connectivity: the degree of linkage that controls sediment fluxes throughout landscapes and in
particular between sediment sources and downstream areas

Cavalli et al., 2013

Sediment connectivity is the water-mediated transfer of sediment between two different compartments
of the catchment sediment cascade; catchment disconnectivity can be expressed as the degree to
which any limiting factor constrains the efficiency of sediment transfer relationships

Fryirs, 2013

Connectivity defined as the transfer of matter between two different landscape compartments Wester et al., 2014
Connectivity describes the integrated transfer of sediment across all possible sources to all potential sinks
in a system over the continuum of detachment, transport, and deposition, which is controlled by how
the sediment moves between all geomorphic zones; on hillslopes, between hillslopes and channels,
and within channels.

Bracken et al., 2015

Describe two fluxes as connected if they are in close spatial proximity along the river network; refer to
connectivity as the state of two or more fluxes being connected; dynamic connectivity refers to how
the connectivity of fluxes changes in time

Czuba and Foufoula-Georgiou,
2015

Defines five layers of hydrologic connectivity as hillslope, hyporheic, stream-groundwater, riparian/
floodplain, and longitudinal within channels

Covino, 2017

B

Description Metric Reference

Primarily hydrologic metrics
Integral connectivity scale lengths (ICSL) Average distance over which wet locations are connected

using either Euclidean distances or topographically
defined hydrologic distances; 1 of 15 indices of hillslope
hydrologic connectivity in Bracken et al. (2013: Table IV)

Western et al., 2001

Attenuated imperviousness (I) I ¼ ∑j AjWjð Þ
Ac

� �
Weighted impervious area as a percentage of catchment
area; Aj is the area of the jth impervious surface;Wj is the
weighting applied to Aj; Ac is catchment area

Walsh and Kunapo, 2009

River Connectivity Index (RCI)

DCIP ¼ ∑
n

i¼1

v2i
V2 �100

The size of disconnected river fragments between dams in
relation to the total size of the original river network,
based on Cote et al. (2009) DCI; size can be described in
terms of volume (example at left), length, or other
variables

Grill et al., 2014

(Continues)
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The assemblage and spatial pattern of landforms (i.e. type,
size, and adjacency) produces the structural, physical template
from which to examine the extent to which interactions be-
tween landforms at different spatial and temporal scales occur.
For example, Jain and Tandon (2010) and Hooke (2003) de-
scribe connectivity patterns in terms of whether landforms are
connected, partially connected or discrete. Fryirs et al.
(2007a) describe the position of landforms that act as blockages
within the landscape. As water flows over landforms, elements
that influence structural connectivity may be modified as the
landscape evolves by weathering and erosion processes. The
time scale of this evolution can be rapid, such as during large
mass wasting events (Korup et al., 2004), progressive over sea-
sons and decades (Lane et al., 2017), or acting over long-term
time scales >103 years (Prasicek et al., 2015).

Because we define connectivity as the efficiency of material
transfer, we suggest that the structural configuration of geomor-
phic systems, although strongly influencing connectivity, be
described as system configuration rather than structural con-
nectivity. This leaves connectivity as referring specifically to
what has been called functional connectivity.

Functional connectivity operates within this structural tem-
plate. In geomorphic terms functional connectivity refers to the
processes associated with the sources and fluxes of water, sedi-
ment, and solutes through a landscape and the transfer of those
materials between multiple, contiguous structural components
or between components of a system that are physically isolated
except for relatively brief periods of connectivity (Jain and
Tandon, 2010; Wainwright et al., 2011). In analyses of functional
connectivity, the strength of connectivity or linkage between

Table 1. (Continued)

B

Description Metric Reference

Primarily sediment metrics
Sediment delivery ratio (SDR)
SDR ¼ net erosion

total erosion

Measure of sediment connectivity Brierley et al., 2006

Connectivity Index (IC) IC ¼ log10
Dup

Ddn

� �

Dup ¼ WS
ffiffiffiffi
A

p

Ddn ¼ ∑
i

di
WiSi

W ¼ 1� RI
RIMAX

� �

Roughness Index (RI) RI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
25

i¼1
xi � xmð Þ2

25

vuuut

Dup and Ddn are the upslope and downslope components
of connectivity, respectively, with connectivity
increasing as IC increases; W is the average weighting
factor of the upslope contributing area, S is the average
slope gradient of the upslope contributing area, and A is
the upslope contributing area; di is the length of the flow
path along the ith cell according to the steepest
downslope direction, Wi and Si are the weighting factor
and the slope gradient of the ith cell, respectively; RIMAX

is the maximum value of RI in the study area; 25 is the
number of processing cells within a 5 X 5 moving
window, xi is the value of one specific cell of the residual
topography within the moving window, and xm is the
mean of the 25 cell values

Cavalli et al., 2013

Complexity index based on overall relief
Dhmax Dhmax = Emax - Emin and slope
variability SV SV = Smax – Smin

Where Emax and Emin are the maximum and minimum
elevations, respectively, in the catchment; Smax and Smin

are the maximum and minimum, respectively, % slope
within the area of analysis (moving window)

Baartman et al., 2013

Cluster Persistence Index (CPI)

CPIi ¼ ∫
over all

times t

M ið Þ
j tð Þdt

Defines clusters within a river network where mass
(sediment) coalesces into a connected extent of the
network; the superscript (i) denotes all clusters M ið Þ

j that
occupy link i at time t

Czuba and Foufoula- Georgiou,
2015

Metrics for diverse fluxes

C tð Þ ¼ ∑
m tð Þ

i¼1
∑
ni tð Þ

j¼1
pij tð ÞSij tð Þ

Patch connectivity, along with line, vertex, and network
connectivity, can be used to characterize landscape
connectivity; patch connectivity is the average
movement efficiency between patches; C is patch
connectivity, pij (t) is the area proportion of the jth patch
in the ith land cover type to the total area under
investigation at time t; S is movement efficiency; 0<C (t)
<1.1.

Yue et al., 2004

DCI ¼
∑
ν

i¼1
∑
R

j¼rþ1
wij

dx j�rð Þ
dij

∑
ν

i¼1
∑
R

j¼rþ1
wij

Directional connectivity index (DCI); i is a node index, j is a
row index, r is the row containing the node i, R is the
total number of rows in the direction of interest, dx is the
relative pixel length along that direction, dij is the shortest
connected structural or functional distance between
node i and any node in row j, wij is a weighting function

Larsen et al., 2012

Adjacency matrix Applies a connectivity analysis to a delta by identifying a
set of objects (e.g. locations or variables) arranged in a
network such that objects are nodes and connections or
physical dependencies are links; evaluate connections
between nodes using the mathematical technique of an
adjacency matrix, which captures whether two nodes are
connected, as well as link directionality and the strength
of the connection

Newman et al., 2006; Heckmann et
al., 2015; Passalacqua, 2017
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different parts of landscapes is considered. These linkagesmay be
strong, weak, or non-existent (i.e. disconnected). Functional con-
nectivity emphasizes the need to think about how the landscape
limits the connectivity of the material under consideration,
whether water, sediment, or nutrients. Frameworks for assessing
hydrological connectivity and sediment connectivity and how
these fluxes function in geomorphic terms have been developed
and applied in many different landscape settings in order to un-
derstand landscape change through time and to develop strate-
gies for managing landscape processes (Fryirs et al., 2007b;
Lane et al., 2009). Lane and Milledge (2013), for example, used
a catchment-scale model to evaluate the effect of shallow upland
drains on flow hydrographs. Lisenby and Fryirs (2017a) compare
the spatial distributions of landforms expected to influence
coarse-sediment transport to downstream patterns of bed-
sediment fining and evaluate the effects of landform-induced
disconnectivity on sediment size distributions.
The configuration and state of the system under consideration

strongly influence the expression of connectivity (Gran and
Czuba, 2017; Rice, 2017). Increasing landscape morphological
complexity can correspond to decreasing connectivity (Baartman
et al., 2013), for example, and segments of a river network with
wider valley bottoms can produce longitudinal and lateral
disconnectivity in fluxes (Fryirs, 2013; Wohl et al., 2017b). The
state of the system includes the capacity for adjustment and prox-
imity to thresholds, as well as locationwithin an evolutionary tra-
jectory or spatially within a larger system (Brierley and Fryirs,
2016). Configuration and state are interrelated. Places in a river
network with local sediment disconnectivity, for example, can
accumulate sediment through time and become sites with higher
potential for geomorphic change, or they can be areas that ab-
sorb change and limit manifestation of disturbance at off-site lo-
cations (Czuba and Foufoula-Georgiou, 2015; Lisenby and
Fryirs, 2017a, 2017b).
Structural and functional connectivity are tightly interwoven.

Many studies focus on how the spatial template created by
structural configuration interacts with variations in available
energy to drive spatial and temporal fluctuations in functional
connectivity (Jencso et al., 2009, 2010; Jensco and McGlynn,
2011; Souza et al., 2016; Wohl et al., 2017b). Croke et al.
(2013) and Thompson et al. (2016), for example, use longitudi-
nal variations in valley-bottom configuration and the measured
and modeled extent of floodplain inundation during an ex-
treme flood to infer connectivity between channel and flood-
plain. Other investigations examine how changes in structural
configuration alter functional connectivity (Puttock et al.,
2013; Segurado et al., 2015) or how changes in available en-
ergy or material inputs to a geomorphic system create simulta-
neous changes in structural configuration and functional
connectivity (Wester et al., 2014; Micheletti et al., 2015).

Vanacker et al. (2005) provides an example of how changes
in structural configuration can alter functional connectivity by
relating changes in the spatial distribution of agriculture and
forested lands within a catchment in the Ecuadorian Andes to
river channel response. Although the overall land use did not
change, the changed spatial distribution of land use altered wa-
ter and sediment connectivity within the catchment, resulting
in channel narrowing, incision, and streambed fining. Wester
et al. (2014) provides an example of how changes in energy
and material inputs can alter structural configuration and con-
nectivity by quantifying changes in morphodynamics and sed-
iment transport on hillslopes following wildfire and rainstorms.

A reliable connectivity framework should allow for analysis
of both the static and the dynamic aspects of landscapes, and
therefore be flexible enough to consider structural configura-
tion and functional connectivity over varying timeframes. Static
frameworks provide a snapshot of how the landscape is struc-
tured and functioning at any particular point in time. Dynamic
frameworks recognize three key factors. First, the structure of
the landscape can change and therefore the type, position,
and pattern of landforms in a landscape can change, producing
alterations in connectivity. Second, the strength of functional
connectivity is likely to change in association with changes to
structural configuration. Third, structural configuration and
functional connectivity may change depending on the magni-
tude of the disturbances that drive fluxes of water and sediment
through landscapes (e.g. rainfall, floods, or mass wasting).

A common theme among investigations of connectivity is the
response of a system to some change or lack of change in
boundary conditions that may be external to the system (e.g.
climate or tectonic inputs) or internal within the system (e.g.
fluxes of water and sediment). Boundary conditions can vary
depending on the time and space scales of the investigation.
How such conditions, and their changes, are transferred to an
output depends on the system configuration, which may also
vary with time and space scales in response to the changes in
flux caused by those boundary conditions (Romans et al.,
2016). Thus, changes in boundary conditions can be modified
– either dampened or amplified – by linked sets of processes
operating within the system. Resulting outputs may always con-
verge or, more likely, be unique but similar in magnitude and
frequency. For example, a mountainous drainage basin consid-
ered over the timespan of a century has relatively fixed bound-
ary conditions such as the river network configuration and
geometry of individual valley segments. Varying boundary con-
ditions include inputs of water and sediment from adjacent up-
lands. Outputs fluctuate across space and through time in a
manner that reflects river network configuration and valley ge-
ometry, but also water and sediment inputs at any point in time,
as well as the history of water and sediment inputs and

Figure 1. Variations in connectivity of example geomorphic processes as a function of the time scale under consideration. Cyclic, graded, and
steady time scales indicated as orders of magnitude in years. Upward and downward arrows indicate greater and lesser degrees of connectivity, re-
spectively, and + indicates either option. (After Schumm and Lichty, 1965, Table I.)
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associated changes in the alluvial configuration of the channel
and floodplain within valley segments (Figure 2). This concep-
tualization of connectivity focuses on how efficiently change is
communicated to an output and therefore which processes and
links need to be studied to effectively understand a geomorphic
system.
Fluxes can also be conceptualized as information propaga-

tion, which Ruddell and Kumar (2009) define as the contribu-
tion of uncertainty-reducing or predictive information
provided by the time lag history of one variable to the future
value of another (Figure 3). In this conceptualization, the key
questions become whether information can be propagated
and how information propagation can be discontinuous in
space and time (degree of connectivity), how it is propagated
(processes of connectivity), and what is the transfer entropy of
information propagation (defined as the asymmetric informa-
tion flow between two variables, or directionality of connectiv-
ity; Schreiber, 2000).
Although structural configuration and functional connectiv-

ity are tightly interrelated, functional connectivity is the focus
of most studies of connectivity in geomorphic systems. Conse-
quently, connectivity refers primarily to functional connectivity
in the rest of this paper unless stated otherwise.

Connectivity research in geomorphology:
origins and current focus

Historical underpinnings of connectivity in
geomorphology

The historical underpinnings of connectivity in geomorphic
systems emerged from two fundamental perspectives. One in-
volves the cultural or societal management of geomorphic sys-
tems, such as river basin management for flood control,
irrigation, and water supply (Kondolf et al., 2006). The other

perspective involves basic and applied observations linking
Earth surface processes to landform dynamics, such as source
to sink connections linking erosion, transport, and deposition
to processes of hillslope and valley formation (Harvey, 1987;
Anthony and Julian, 1999; Warrick et al., 2015). These origins
can be traced back thousands of years and are still relevant in
a contemporary context for why connectivity in geomorphic
systems merits our attention (Table II).

The earliest known societal actions seeking to understand
and to measure connectivity in geomorphic systems can be
traced back to at least 5000 BC when the Sumerians and the
Egyptians engineered elaborate projects to manipulate the
movement and storage of river water for flood control and irri-
gation (Newson, 1997). These and subsequent manipulations
of geomorphic systems and associated changes in connectivity
were sometimes undertaken in ignorance of basic aspects of
the hydrologic cycle. Perhaps the most fundamental question
faced by early naturalists confronted with a river was the source
of continued flow in the absence of precipitation (Tuan, 1968;
Duffy, 2017). Although notions regarding the hydrological cy-
cle can be traced back to much earlier (Duffy, 2017), it was
not until Bernard Palissy formally elucidated the hydrological
cycle in the late 16th century that a comprehensive account
of the connectivity between the ocean, atmosphere, precipita-
tion, and river systems was developed (Karterakis et al., 2007).

Italian and French Renaissance scholars, c. 1400–1800, ex-
amined landscape-scale processes of erosion, transport, and
deposition, and their role in creating channel networks on the
landscape and major river valleys (Hugget, 2007). In the 18th
and 19th centuries, Scottish geologists James Hutton and John
Playfair made many of the same observations regarding the role
of erosion as a dominant force on the landscape, noting that
rivers are systematically ordered from smaller headwater
streams to progressively larger rivers. The underlying concept
that a river is connected to, and is responsible for forming the
landscape – particularly the valley – through which it flows, is
usually attributed to Playfair (1802). During the 19th century,

Figure 2. Schematic illustration of relations among geomorphic system components and material inputs for a mountainous drainage basin con-
sidered over the timespan of a century. At this relatively short timespan, basic network configuration is fixed. Inputs of water, sediment, and other
materials vary through time and across space. Boundary conditions both respond to fixed structure and varying inputs, and influence fluxes of
materials through the drainage basin, resulting in outputs that reflect, but also differ from, inputs. Connectivity represents one way to
express these relations: connectivity can be used to describe: (i) the nature of and controls on specific linkages; and (ii) the evolving state of
the drainage basin. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 3. Schematic illustration of connectivity as information propagation. This figure illustrates network feedback statistics for three example cases
on a four-node network. R” is the surrogate source–sink redundancy, a measure of the topology of the network’s couplings. Flows from a single source
dominate the network on the left, resulting in a higher value of R”. Circular flows dominate the network in the middle, resulting in minimum R” and
feedback dominance. Flows into a single sink dominate the network on the right, resulting in a higher value of R”. (From Ruddell and Kumar, 2009,
Figure 1.)

Table II. Historical (5000 BC–early 1900s) contributions to connectivity in geomorphic systems from a fluvial perspective. Selections from Hugget
(2007), Newson (1997), Gregory and Lewin (2014) and authors’ discretion

Mesopotamia, Sumerians (5000–3000 BC): Hydraulic-based irrigation and flood control projects of the Tigris and Euphrates via canals and drainage of
floodplains and marshlands.

Egypt, Egyptians (5000–2000 BC): River and society connections involving water supply, irrigation, and flood storage projects. Collection of river
levels using the Roda ‘nilometer’ for predicting lateral river–floodplain connections for irrigation and flood control.

Emporer Yu the Great, China (2200–2101 BC): River network and basin mapping, and engineering of flood control using dikes, dams, dredging, and
irrigation canal systems.

Lucius Anneaus Seneca (4 BC–AD 65): Roman philosopher recognition that rivers erode and create their valleys.
Claudius Ptolemy (100 AD–168 AD): Greek–Egyptian scientists depicted the first river basin map of the Nile connecting the ‘Mountains of the Moon’
headwaters to the ‘Upper, Middle, and Lower Lands’ and eventually with the Mediterranean Sea.

Leonardo DaVinci (1452–1519): Italian renaissance scholar illustrated how rivers carved valleys and moved materials from one place and deposited
them in another, and painted the first slope-contoured, shaded relief drainage map of the Arno River in Italy (1502–1503), complete with head-
waters, tributaries, and main stem river connections.

Giovanni Targioni-Tozzetti (1712–1784): Italian scholar observed that river patterns and the courses they took in their valleys were a function of the
lithology and processes of differential erosion.

Jean-Étienne Guettard (1715–1786): French naturalist recognized mountain to sea connections, i.e. sediment eroded from mountains was deposited
as floodplains or carried to the sea.

James Hutton (172–1797): Scottish geologist who recognized erosion was the dominant forces carving large river valleys. Hutton also engineered
hydrologic connections on the landscape by building canals for navigation and water supply.

John Playfair (1748–1819): Scottish professor who expanded on Hutton’s ideas, and showed that channels form in systematic order, whereby small
rivers drain into larger rivers and so forth, until you have a mainstem river and valley complex, and that these river networks are organized into
drainage basins.

Captain Henry M. Shreve (1785–1851): American soldier, artificially cut a neck through ‘Turnbull’s Bend’ on the Mississippi River disconnecting the
river from its preferred path down the Atchafalaya in 1831. This led to the construction of the Old River Control Structure in 1963, which has
permanently controlled the course of the river ever since.

George Perkins Marsh (1801–1882): American environmentalists pioneered early understanding of human-induced land cover and land use changes
and their connections to impacts to land and water processes.

Charles Darwin (1809–1882): English explorer observed rivers as agents of erosion, attributed anthropomorphic terms youth, middle age, old age, and
rejuvenation to cycles of landscape evolution.

John Newberry (1822–1892): American geologist recognized that rivers carved tremendous canyons, i.e. Grand Canyon, through the terrain of the
American West.

John Wesley Powell (1834–1902): American soldier, professor, and head of USGS (1870–1892), first scientists to descend the Colorado River system
from its headwaters. Established hydrologic surveys for commissioning of western US dams.

Grove Karl Gilbert (1843–1918): American geologists contributed substantially to our understanding of geomorphology as an open system of inputs,
outputs, and fluxes of energy and material exchanges from his work in the western US and most notable his regional geologic-geomorphic
descriptions of the Henry Mountains, Utah. Described landscape evolution through processes of erosion, incision, transport, and deposition.

Robert Horton (1875–1945): Textbook father of network-based stream order patterns from topographic analysis, and applications of stream order to
quantifying drainage basin sizes, accumulation through a network, hill-slope erosion, and runoff processes.

John T. Hack (1913–1991): Established early theories of dynamic equilibrium and steady state models that described geomorphic processes and forms
changing relative to a balanced steady state of inputs and outputs.

Luna B. Leopold (1915–2006): Established field methods for quantifying fluvial forms and processes, by understanding connections among sediment
sources, transport, and deposition.

Arthur N. Strahler (1918–2002): Advanced Horton’s stream order concepts into the format commonly used today, and contributed to quantitative
methods for measuring other morphometric indices and hillslope erosion processes.

M. Gordan ‘Reds’Wolman (1924–2010): Established field methods for quantifying fluvial forms and processes, with a focus on floodplain depositional
styles and the importance of drainage basin and local scale controls.

Richard Chorley (1927–2002): Introduced complex system theory to geomorphology through sub-system classification of morphological, cascading,
process-response, and control systems.

Stanley Schumm (1927–2011): Developed concept of sediment budgets as a method for quantifying sediment sources, transport, and sinks through a
drainage basin and for measuring sediment yield.

James C. Knox (1941– 2012): Provided significant evidence that human-induced changes have substantially more sedimentation impacts to rivers and
floodplains than natural, climate-driven changes. Knox’s work underscores the importance of why understanding river–landscape connectivity
dynamics is critical to how we interpret geomorphic form, process, and management practices.
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this perceived connectivity between the river and the land-
scape that it drains prompted the recognition that geomorphic
effects could propagate through the landscape, linking, for ex-
ample, deforestation on slopes and floods in channels (Marsh,
1864). Indigenous peoples and Asian civilizations may have
recognized these forms of connectivity earlier, but the contem-
porary geomorphic tradition largely derives from western
Europe and North America.
Early human modifications of river connectivity in the United

States occurred during 19th century artificial river cutoffs and
wood removal (Table II). Human manipulations of connectivity
in US rivers continued with hydrologic surveys conducted by
John Wesley Powell that led to the commissioning of numerous
large dams on western rivers. After the pace of dam building in-
creased to a peak in the mid-20th century in the US and west-
ern Europe, subsequent recognition of the detrimental effects of
altered connectivity within river corridors drove efforts to re-
move dams or modify their operating regime (Bednarek,
2001). Another widespread form of river engineering, the chan-
nelization of large meandering or anastomosing rivers such as
the Danube (Pisut, 2002) and the Rhine (Diaz-Redondo et al.,
2017) in Europe during the latter half of the 19th century also
resulted in increased longitudinal connectivity and reduced lat-
eral connectivity for water and sediment.
During this 19th century period of intensified river engineer-

ing, geomorphology was being established as a scientific disci-
pline and with that grew a conceptual framework that
described landforms relative to systems theories and linkages be-
tween process and response dynamics. GK Gilbert, a prominent
founder of geomorphology in the United States, was the first to
discuss feedbacks among inputs, outputs, and exchanges of ma-
terial and energy through geomorphic processes (Gilbert, 1877).
In their modern incarnations, the principles of geomorphic

connectivity draw heavily on historical antecedent ideas of the
watershed as a fundamental unit, the linkages between process
and form, and the importance of understanding how materials
and disturbances propagate through watersheds. A century after
Gilbert’s seminal 1877 publication on the geology of the Henry
Mountains, for example, Chorley and Kennedy (1971) defined
the geomorphic system as a process–response complex
consisting of two interacting sub-systems – the morphological
system and the cascading system. The morphological system in-
cludes the physical, geomorphic landforms on Earth’s surface
and the cascading system includes the energy and
mass/material fluxes interacting with the morphology of the land-
forms. One sub-system cannot function independently of the
other and collectively they function relative to process–response
dynamics that vary in space and time, and at varied scales of
space (spatial area considerations) and time (temporal period or
rate consideration). Within the connectivity framework, the mor-
phological system defines the structural connectivity and the cas-
cading system represents the functional connectivity.
Chorley and Kennedy’s (1971) coupled process–response

complex, and the transfer of energy and matter between land-
forms and within the system, represents the first mention of
connectivity in geomorphology. This work built on the classic
equilibrium theory of cyclic, graded, and steady time (Schumm
and Lichty, 1965) and threshold-lag-reaction-recovery equilib-
riums of dynamic, dynamic meta-stable, and steady time
(Chorley and Kennedy 1971; Schumm, 1979; Chorley and
Beckinsale, 1980; Graf, 1988).
Brunsden and Thornes (1979) advanced the concepts of

process–response coupling by contending that the process of
landscape change is driven by the capacity of the landscape
to transmit an impulse between system components, and that
the capacity is controlled by the landscape connection be-
tween components (described as path density) and the strength

of the coupling (how (in) directly the impulse is transmitted).
The sensitivity of landscape change is then determined by the
rate of response. Highly connected and strongly coupled sys-
tems respond quickly and are commonly more morphologi-
cally complex, whereas less-connected and weakly coupled
systems respond slowly and are less complex (Brunsden and
Thornes, 1979). These ideas are direct predecessors of the con-
cepts of information propagation (Ruddell and Kumar, 2009)
and network-based graph theory (Heckmann et al., 2015).

Other major historical contributions linking landscape con-
nectivity to geomorphic systems involved the development of
methods and techniques for quantitatively measuring drainage
basin morphometry and surface runoff (Horton, 1945; Strahler,
1952, 1954). The classic Horton (1945) and Strahler (1954)
stream ordering methods also represent one of the few spatial
connectivity metrics shared across biological and physical dis-
ciplines for communicating structural and functional properties
of riverine ecosystems (Stanford and Ward, 1992). The founda-
tions for quantifying stream morphometry using network- and
areal-based measurements (Gardiner, 1975) provided a spatial
and conceptual framework for organizing river basins relative
to dominant processes, such as the production, transport, and,
deposition zones described by Schumm (1977). These spatial
frameworks led to advances in analyzing source-to-sink sedi-
ment budget and sediment yield dynamics (Trimble, 1977,
1983; Walling, 1983) and later to disturbance-driven geomor-
phic process-domains organized along a river continuum
(Montgomery, 1999).

Geomorphic understandings of process–response coupling
and its role in landscape sensitivity to change (Brunsden, 1993,
2001; Harvey, 1997, 2002; Nakamura et al., 2000) and sediment
budget fluxes (Dietrich and Dunne, 1978; Walling, 1983; Reid
and Dunne, 2003, 2016) are increasingly incorporated within
broader inter- and multi-disciplinary programs that integrate per-
spectives from hydrology, biology, ecology, and biogeochemistry
with a focus on connectivity relationships (Wohl et al., 2017a).
Human manipulations of land cover, topography, and river corri-
dors have strongly altered connectivity across diverse landscapes
(Pringle, 2003; Hooke, 2006; Fryirs, 2013). River restoration is
now the most widely practiced management action explicitly de-
signed to mitigate some of the negative aspects of past human-
induced alterations of connectivity (Buijse et al., 2002; Kondolf
et al., 2006; Magilligan et al., 2016a). Consequently, it is impor-
tant to highlight that although recognition of the importance of
geomorphic connectivity may seem like a relatively recent devel-
opment, its roots are deep.

Current work on connectivity

In the last two decades, research using connectivity as a con-
ceptual framework has experienced a boom in geomorphology,
developing new or adapting already existing concepts of con-
nectivity to better understand system complexity and response
to change (Bracken et al., 2013, 2015; Poeppl et al., 2017). In
this context, geomorphologists have also begun to assimilate
notions of connectivity from other disciplines, especially ecol-
ogy (Merriam, 1984; Amoros and Roux, 1988; Ward and
Stanford, 1989; Ward, 1997) and hydrology (Pringle, 2001,
2003) (cf. Bracken and Croke, 2007; Poeppl et al., 2017), seek-
ing to better describe water and sediment dynamics in catch-
ment systems (Croke et al., 2005; Brierley et al., 2006; Fryirs
et al., 2007a, 2007b; Turnbull et al., 2008; Wainwright et al.,
2011; Fryirs, 2013; Gomez-Velez and Harvey, 2014; Bracken
et al., 2015; Lisenby and Fryirs, 2017a, 2017b). Depending
on the respective disciplinary basis, three types of connectivity
have commonly been differentiated in geomorphic contexts,

11GEOMORPHIC CONNECTIVITY

© 2018 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, Vol. 44, 4–26 (2019)



although all of the types are interdependent: (1) sediment con-
nectivity, which is the potential for sediment to move through
geomorphic systems (Hooke, 2003) as governed by the physi-
cal coupling of landforms; (2) landscape connectivity, which
is the physical coupling of landforms; and (3) hydrological con-
nectivity, which describes the passage of the transporting me-
dium from one part of the landscape to another. Structural
configuration and functional connectivity are inherent in each
of these types of connectivity.
Considerations of sediment connectivity in geomorphology

are generally rooted in: (i) sediment budget approaches, em-
phasizing how the distribution of sediment stores and sinks re-
flect and influence the travel distances and pathways of
sediment movement in geomorphic systems; or (ii) hillslope–
channel connectivity (Harvey, 2012; Li et al., 2016),
catchment-scale sediment tracing (Fryirs and Gore, 2013), or
continuum-based approaches using the concept of hydrologi-
cal connectivity (Lexartza-Artza and Wainwright, 2009, 2011;
cf. Bracken et al., 2015). In an ecological context, hydrological
connectivity was defined by Pringle (2001) as being the water-
mediated transfer of matter, energy, and/or organisms within or
between elements of the hydrologic cycle. Prior to that, stream
ecology conceptual models including the river continuum con-
cept (Vannote et al., 1980), the flood-pulse model (Junk et al.,
1989), and the serial discontinuity concept (Ward and Stanford,
1983) emphasized the ecological implications of diverse forms
of connectivity. Ecological approaches to connectivity have
been assimilated by hydrologists, resulting in a novel frame-
work for understanding runoff and run on in catchment systems
(Bracken and Croke, 2007; Ali and Roy, 2009).
Landscape connectivity has been defined in landscape ecol-

ogy as being the degree to which a landscape facilitates or im-
pedes the movement of individuals (Taylor et al., 1993). Similar
notions regarding the role of structural landscape characteris-
tics in a geomorphic context can be found in the coupling con-
cept of Brunsden and Thornes (1979) and, later, in
conceptualizations of the four-dimensional nature of lotic eco-
systems (Ward, 1989). Brierley et al. (2006) elaborated these
ideas and developed a connectivity framework in which they
characterized different forms of landscape connectivity based
on the position of geomorphic processes in a catchment (i.e.
longitudinal, lateral, and vertical connectivity), explaining the
efficiency of sediment transfer relationships within catchment
systems (see also Fryirs et al., 2007a, Fryirs et al., 2007b). In
bio-geomorphic floodplain systems, the four dimensions of
connectivity provide a framework to examine hydrologic-
mediated exchanges of organisms, nutrients, carbon, and en-
ergy (Zeug et al., 2005; Opperman et al., 2010; Kupfer et al.,
2014; Matella and Merenlender, 2015).
Also following ecological literature (Turner, 1989), geomor-

phologists drew a distinction between structural connectivity
as the extent to which landscape units are physically linked
to one another (With et al., 1997; Tischendorf and Fahrig,
2000; Turnbull et al., 2008; Wainwright et al., 2011) and func-
tional connectivity as accounting for the way in which interac-
tions between multiple structural characteristics affect
geomorphic processes (Kimberley et al., 1997; With et al.,
1997; Turnbull et al., 2008; Wainwright et al., 2011; Bracken
et al., 2015). Recent studies have suggested that geomorphic
system response to change can be governed by feedback rela-
tionships between structural configuration and functional con-
nectivity (Turnbull et al., 2008; Wainwright et al., 2011;
Bracken et al. 2015; Poeppl et al., 2017). These structural–
functional feedback relationships further drive a variety of
bio-geomorphic interactions in river systems (e.g. exchanges
of water, sediment, and propagules) that influence coupled
landforms and development of biotic communities (Hupp and

Bornette, 2003; Osterkamp and Hupp, 2010; Meitzen and
Kupfer, 2015).

Identifying signatures of connectivity in the
geomorphic record

One of the challenges of a conceptual framework designed
around connectivity is to identify signatures of differing degrees
of connectivity in contemporary geomorphic processes and in
sedimentary or other records of past processes. The first instinct
when looking for a signature of connectivity is to detect
changes in a measurement that corresponds to, for example,
an input to the system. From a hydrological perspective, this
may be looking for a peak in a hydrograph in response to a
storm. From a sediment perspective, this could be identifying
a pulse of increased eolian dust inputs that affects rate of soil
formation. From a geomorphic perspective this may not be
quite so straightforward, however, for at least two reasons. First,
a peak in, for instance, water or sediment output at a point in
space partly reflects what is happening in the basin above that
point, but several different combinations of events or circum-
stances may give rise to this response (equifinality) (Chorley,
1962). Second, the geomorphic response is governed by the
availability of transporting mechanisms such as water but also
the supply of sediment and the landscape configuration as
shaped by the history of sediment-transporting flows (Harvey,
1997; Cenderelli and Wohl, 2003). This implies that the geo-
morphic system has a more effective memory of past events
than the hydrological system, in which memory can (literally)
evaporate. Therefore, the connectivity signature may be better
represented with a spatial metric that encompasses how geo-
morphic processes operate over time and space. Examples of
this include DEMs of difference (DoD) in which topographies
from different time periods can be compared to indicate where
there have been elevation changes and thus erosion and depo-
sition (Lane et al., 1994; Wheaton et al., 2010). The use of this
method has been greatly aided by the recent widespread avail-
ability of high-resolution lidar topographic data (Jones et al.,
2007; Passalacqua et al., 2015; Clubb et al., 2017).

Geomorphic responses that represent changes in connectiv-
ity are highly nonlinear. Commonly controlled by erosional
thresholds such as slope failure angles or entrainment thresh-
olds in bedload transport, the response of a landscape or drain-
age basin to different magnitude forcings can thus be complex.
Evidence of this is widespread throughout geomorphic studies,
dating to Schumm’s work on complex response (Schumm,
1973) as well as more recent modeling work (Coulthard and
Van De Wiel, 2007). Modeling the geomorphic response of ba-
sins to climate change, Coulthard et al. (2012) show how in-
creases in rainfall magnitude lead to linear increases in water
outputs but exponential increases in sediment delivery. This is
driven partly by thresholds in sediment transport but also by
spatial and temporal changes in availability of sediment, which
in turn are contingent upon the basin’s past history of events.

When viewing river bedload transport, Jerolmack and Paola
(2010) argue that sediment transport processes can act as a non-
linear filter which can completely erase (or ‘shred’) the original
characteristics of an environmental signal (i.e. its relative magni-
tude and duration). The degree of this shredding is thought to de-
pend on the ratio between the signal frequency and the time
scale of ‘morphodynamic turbulence’ in the system (Jerolmack
and Paola, 2010).When signal frequency is shorter than the turn-
over induced by turbulence, the signal is lost.

This framework can also help explain why some events
and/or systems can faithfully record responses to large signals
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(Romans et al., 2016). One example appears to be the response
of suspended sediment in mountain rivers to large-scale land-
slide sediment inputs triggered by earthquakes (Hovius et al.,
2011; Wang et al., 2015). Recent work following the 2008
Mw7.9 Wenchuan earthquake shows immediate (hourly time
scale) and multi-annual increases in river suspended sediment
concentration and sediment flux following the event (Wang
et al., 2015). These observations mirror river suspended sedi-
ment data following the 1999 Chi-Chi earthquake in Taiwan
(Hovius et al., 2011) and records of sand, silt, and mud accu-
mulation in lakes fed by catchments draining the Alpine Fault
in New Zealand over the last ~1000 years (Howarth et al.,
2012). These steep mountain catchments have elements of
structural connectivity that can greatly enhance the transfer of
landslide sediment to river channels (Li et al., 2016). In addi-
tion, the erosion and transfer of suspended sediment viewed
from the framework of Jerolmack and Paola (2010) may be con-
sidered as the morphodynamic equivalent of laminar flows; i.e.
the nonlinear responses may be less important. Clearly, the in-
ternal operation of sediment transport systems needs to be con-
sidered when examining records in the context of
understanding connectivity.
Choice of metric will also heavily influence the signature.

Above, we used the example of sediment output at a point,
but other metrics commonly used include slope–area products
and hypsometric curves (Sternai et al., 2011; Hancock et al.,
2016). Although these provide useful overall indicators of dif-
ferent landscape shapes or form, such metrics can be relatively
insensitive to alterations and changes in the landscape that are
highly apparent in a visual comparison. For example, Hancock
et al. (2016) show how simulated landscapes with very different
drainage networks and forms have very similar landscape sta-
tistics. Furthermore, landscapes and sedimentary records are
palimpsest in that they can be erased and re-written. Therefore,
a record of past changes, and indeed a whole landscape, may
be incomplete as an indicator of what has driven its final form.
All the above issues are likely to be affected by the scale of

study. For example, simple first-order streams, with limited de-
grees of freedom to store sediment and then allow this sediment
to be re-mobilized, may respond more linearly to forcing than
larger second-, third- or higher-order streams (Trimble, 2013).
Here, larger expanses of, for example, floodplain may absorb
any stratigraphic change that represents a signature of connectiv-
ity or generate false signals through autogenic processes. Tempo-
rally, this also affects what type of signature we are looking for. A
tectonic signal operating over a long time scale may override the
autogenic processes and other factors, muddying or masking the
signal. But these processes and factors may be very important
when looking for the connectivity signature from a large event
(Goodbred, 2003; Jain and Tandon, 2010).
Continual deposition has the potential to serve as an indica-

tor of connectivity, but only at the temporal and spatial scale of
the deposit. The depositional record of a limited area does not
indicate how far up channel or gradient the connectivity may
have extended into the transport and erosional zones, although
sediment fingerprinting (Walling et al., 1999) can be used to in-
fer the extent of longitudinal connectivity. Because of thresh-
olds and complex response, however, a lack of uniformity
does not necessarily indicate disconnectivity except at the
smallest time scales of depositional processes. Examples in-
clude autogenic rhythmites at time scales of 1 to 100 s; slip-
face bedding planes at hourly to weekly time scales; and re-
peating sequences resulting from complex basin response at
annual to centennial time scales (Schumm, 1981). In all these
cases, the flux driving the deposition could be described as dis-
connected at time scales smaller than the signal frequency, but
connected at greater time scales.

Uniformity and cyclicity can thus be considered indicators of
connectivity within the lateral extent of a deposit over the rele-
vant time scale, but their absence does not preclude connectiv-
ity. A reach in steady-state equilibrium, which is passing the
exact amount of sediment received, is certainly well con-
nected, but it will leave no trace of its role as a connecting part
of the landscape. A basin may receive a particular sequence of
sediments from its connected source areas, but the lack of re-
peating cycles does not necessarily negate its connectivity.

Thus, a depositional approach to identifying connectivity is
limited to the spatial extent of the deposit or to the linkages that
can be inferred from sediment characteristics via techniques
such as sediment fingerprinting. Similarly, nothing can be said
with certainty about connectivity below the temporal resolu-
tion of the stratigraphy. If a daily pulse of sediment slowly
builds a delta, then the system would be disconnected at some
time scale shorter than a day, but connected at any scales lon-
ger than a day. The bedding resolution is the temporal dividing
line. Viewed in the opposite sense, if connectivity is a critical
filter in the interpretation of upstream forcing (e.g. climate), in-
ferring changes in that forcing without considering connectivity
may be incorrect (Lane et al., 2017).

In summary, issues around spatial and temporal scale of
measurements or depositional records, as well as the existence
of equifinality and nonlinearity in geomorphic systems, pose
fundamental challenges to identifying connectivity. Conse-
quently, the methods used to identify connectivity vary sub-
stantially among studies in relation to the specific aspects of
connectivity under consideration (Table III). This is unlikely to
change in the future. Most of the methods listed in Table III
are based on inferred connectivity as reflected in landscape
changes through time or as simulated using numerical models
calibrated against datasets that span limited time and space
scales. Although the list in Table III is not exhaustive, the rela-
tive proportions of methods relying on direct measurements of
fluxes versus inferred fluxes represent the proportions of these
approaches in the geomorphic literature.

Measuring connectivity

Another basic challenge of a conceptual framework designed
around connectivity is to quantify fluxes that reflect connectiv-
ity. Although connectivity provides a powerful conceptual
framework for understanding geomorphic systems, there is cur-
rently a lack of consensus on how to measure and to compare
connectivity quantitatively across temporal and spatial scales
and between geomorphic systems (Bracken et al., 2013; Wohl,
2017; Table I). This may be unavoidable given the issues
discussed above that arise from the interest in diverse aspects
of connectivity. At some level, however, the lack of consensus
on connectivity metrics gives rise to many challenging ques-
tions we are currently unable to answer quantitatively. Exam-
ples include questions of broad scope: is there a spatial scale
at which landscape connectivity is most sensitive to human in-
fluences (Vanacker et al., 2005)?; where and when is restoring
connectivity an appropriate strategy (Kondolf et al., 2006)? or,
under what conditions are Eulerian versus Lagrangian frame-
works more appropriate to developing insights into a particular
geomorphic system (Doyle and Ensign, 2009)? Examples of
more specific questions include: are deltas inherently more
connected than dendritic drainage networks (Passalacqua,
2017)?; or can factors that determine thresholds governing lon-
gitudinal connectivity of mobile large wood in a river network
be quantitatively predicted (Kramer and Wohl, 2017)? Al-
though many studies have quantified connectivity, most have
used approaches developed for the specific question at hand
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(Bracken et al., 2013, 2015; Wohl, 2017). Few studies have
sought to develop connectivity metrics that are intended to be
general and widely applicable. In this section, we review the
wide variety of published methods for quantifying connectivity
in geomorphic systems, and explore the opportunities and
challenges for developing a general approach to measuring this
elusive but vital attribute of landscapes.
Many questions arise in considering how best to measure con-

nectivity, starting with whether connectivity is the state of a geo-
morphic system (structural connectivity) or a measurable flux
(process connectivity)? Is it possible to quantify the essential as-
pects of connectivity in a single general metric, or are the domi-
nant controls and manifestations of connectivity so varied that
site-specific or process-specific metrics will always be needed

(Blue and Brierley, 2016)? Are structural connectivity and func-
tional connectivity more or less amenable to a standardizedmea-
surement approach? How sensitive are connectivity metrics to
the methods and tools of data collection and the temporal and
spatial scales of analysis? Should connectivity be measured di-
rectly or is it sufficient to quantify it indirectly, by measuring the
factors that influence connectivity or its effects on landforms
and material fluxes? Do we need a suite of metrics that can cap-
ture the cause and effect relationships among the drivers, attri-
butes, and effects of connectivity? Can we as geomorphologists
effectively forecast how connectivity relationships will alter geo-
morphic forms, processes, and fluxes brought about by climate
and land use change? To address these questions, we begin by
considering previously published connectivity metrics within a

Table III. Examples of methods used to identify signatures of geomorphic connectivity

Description Sample references

Measured fluxes
Used 40 years of erosion-pin data, along with sediment trap data and sequential aerial photos and
floodplain surveys to measure and infer sediment fluxes from hillslopes to pediments, floodplains, and
channels

Godfrey et al., 2008

Measured precipitation, riparian water table, and stream flow and used these data as input to model
hydrological connectivity

Jencso et al., 2009

Used arrays of electrical resistance sensors to quantify longitudinal connectivity of flow through time in
drylands rivers

Jaeger and Olden, 2012

Used piezometers and subsurface samplers to measure vertical hydraulic gradients and specific discharge
as indices of vertical hydrological connectivity between a channel and hyporheic zone

Wainwright et al., 2011

Inferred fluxes
Catchment-scale sediment flow diagrams that identify spatial variability in patterns of sediment inputs,
outputs, and storage based on direct measurements or, more commonly, spatial configuration of
landscape units and relative volumes of stored sediment

Trimble, 1983; Fryirs et al.,
2007

Visual or morphologic assessments of characteristics (size, spatial distribution, function) of landscape units
in relation to facilitating or retarding sediment connectivity

Brierley et al., 2006

Modeled the delivery of landslide-generated sediment to channel networks; sediment generation from
hillslopes and channel banks and its delivery to the channel network modeled using a modified form of
SHALSTAB coupled to a network index version of TOPMODEL

Reid et al., 2007

Because alkalinity of stream waters reflects relative influence of groundwater and unsaturated zone runoff,
used alkalinity as index of hydrologic connectivity at catchment scale

Tetzlaff et al., 2007

Used 1D hydrological modeling to infer hydrological connectivity among lakes and channels in the
Danube River delta

Coops et al., 2008

Used in situ water level and MODIS satellite data to relate mainstem river level fluctuations to delta
inundation on Canada’s Peace-Athabasca delta; temporal covariance between the two datasets allows
inference of hydrologic connectivity processes, as well as inundation extent

Pavelsky and Smith, 2008

Used diatom sedimentary assemblages to discriminate between three categories of delta lakes with differing
types of hydrological connectivity to the Slave River of Canada

Sokal et al., 2008

Simulated runoff and sediment dynamics at the catchment scale with a dynamic landscape evolution
model that can simulate erosion and sedimentation based on a limited number of input parameters

Lesschen et al., 2009

Assessed hydrologic connectivity of the Mackenzie River and lakes on its delta from duration of
‘connection time’ based on elevation of sill height for a lake and daily river water levels from stream gage
records

Tank et al., 2009

Visual evaluation of location of sediment sources, degree of coupling to stream network, channel
morphology, and magnitude of erosion and deposition following a rainstorm

Cavalli et al., 2013

Used 2D simulation and river corridor topography to numerically model flood inundation extent for varying
discharges and from this inferred lateral connectivity between channel and floodplain

Croke et al., 2013

Field observations of surface-flow connectivity combined with topography of river corridor to infer relative
degrees of hydrological connectivity among active channel and abandoned channel water bodies on the
floodplain

Phillips, 2013

Numerically simulated coarse sediment transport via diverse geomorphic processes (rockfall, debris flows,
slope wash, fluvial transport) and used these data in graph-based network analysis

Heckmann and Schwanghart,
2013

Data from ground surveys used with digital terrain model differencing techniques and morphological
sediment budgets to infer sediment connectivity

Wester et al., 2014

Measured rates of channel migration from sequential aerial photos used to identify locations of enhanced
geomorphic change, which is inferred to reflect spatial variation in sand transport

Czuba and Foufoula-
Georgiou, 2015

Used archival digital photogrammetry to reconstruct history of topographic change and inferred sediment
fluxes in a catchment

Micheletti et al., 2015

Represented sediment transport from each source in a watershed as a suite of individual cascading
processes that are incorporated into an integrated modeling framework of sediment cascades that is used
to infer patterns of connectivity and locations of disconnectivity

Schmitt et al., 2016
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cause and effect framework, according to whether they provide a
direct measure of connectivity or indirectly quantify the effects or
the causes of connectivity.
Most studies of connectivity are motivated primarily by under-

standing how connectivity affects specific aspects of landscape
dynamics, such as the movement of sediment between hillslopes
and channels or through a stream network (Fryirs and Brierley,
2001; Fryirs, 2013; Bracken et al., 2015; Gran and Czuba,
2017; Lane et al., 2017). Hence, a straightforward approach is
to quantify fluxes directly and to use those measurements to infer
the degree of connectivity in the transport system, which repre-
sents a Eulerian approach. This can be done at a single point such
as a catchment outlet or atmany locations distributed through the
system. Sediment transport processes, for example, are measured
using erosion plots for small-scalemeasurements of sediment flux
(Cerdà and García-Fayos, 1997; Wainwright et al., 2000; Boix-
Fayos et al., 2006) or suspended sediment sampling methods
and/or bedload traps in streams and rivers for larger-scale mea-
surements (Garcia et al., 2000; Bunte and Abt, 2005). In geomor-
phic connectivity research, functional connectivity is commonly
inferred from measured water and sediment fluxes, either on the
plot scale (Turnbull et al., 2010; Wainwright et al., 2011; Puttock
et al., 2013) or on the catchment scale (Duvert et al., 2011; Lane
et al., 2017). Sediment tracers have been increasingly utilized to
quantify erosion and deposition of sediments and to derive struc-
tural and functional connectivity of geomorphic systems (D’Haen
et al., 2013; Fryirs and Gore, 2013; Koiter et al., 2013), which
represents more of a Lagrangian approach.
The sediment delivery ratio (SDR) is one of the most widely-

used indirect metrics of the effects of connectivity measured at
a point along the boundary of the system (Walling, 1983;
Brierley et al., 2006; Fryirs, 2013; Baartman et al., 2013). The
SDR quantifies the fraction of mass eroded within an upstream
catchment that is transported past the catchment outlet. The
SDR varies between 0 and 1, thus providing an integrated,
non-dimensional measure of the degree of connectivity of sed-
iment sources and transport pathways within the catchment.
Other studies that use output fluxes to infer upstream connec-
tivity include Ali and Roy (2010), which measures stream dis-
charge and infers connectivity of zones of high soil moisture,
and recent work on deltaic systems which quantifies the hydro-
logical connectivity of channels and interdistributary islands
(Larsen et al., 2012; Hiatt and Passalacqua, 2015, 2017), and
relates sediment output from delta distributary channels to up-
stream connectivity between geomorphic elements of the delta
system (Liang et al., 2016c; Passalacqua, 2017).
In contrast to quantifying the bulk system output at a single

point in space, metrics for the local effects of connectivity at
many locations across the landscape are inherently more com-
plex. This approach relies on a conceptual model of the inter-
nal dynamics of the system that facilitates identifying which
sub-systems to measure and the scale and density of measure-
ments. Numerical models can overcome this challenge by
predicting outcomes for every point in the landscape. Modeling
approaches include cellular automata (Baartman et al., 2013;
Masselink et al., 2016a; Coulthard and Van De Wiel, 2017),
process-based modeling (Mueller et al., 2007), statistical
models (Poeppl et al., 2012), and GIS approaches based on net-
work theory (Lane et al., 2009; Heckmann and Schwanghart,
2013; Masselink et al., 2016b). For example, Coulthard and
Van de Wiel (2017) model changes in sediment fluxes due to
the cascading impacts of land use change, and infer landscape
connectivity across large distances and in both upstream and
downstream directions. Czuba and Foufoula-Georgiou (2015)
and Gran and Czuba (2017) use a model of sand transport
through a natural channel network to indirectly quantify local
connectivity by defining a cluster persistence index (CPI). The

CPI is calculated from the time integral of sand mass passing
a point in the network and identifies locations where discrete
packets of sand coalesce and disperse due to longitudinal var-
iations in transport connectivity. Examples of field-based stud-
ies that measure the local outcomes of connectivity include:
Vanacker et al. (2005), which infers changes in water and sed-
iment connectivity from measured changes in channel geome-
try and grain size; Croke et al. (2013) and Thompson et al.
(2016), which use the measured and modeled extent of flood-
plain inundation during an extreme flood to infer connectivity
between channel and floodplain; and Wester et al. (2014),
which measures topographic elevation changes over time in
gullies following wildfire to document spatial variation in sedi-
ment transport and deposition and infer patterns of local trans-
port connectivity.

Connectivity in geomorphic systems has also been indirectly
quantified through measurements of the key drivers that pro-
mote or inhibit connections in natural and human-disturbed
landscapes (Bracken and Croke, 2007; Poeppl et al., 2017).
For example, Borselli et al. (2008) develop a connectivity index
(IC) that expresses the relative sediment transport efficiency up-
stream and downstream of any point in the landscape, using to-
pographic attributes such as drainage area, mean slope, and
travel distance between elements. Cavalli et al. (2013) adapt
the IC for use in mountainous catchments by including the ef-
fect of topographic roughness in reducing connectivity. This
spatial index has been able to reconcile temporal variability
in sediment export from partly glaciated basins (Micheletti
and Lane, 2016). Measures of land surface roughness extracted
from DEMs have been used in other studies of landscape
disconnectivity, including Baartman et al. (2013), which de-
fines a topographic Complexity Index based on local relief
and slope variation, and Lane et al. (2017), which uses pit-
filling and flow-routing algorithms to assess the impact of
roughness on sediment throughput. In geomorphic terms, this
latter study seeks to avoid the limitations of the common hydro-
logical approach to noise in topographic data that leads to arti-
ficial pits, or sites of disconnection. Many hydrological
analyses of routing begin by filling pits such that flow continu-
ity can be achieved. In hydrology, but particularly in geomor-
phology, problems can arise with doing this when real pits,
sites of reduced connectivity or disconnection, are eliminated
by such algorithms. Other studies that quantify geomorphic
drivers of connectivity include: Rice (2017), which uses drain-
age area, Strahler order and other catchment attributes to pre-
dict the relative disconnectivity of tributary junctions; Cadol
and Wine (2017), which infers differential connectivity be-
tween streams and riparian vegetation in various geomorphic
settings defined by measurements of valley width, topographic
curvature and slope; and May et al. (2017), which describes re-
duced coupling between hillslopes and channels due to wider
valley bottoms and gentler hillslope gradients in catchments
upstream of bedrock-controlled waterfalls. IC are static repre-
sentations of connectivity that can be very useful for determin-
ing areas of high and low structural connectivity within a
geomorphic system under study (Nicoll and Brierley, 2017).

The connectivity of a geomorphic system can also be explic-
itly quantified using analytical techniques originally developed
in other fields, such as network theory (Newman, 2006) and
studies of percolation (Grimmett, 1989). The system must first
be represented as a network composed of source or storage el-
ements (nodes) that are connected by pathways of potential
transport (links). Nodes can be pixels or other polygons in a
continuous representation of a landscape, or one- to three-
dimensional elements in a graphical representation of the net-
work structure. Links can be formed uniformly with adjacent el-
ements or specified in terms of network structure and other
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factors representing distance, direction, transport thresholds
and transport efficiency. Once the system is defined spatially
and dynamically, connectivity can be quantified using a variety
of statistics that measure the central tendency or variability of
connections between network elements. For example, Western
et al. (2001) characterize the degree of hillslope hydrologic
connectivity by defining the integral connectivity scale length
(ICSL), which represents the average distance separating hill-
slope elements that are connected by a continuous downslope
path of elements with soil moisture above a threshold value.
As networks grow in size and complexity, matrices are needed

for network connectivity and flow computation. David et al.
(2011) provides an example, using a matrix-based version of
the traditional Muskingum method of flow routing, to develop a
river network model in which lateral inflow to a river network is
calculated by a land-surface model and flow in all reaches of a
river network is calculated using the routing equation.
The mathematical model of a network is the graph. Graph the-

ory, which is the study of graphs, has been applied to geomorphic
systems (Haggett and Chorley, 1969; Phillips, 2012; Heckmann
and Schwanghart, 2013; Marra et al., 2013; Tejedor et al.,
2015) as a means of characterizing network structure and fluxes
within networks, as well as simulating propagation of system
changes through networks (Heckmann and Schwanghart,
2013). A graph can be formally described asG = (N, E), in which
N indicates nodes and E indicates edges. A graph is represented
using an adjacencymatrix, which is a squarematrixwith asmany
rows and columns as there are nodes inG. Such amatrix can pro-
vide amathematic framework for exploring functional connectiv-
ity by analyzing nodes, edges, and paths (Heckmann and
Schwanghart, 2013). Kupfer et al. (2014) apply network-based
graph theory to model spatial and temporal changes in lateral
connectivity of a large floodplain under different flood recurrence
scenarios. Meitzen and Kupfer (2015) apply this same model to
examine how connectivity influences abandoned channel
infilling and vegetation development patterns. Tejedor et al.
(2015) use spectral graph theory to develop a quantitative frame-
work for channel network connectivity on deltas. Building on
studies of neural networks in the human brain, Passalacqua
(2017) uses an adjacency matrix to quantify the interactions be-
tween channel, levee, and island components of a delta. This ap-
proach permits an integrated evaluation of structural
configuration and functional connectivity.
Cote et al. (2009) develops another direct metric of network

connectivity to quantify the impact of barriers to fish migration
at the catchment scale. Cote et al. (2009) defines the Dendritic
Connectivity Index (DCI) based on summing the length of
stream reaches linked by passable potential barriers, normal-
ized by the total length of the stream network, which represents
the probability that an organism is able to move between any
two points within the network. Grill et al. (2014) builds on this
work by defining a River Connectivity Index (RCI) that con-
siders other reach attributes such as volume, habitat classifica-
tion, and usability by a given species.
The preceding review illustrates the wide variety of metrics

developed to quantify connectivity, both directly using tech-
niques from network analysis and indirectly through measure-
ments of fluxes and other outcomes of connectivity, and the
topographic and other factors that drive variations in connec-
tivity. Structural connectivity/configuration is captured most ex-
plicitly in the direct quantification of network properties, but is
also implicit in many of the metrics that quantify the drivers of
connectivity. On the other hand, metrics based on measuring
the outcomes of connectivity primarily quantify functional con-
nectivity. Studies that compare metrics representing different
types of connectivity have the potential to quantify the cause
and effect relationships at the heart of geomorphic connectivity.

For example, Baartman et al. (2013) shows that Sediment De-
livery Ratio, in natural and modeled catchments, declines sys-
tematically with increasing Complexity Index, thus linking
structural drivers of connectivity with functional outcomes.
Similarly, Beckman and Wohl (2014) show that variations in
carbon content in fine sediment deposits, a proxy for sediment
residence time and functional disconnectivity, correlate with
boundary conditions including valley morphology, log jam
spacing, and forest stand age. They also show that increased
connectivity, through destruction of wood jams, leads to reduc-
tions in sediment deposition and channel roughness, which in
turn inhibits the trapping of mobile wood that might otherwise
anchor new wood jams. Thus, by linking the causes and effects
of (dis) connectivity, Beckman and Wohl (2014) illustrate how
feedback loops, with the potential to form multiple alternative
states, can arise in connectivity dynamics.

A key question that arises when quantifying connectivity is:
compared with what? In any given geomorphic system, is there
a maximum or optimum level of connectivity to compare with?
Non-dimensional connectivity metrics have the potential to
quantify connectivity relative to a reference value. A simple ex-
ample is the Sediment Delivery Ratio (Walling, 1983), which at
its maximum value of 1.0 implies complete connectivity, albeit
without directly quantifying any of the upstream connections or
considering the time scale over which connectivity is operat-
ing. A more spatially explicit non-dimensional metric is the hy-
drologic connectivity parameter Tau (h) of Western et al.
(2001), which is integrated to calculate the integral connectiv-
ity scale length (ICSL) described above. Tau (h) represents the
probability that any two pixels separated by a distance h are
connected by a continuous path of pixels with soil moisture
above a threshold value, and thus varies between 0 and 1. Sev-
eral other connectivity metrics are composed of dimensionless
ratios that vary between 0 and 1, including the Dendritic and
River Connectivity Indices (Cote et al., 2009; Grill et al.,
2014) and the Complexity Index (Baartman et al., 2013). These
dimensionless metrics are normalized by the maximum values
for the local catchment, making them useful for quantifying the
effect of changes within the catchment, such as dam construc-
tion, but less useful for comparisons between catchments or
other geomorphic systems.

Perhaps the most significant challenge in quantifying con-
nectivity is the issue of scale. The frequency and efficiency of
connections within any geomorphic system vary systematically
with the temporal and spatial scale of analysis. Hence the mea-
sures of connectivity produced by any robust metric should
also vary with scale. Because most transport processes are in-
termittent, connectivity should increase when measured over
longer characteristic time scales (McGuire and McDonnell,
2010; Bracken et al., 2013, 2015). Conversely, because move-
ment of material occurs over finite distances in any given trans-
port event, measured values of connectivity should decrease as
spatial scale increases (Western et al., 2001; McGuire and
McDonnell, 2010; Bracken et al., 2013, 2015).

One approach is to determine the fundamental temporal and
spatial scales for the phenomenon of interest and to make mea-
surements at a sufficiently large multiple of the fundamental
scales to capture reliably a representative sample of transport
events. If landslides are a key component of sediment connec-
tivity within a drainage basin, for example, measuring sediment
connectivity across a timespan that includes more than one
landslide and intervening periods with other modes of sedi-
ment delivery is important (Reid et al., 2007; Cavalli et al.,
2013; Dethier et al., 2016). Similarly, measurements of longitu-
dinal hydrologic connectivity within a river during floods
should incorporate a time scale that includes multiple floods
(Jaeger and Olden, 2012).
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Another approach seeks to characterize how connectivity
varies with scale, by applying the same metric over a wide
range of temporal and spatial scales. Western et al. (2001) pro-
vides an example based on multiple soil moisture datasets. Al-
ternatively, statistical measures that characterize the frequency
distributions of connectivity across scales can be used, as Ali
and Roy (2010) did for soil moisture and stormflow in a humid
temperate forested catchment or Sendrowski and Passalacqua
(2017) did for hydrological processes on a delta influenced by
river discharge, tides, and wind.
Ultimately, the tools and methods available to collect the rel-

evant data will constrain the scales at which connectivity can
be analyzed. Technological advances such as terrestrial lidar,
structure-from-motion photogrammetry, wireless sensor net-
works, and new techniques for tracing and tracking sediment
fluxes create opportunities to expand the range of scales over
which connectivity can be quantified (Cavalli et al., 2013;
Fonstad et al., 2013; Smith and Vericat, 2015).
Several key ideas for future directions in measuring connec-

tivity emerge from this discussion. First is the recognition that
distinct metrics are probably needed to characterize structural
configuration and functional connectivity and that no single
overarching metric for connectivity is likely to emerge. Second,
it will be fruitful to explore combinations of metrics that can
represent the cause and effect relationships that link the drivers,
structures, and outcomes of geomorphic connectivity and give
rise to feedbacks and emergent system behavior. Third, non-
dimensional measures that characterize connectivity relative
to meaningful reference values are needed to compare connec-
tivity across scales and between systems. Finally, quantifying
how connectivity varies with temporal and spatial scales of
analysis will both inform future study designs and provide in-
sight into the nature of connectivity in diverse geomorphic sys-
tems. A single metric that represents all aspects of connectivity
is unlikely, but meaningful progress can be made in the ab-
sence of such a universal metric.

Using connectivity

Identifying and measuring connectivity provides a useful ap-
proach in basic and applied geomorphic research (Wohl,
2017). An explicit focus on connectivity can facilitate identifi-
cation of spatial and temporal disparities in material fluxes
within geomorphic systems, for example, as well as enhancing
understanding of mechanisms of retention of materials within a
particular system or component of a system. Characterizing
connectivity can provide insight into the response of geomor-
phic systems to disturbance, the nonlinear behavior that may
result from those disturbances, and the resistance or resilience
of the system to disturbances. Explicit attention to connectivity
can also promote transdisciplinary approaches to understand-
ing and communicating geomorphic process and form.

Effective approaches to the management of
landscape connectivity in river basins

In this section, we explore the implications of connectivity for
management of rivers. The implications discussed here also ap-
ply to other geomorphic environments, but rivers are particu-
larly the target of environmental management, including
restoration and rehabilitation, and a more extensive literature
addresses management of rivers relative to management of
other geomorphic systems.
Effective river management programs seek to attain the best

achievable state for a healthy and responsive river under

prevailing and future conditions. Geomorphically informed
river management practices incorporate flexibility and future
variability in the design and implementation of management
practices through articulation of open-ended and dynamic
goals (Downs and Gregory, 2004; Brierley and Hooke, 2015;
Brierley and Fryirs, 2016). Such planning and design exercises
recognize that what has gone before influences our capacity to
manage and modify rivers, but altered boundary conditions
and evolutionary trajectories constrain the best achievable state
and functionality that can be attained under prevailing and
likely future conditions. This entails working with river
morphodynamics at the reach scale, framed in relation to
catchment-scale sediment and other fluxes. Landscape con-
nectivity exerts a critical influence upon these relationships.

Understanding connectivity in relation to the
morphodynamics of rivers is critical for making informed deci-
sions in river management practice. Essentially, such understand-
ing is concerned with the management of fluxes. In an era where
forecasting river responses to a range of natural and human dis-
turbances is critical to management and planning, understanding
connectivity provides a core foundation from which to work.
Forecasting where disturbance is likely to bemanifest and the ex-
tent to which on-site and off-site impacts will result is critical to
risk assessment and planning. Forecasting flood hazards requires
an understanding of hydrological connectivity. Managing sedi-
ment hazards and legacy sediments requires an understanding
of not only sediment sources, transport and deposition, but also
the extent to which a catchment contains blockages or pathways
of conveyance (James, 2010; Wohl, 2015). Managing contami-
nants or the spread of exotic flora and fauna requires that the dis-
persal pathways provided by rivers and floodplains are well
understood (Haycock and Burt, 1993; Coulthard and Macklin,
2003). The connectivity among the component parts of the sys-
tem and the manner in which these parts fit together set the tem-
plate of the dynamic physical habitat mosaic in a river corridor.

Concerns for the sediment regime of a river take account of
the nature and rate of sediment generation in a particular land-
scape setting, and controls upon the effectiveness of erosion
and transport mechanisms that move materials through river
systems (Benda et al., 2004; Czuba and Foufoula-Georgiou,
2014, 2015; Wohl et al., 2015a; Schmitt et al., 2016). In the de-
velopment and implementation of catchment-scale river man-
agement plans (Sear et al., 1995; Gilvear, 1999; Brierley and
Fryirs, 2009; Toone et al., 2014; Wohl et al., 2015a, 2015b),
reach-scale sensitivity and catchment-scale connectivity are
key considerations in determining river recovery potential and
the range of potential trajectories of geomorphic river adjust-
ment (Brierley and Fryirs, 2005; Fryirs, 2013, 2017). Connectiv-
ity relationships exert a primary control upon the efficiency
with which disturbance responses are mediated through catch-
ments, and associated lag times. This may present significant
constraints upon what is achievable in managing sediment flux
relationships in any given catchment. The (ir) reversibility of
geomorphic adjustments to river type, and appraisals of sedi-
ment flux at the catchment scale, are important considerations
in assessment of likely trajectories of adjustment (Wohl, 2011;
Fryirs et al., 2012; Grabowski et al., 2014; Scorpio et al.,
2015; Brierley and Fryirs, 2016; Ziliani and Surian, 2016).
These insights support the derivation of moving targets for man-
agement programs (Brierley and Fryirs, 2016) and help to en-
sure that management actions are appropriate for a particular
site (Brierley and Fryirs, 2009).

Analysis of geomorphic river recovery appraises how a river
has adjusted in the past and what the river is adjusting toward.
The potential for river recovery following disturbance reflects a
river’s inherent sensitivity to change and the severity of impacts
to which the system is or has been subject (Hooke, 2015; Fryirs,
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2017). Multiple potential trajectories can emerge, dependent on
the condition of a reach, likely responses to disturbances, prevail-
ing, system-specific driving factors and time lags, and how con-
nectivity relationships mediate these processes and shape the
evolutionary trajectories adopted (Phillips, 2007; Fryirs et al.,
2009; Standish et al., 2014; Phillips and Van Dyke, 2016).
Assessing river recovery requires that the history, pathway,

and rate of adjustment of each reach in the catchment of inter-
est is known (Kondolf and Larsen, 1995; Surian et al., 2009b;
Wohl, 2011; Fryirs et al., 2012; Fryirs and Brierley, 2012,
2016; Grabowski et al., 2014; Rathburn et al., 2013, 2018).
Analysis of each reach in its catchment connectivity context
provides a basis to evaluate the impact of pressures and limiting
factors that may inhibit or enhance river recovery on the likely
future trajectories of adjustment (Brierley and Fryirs, 2005,
2009; Ziliani and Surian, 2012, 2016; Standish et al., 2014;
Scorpio et al., 2015; Fryirs and Brierley, 2016). When applied
effectively, catalytic management activities in certain parts of
catchments may trigger recovery processes that can accelerate
recovery elsewhere. Appraisals of additional, off-site impacts
require that the connectivity dynamics of the system are under-
stood. Alternatively, analysis of connectivity relationship is re-
quired to identify where certain measures may have negative
off-site impacts that will damage the recovery process. This
helps in choosing passive versus active restoration measures;
where in a catchment activities are likely to be most successful;
and the scale and form of intervention that is required (Lane
et al., 2008; Fryirs and Brierley, 2016). In some instances, con-
nectivity relationships can be used to guide management that
maintains the fully functional portions of a catchment. As an
example, Lane et al. (2008) show how in an upland river basin,
native woodland planting focused on well-connected tribu-
taries could reduce coarse sediment supply rates as an alterna-
tive to downstream sediment dredging and engineering.
Understanding catchment-scale, spatial and temporal sediment
and hydrological connectivity provides foundational knowl-
edge with which to forecast river recovery potential and deter-
mine what is realistically achievable at the reach scale.
The availability of sediment for river recovery, and hence the

timeframe of recovery, may vary markedly from catchment to
catchment dependent on the connectivity dynamics of that
catchment. Assessment of river recovery potential allows man-
agers to assess in which reaches sediment should be retained
and stored for river recovery, and where sediments can be re-
leased (Fryirs and Brierley, 2001). It is important to ensure that
there is neither too much nor too little sediment to facilitate
river recovery (Kondolf, 1998; Brooks and Brierley, 2004;
Florsheim et al., 2006; Jacobson et al., 2009; Smith et al.,
2011; Fryirs and Brierley, 2016). Conceptual models can be
used to communicate stages and timeframes of geomorphic ad-
justment (Simon, 1989; Brierley and Fryirs, 2005; Fryirs et al.,
2012; Stella et al., 2013; Cluer and Thorne, 2014; Fryirs and
Brierley, 2016; Phillips and Van Dyke, 2016). These insights
can be used to assess whether geomorphic adjustments are
likely to be reversible, considering how channel boundary con-
ditions, flow and sediment inputs, and connectivity relation-
ships have changed over time. Process-based modeling
applications can be used to quantify timeframes of adjustment,
using confidence limits to express potential uncertainties in fu-
ture forecasts (Smith et al., 2011; Small and Doyle, 2012;
Ziliani and Surian, 2016).
Given differences in landscape connectivity relationships in

differing environmental and landscape settings, there is pro-
found variability in the ways and rates with which responses
to disturbances that disrupt the sediment regime are mediated
through a catchment (Fryirs et al., 2007a, 2007b; Lane et al.,
2008; Surian et al., 2009a, 2009b; Kuo and Brierley, 2013,

2014; Lisenby and Fryirs, 2017a, 2017b). Fryirs et al. (2009) re-
fer to this as a response gradient. Highly connected systems
rapidly convey disturbance responses through the system,
whereas responses to disturbances in disconnected landscapes
may be absorbed within certain parts of the system (Harvey,
2002; Hooke, 2003; Fryirs et al., 2007a, 2007b, 2009; Jain
and Tandon, 2010; Fryirs, 2013).

Catchment-scale conceptual models of process interactions,
connectivity and evolutionary traits provide a basis to predict
responses to management interventions (Mika et al., 2010).
Analysis of threatening processes helps to identify and prioritize
what forms of management intervention are required in what
parts of the system (Brierley and Fryirs, 2005, 2009, 2016;
Czuba and Foufoula-Georgiou, 2014; Fryirs and Brierley,
2016; Ziliani and Surian, 2016). Such efforts seek to maximize
cumulative benefits while minimizing off-site impacts of inter-
ventions (Schmidt et al., 1998). Catchment-framed analysis of
connectivity provides the basis for answering questions such as:

• Where should we prioritize our efforts to enhance the recov-
ery of systems?

• Will a treatment reach experience degrading or positive in-
fluences from upstream (e.g. sediment slugs, headcuts)?

• From where will the sediment be sourced and dispersed to
enhance river recovery in the study reach? Is enhancing sed-
iment connectivity required?

• Where should sediment conveyance be suppressed to pro-
tect other reaches and minimize off-site impacts? Is enhanc-
ing sediment disconnectivity required?

• How will rehabilitation of the treatment reach affect down-
stream reaches?

These questions can be answered using conceptual models,
qualitative evaluations, numerical simulations, and quantita-
tive metrics: the key point is to characterize levels of connectiv-
ity, the processes and forms that promote or retard connectivity,
and the response of the geomorphic system to changes in con-
nectivity. Answers to these questions can be used in a range of
management situations, including dam construction, removal,
and modification of operating regime; incursions of exotic veg-
etation; mining activities; land use and land cover changes;
post-fire treatment priorities (Figure 4); channelized reaches
that flush sediments; and inferring whether sediment slugs en-
hance or inhibit downstream conveyance. Six general points
that may assist efforts to manage landscape connectivity in rela-
tion to concerns for sediment regime are outlined in Table IV.
The most effective technique (s) for addressing each point are
likely to be site-specific. Ultimately, river basin management
can focus on specific processes and fluxes without regard to
connectivity, but measuring and conceptualizing process and
flux in a connectivity framework facilitates an understanding
of how basin configuration and fluxes of material respond to
varying inputs through time and across space.

Connectivity, flow regulation and river–floodplain
infrastructure

Connectivity is fundamental to management plans for river
restoration/rehabilitation both as a goal and as a process. Be-
cause dams, water diversions, and other infrastructure such as
weirs and check dams fragment waterways, their ubiquitous
global presence has had a profound effect on hydrologic, sedi-
mentological, and ecological connectivity (Junk et al., 1989;
Nilsson et al., 2005), both within the channel and across the
broader riparian zone longitudinally, laterally, and vertically
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(Kondolf et al., 2006). To combat some of these effects, river
managers, scientists, and non-governmental organizations
have argued for management plans to ameliorate the effects
of impoundment on watershed connectivity. In some instances,
dam removal has been the preferred option as it provides the
more robust opportunity for re-establishing sediment and hy-
drologic connectivity (Grant and Lewis, 2015; Foley et al.,
2017; Major et al., 2017) while also having immediate impacts
ecologically by permitting fish passage (Kornis et al., 2014; Pess
et al., 2014; Magilligan et al., 2016a) or by providing the

necessary sedimentological conditions for enhancing spawning
habitat (Magilligan et al., 2016b). In instances where removal is
not an option, watershed managers have advocated for envi-
ronmental flows (Bunn and Arthington, 2002; Arthington
et al., 2006) to best mimic the natural flow regime (Poff et al.,
1997) with the goal of re-establishing greater hydrologic con-
nectivity especially across the riparian zone to maintain flood-
plain forest communities (Rood et al., 2005) or to generate
longitudinal and lateral sediment connectivity and bar forma-
tion (Schmidt et al., 2001; Topping et al., 2005). However, the

Figure 4. Schematic illustration of sediment connectivity and disconnectivity influences on post-fire treatment priorities based on observations from
the South Fork Cache la Poudre watershed in northern Colorado, USA. TP1–TP4 indicate sub-basins with highest (TP1) to lowest (TP4) treatment pri-
ority based on sediment connectivity. Basins in which tributary alluvial fans limit sediment connectivity to the mainstem represent lower priorities for
post-fire treatments designed to limit sediment yield, such as mulching. TP1 has the highest priority because the confined mainstem valley enhances
transport of sediment delivered from the sub-basin, whereas the presence of a floodplain along the mainstem at the junction of TP2 may limit down-
stream sediment fluxes. (From Rathburn et al., 2018, Figure 11.). [Colour figure can be viewed at wileyonlinelibrary.com]

Table IV. Aspects of landscape connectivity important in managing sediment regime

Identify expectations and realistic targets: The key issue in managing landscape connectivity is determination of ‘what are we measuring against’ (i.e.
what is expected in any given system)? Recognizing explicitly that human disturbance has modified natural process linkages in a given catchment,
what attributes of the prevailing sediment regime are manageable (i.e. what is realistically possible)? Inevitably, these are context- and catchment-
specific situations.

Identify relevant components of sediment dynamics: Develop an understanding of forms and rates of sediment generation and patterns of sediment
stores and their ease/frequency of reworking in a given system. How have human activities modified natural connectivity relationships in that
system? How have these changes impacted upon the evolutionary trajectory of the system and over what timeframe? Is it possible, or desirable, for
human activities to manage or reverse these traits?

Identify rates of sediment movement and geomorphic recovery: Quantify timeframes of sediment movement through a system as a basis to evaluate
whether geomorphic river recovery is possible. This entails analysis of the extent to which human disturbance has modified natural patterns and
trends of sediment sources, transfer and deposition (Fryirs and Brierley, 2009). In some cases, rates of movement have been accelerated (e.g.
deforestation), elsewhere they have been suppressed (e.g. dams). In some instances, excess sediments are available to be reworked such that
aggradation may ensue in downstream reaches (e.g. legacy effects of human impacts such as mining activities or abandoned water mills), elsewhere
limited upstream availability of sediment (sediment exhaustion) may inhibit prospects for geomorphic recovery in downstream reaches where
channel are over-enlarged (e.g. Fryirs and Brierley, 2001; Hooke, 2003; Brooks and Brierley, 2004).

Identify the catchment context: The sediment regime and associated process morphodynamics in any given reach must be viewed in their catchment
context, assessing how upstream and downstream reaches influence the reach of interest. Any given reach is subjected to changes in boundary
conditions. Most reaches are adjusting to legacy effects (Coulthard and Macklin, 2003; James, 2010; Evrard et al., 2011; Wohl, 2015). Longitudinal
connectivity relationships determine the nature, extent and rate with which changes to boundary conditions in one part of a system impact upon
morphodynamic interactions elsewhere in that system. Pulses of sediment movement through river systems operate over different time scales and
with variable impacts on a reach-by-reach basis. Resulting aggradational–degradational trends exert a key control upon channel adjustments over a
range of time scales.

Identify the historical range of variability: Caution must be applied in the use of theoretical regime principles to predict rates of sediment movement
and associated forms and rates of channel adjustment, as these framings assume continuity and uniformity in sediment inputs. However, sediment
inputs vary and we need to know when and how they are likely to change if we are to make these assessments. In light of this issue, analysis of the
historical range of variability of a river reach provides a critical basis to inform management applications pertaining to the range of channel sizes
and configuration that are appropriate or expected for a given setting (Wohl, 2011; Rathburn et al., 2013; Reid and Brierley, 2015).

Identify natural levels of connectivity: If working in a largely disconnected landscape, maintain disconnectivity of longitudinal process in interactions
whenever possible. For example, if wetlands associated with discontinuous watercourses are present, these features exert important controls on
downstream fluxes and create unique habitats and nutrient storage that are important to preserve (Brierley et al., 1999).
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reduction in connectivity associated with changes in water
flow is commonly emphasized at the expense of the effects of
such infrastructure and water management on sediment and
sediment regime (Wohl et al., 2015a; Gabbud and Lane,
2016), which runs the risk of introducing environmental reme-
diation that has less than optimal effects.

What do we still need to know?

Throughout our discussions and literature review, we identify
common themes and ideas that merit further research. First,
there is increased understanding of the importance of capturing
the heterogeneity of landscapes and their connectivity patterns
in space and time (Fryirs and Brierley, 2009). With new tech-
nologies, such as high-resolution topographic data and ever-
increasing model capabilities, we have the information needed
to capture geomorphic features and thus connectivity pathways
over a wide range of spatial and temporal scales (Passalacqua
et al., 2015). These mechanisms of mass and information trans-
fer need to be quantified with appropriate metrics. Although
bulk measures are helpful and easy to compute, they prevent
us from capturing how connectivity patterns may vary spatially
and temporally. Quantifying this heterogeneity is particularly
important for restoration efforts that work with process and con-
nectivity principles (Ward et al., 2001; Kondolf et al., 2006).
Several authors have suggested that graph and network the-

ory metrics may be helpful tools to analyze connectivity in
landscapes (Lane et al., 2009, 2017; Heckmann et al., 2015;
Cheung et al., 2016; Gran and Czuba, 2017; Passalacqua,
2017). These tools have proven useful in a variety of disciplines
and for the analysis of many complex systems (Newman,
2010). There are obvious applications of these metrics in geo-
morphology. When dealing with river networks, for example,
channels and tributary junctions are easily identified as links
and nodes (Marra et al., 2013; Heckmann et al., 2015). In this
case, the natural system essentially maps into the mathematical
model, at least in terms of structure. Thinking about network
dynamics, however, and thus the fluxes along the system, map-
ping into a network mathematical model may not be as obvi-
ous. For example, there may be leakages in the system (e.g.
due to channel–floodplain connectivity) and these losses will
have to be represented in the model, either as a distributed loss
along the link or by characterizing the structural configuration
(e.g. levee channels) through which this transport may occur
and the nonlinearities of fluxes (e.g. stage-dependent lateral
connectivity). In addition, the sediment and the nutrient net-
works – the collection of links and nodes along which solids
and solutes are transported – may not be as continuous as the
water transportation network, depending on the time scale of
analysis. This may call for other approaches (e.g. the dynamic
tree approach of Zaliapin et al., 2010) able to represent mathe-
matically the superposition of multiple interacting networks of
different spatial structure and temporal dynamics.
We have to understand which metrics are most helpful and

representative of the physical system and its connectivity path-
ways. These metrics are also needed for the validation of nu-
merical models. If we can quantify connectivity pathways
through a landscape, we can then use those metrics to evaluate
similarity of the couplings and transport pathways in numerical
results. These validated models can then be used to simulate
scenarios of disturbance and change and to predict landscape
response in space and time (Liang et al., 2016a, 2016b).
Another theme that emerged in our discussions is the general

tendency to promote connectivity as a desirable landscape char-
acteristic, thus labeling disconnectivity or low degrees of connec-
tivity as a condition to avoid. However, disconnectivity or low

levels of connectivity are present in landscapes as geomorphic
features and boundaries between different process domains, not
least because without them today’s geomorphic processes would
not be creating the long-term sedimentary record of the future. In
many cases, low levels of connectivity create environmental and
societal benefits, such as nutrient retention and biotic uptake that
improve water quality (Haycock and Burt, 1993; Wegener et al.,
2017), sediment retention that increases habitat abundance and
diversity (Jacobson et al., 2009), and attenuation of hydrologic
fluxes that reduces flood hazards (Lininger and Latrubesse,
2016). Geomorphologists have a critical role to play in commu-
nicating to resource managers and the public the benefits that
can be derived from maintaining or restoring varying forms of
connectivity and disconnectivity.

Finally, instead of imposing boundaries and studying land-
scapes and processes in compartments, there is value in evalu-
ating boundaries as transition zones and examining the fluxes
across them to understand landscape functioning. Our equa-
tions and numerical models are commonly built in the same
compartmentalized fashion. This calls for the development of
equations and models able to capture process transitions and
for a critical understanding of where and when connectivity
or disconnectivity may be preferable to favor the long-term sus-
tainability of our planet.

To summarize: connectivity provides a useful conceptual
framework for quantifying transfers of materials; examining fac-
tors that enhance or limit these transfers; understanding and
predicting geomorphic responses to changed input and bound-
ary conditions; and communicating understanding of geomor-
phic systems to resource managers and stakeholders.
Landscapes and processes that promote and retard connectivity
are heterogeneous in time and space. Geomorphic systems in-
clude transitions and leakiness rather than just simple compart-
ments linked by fluxes. Connectivity within geomorphic
systems occurs along a continuum in which levels of
disconnectivity can be critical to landscape and ecosystem in-
tegrity. There is not likely to be any single connectivity metric
that adequately characterizes all forms of connectivity, but the
absence of a universal connectivity metric does not preclude
meaningful progress in quantifying diverse forms of
connectivity.
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