
1.  Introduction
John Barry described the Mississippi River as pulsing “like the artery of the American heartland” (Barry, 2007). 
Recognized as the World’s most engineered megariver (Knox & Latrubesse,  2016), the Mississippi River is 
emblematic of alterations made to United States (U.S.) rivers during the last three hundred years. With an esti-
mated 98% of the nation’s 5.3 million km of rivers impacted by human activities (Graf, 2001), it is difficult to 
understate the degree of human modification to U.S. rivers. Direct alterations take place within river corridors 
(which we define as the active channel[s] and floodplain) and include flow regulation, channel engineering 
(e.g., straightening or dredging), placer and aggregate mining, beaver trapping, floodplain draining, and levee 
construction (Wohl, 2018).

During recent decades, rivers have been increasingly appreciated as ecosystems worthy of preservation and resto-
ration (Bunn et al., 2010; Castro & Thorne, 2019; Graf, 2001; Palmer et al., 2014). Understanding the importance 

Abstract  Artificial levees are anthropogenic structures designed to hydrologically disconnect rivers from 
floodplains. The extent of artificial levees in the contiguous United States (CONUS) is unknown. To better 
estimate the distribution of artificial levees, we tested several different geomorphic, land cover, and spatial 
variables developed from the National Elevation Dataset, the National Land Cover database, and the National 
Hydrology Dataset HR Plus. We used known levee locations from the National Levee Database as training 
data. We tested machine learning and general logistic models’ ability to detect artificial levees in a 100-year 
hydrogeomorphic floodplain of seven geographically diverse 8-digit HUC basins. Random forest models 
outperformed other models in predicting the location of levees using variables representing geomorphic 
attributes, land cover, and distance from streams ranging in size between stream order one through six. To 
demonstrate the ability of our approach to detect unknown levees, we conducted a leave-one-out cross-
validation in the lower Mississippi Basin using approximately 1,100 artificial levees. This approach detected 
known levees constituting 94% of the total levee length in the basin. Scaling up to the CONUS, we applied a 
high performing (overall accuracy of 97%) random forest model using land cover and stream order variables. 
We detected 182,213 km of potential levees, mostly along streams of order 2–6 in the Mississippi and Missouri 
River Basins, indicating that the national levee database contains 20.4% of levee length. Potential levees and 
those documented in the national levee database modify 2% of the total length of streams in the contiguous 
United States.

Plain Language Summary  There has been a lot of research exploring how humans have impacted 
river systems to include impacts from dams and roads at national and global scales. However, the study of 
artificial levees has been limited to local studies due to incomplete databases of levee location. Artificial 
levees are linear dirt mounds, built next to rivers to stop flooding of property built on floodplains. Because the 
location of every artificial levee is not known in the US, we do not know to what extent floodplains have been 
separated from their rivers. To ameliorate this, our study explores different methods to detect unknown levees 
and applies an algorithm that is 97% accurate to the contiguous U.S. Most levees are built within floodplains, 
so we limited our study to the 100-year floodplain. We tested different types of algorithms in a limited study 
with variables explaining levee shape, human land cover, and distance from streams of different sizes. Then, 
we applied the most effective models to the contiguous U.S. We located over 182,000 km of potential levees, 
potential areas with artificial levees not identified in the NLD, most of which were built on smaller streams and 
concentrated in the Mississippi and Missouri River basins.
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of river ecosystems across a broad spectrum of functions requires that we recognize the importance of longitudi-
nal, lateral, and vertical connectivity to off-channel environments (Harvey & Gooseff, 2015; Kondolf et al., 2006; 
Ward, 1989). Connectivity describes the degree to which matter and organisms are able to move across areas in 
a landscape (Wohl, 2017). Lateral connectivity, which describes fluxes between the channel and adjacent ripar-
ian and floodplain landforms (Covino, 2017; Ward, 1989), reflects processes that create channel and floodplain 
topography and stratigraphy (Brooks, 2003), and thus aquatic and riparian habitats (Blanton & Marcus, 2009; 
Junk et al., 1989; Pennington et al., 2010; Ward et al., 1999).

Diverse human alterations of river form and processes either increase or limit connectivity in river ecosystems. 
Most studies on connectivity focus on the local scale (e.g., Briggs et al., 2013), although national-scale studies 
have assessed the effects of dams on longitudinal connectivity (e.g., Graf, 1999; Jones et al., 2019) and roads 
and railroads on lateral connectivity (e.g., Blanton & Marcus, 2009). One anthropogenic feature that adversely 
impacts lateral connectivity is artificial levees, which can be defined as raised linear features built between active 
channels and floodplains to contain peak flows in the channel (Tobin,  1995). Although artificial levees can 
strongly influence lateral connectivity within river corridors, their national-to global-scale effects have not been 
quantified in a manner similar to the effects of dams (e.g., Grill et al., 2019; Lehner et al., 2011).

Local and regional studies have found that artificial levees influence river hydrology by increasing stage at and 
upstream from levee locations and increasing downstream conveyance and flooding beyond the levees (Criss & 
Shock, 2001; Czech et al., 2016; Heine & Pinter, 2012; Tobin, 1995). Levees alter channel processes by induc-
ing bed coarsening and incision caused by increased channel velocities (Frings et al., 2009). Levees also limit 
lateral connectivity and the exchange of nutrients, sediment, and organisms between the channel and floodplain, 
resulting in significant ecological harm (Blanton & Marcus,  2009; Sparks et  al.,  2017; Wohl,  2018). In the 
context of human societies, the presence of artificial levees can promote floodplain development and increase the 
vulnerability of populations and infrastructure to flood damage (Pinter, 2005; White et al., 2001). On the other 
hand, levees can be viewed as effective flood protection measures within their intended design standards and are 
uncomplicated and inexpensive to build (Tobin, 1995).

Artificial levee construction began in the U.S. in the early 1700s with landowners living alongside the lower 
Mississippi River (Wohl, 2005). By the 1800s, the majority of the basin was leveed with patchworks managed 
by individuals and communities in nascent levee boards (Hudson et al., 2008). Beyond the lower Mississippi 
River basin, the twentieth century became the era of federal levee construction with funding provided by the 
federal government and other entities (Wohl et al., 2017). Levee construction increased in scope well into the 
twentieth century, especially in the Midwestern and Eastern US, as the federal government and the US Army 
Corps of Engineers (USACE) became more involved in mitigating natural disasters (Wohl, 2005). Many levees 
were built in the Mississippi basin after the 1927 and 1937 floods and in California after flooding in 1907 and 
1909 (ASCE, 2017). The nation’s focus on artificial levees as a prime flood protection tool, resulting in billions 
of dollars expended to construct thousands of kilometers of levee, has been described as a “levee love affair” 
(Tobin, 1995).

The length of artificial levees in the U.S. is unknown but estimates range between 48,000 and 167,000 km, corre-
sponding to coverage of roughly 1% and 3% of total estimated river km in the contiguous US (ASCE, 2017; Heine 
& Pinter, 2012). The USACE started a national levee inventory in 2006, which resulted in the National Levee 
Database (NLD). Each levee is annotated by a line representing the levee crest and varying amounts of metadata. 
The NLD is currently estimated to be 30% complete (ASCE, 2017), but a comprehensive evaluation of the NLD's 
thoroughness has not been completed (Wing et al., 2017). Consequently, there is no national-scale assessment 
of how artificial levees have altered lateral connectivity on U.S. rivers (Wohl, 2017) analogous to Graf’s nation-
al-scale assessments of the effects of dams on river longitudinal connectivity (1999, 2001).

Because artificial levees are constructed by people and share common morphological characteristics, many levees 
should be recognizable and distinguishable by their shape (Brown et al., 2017). Recent advances over the last 
two decades in the availability of high-resolution topography have revolutionized the ability to study landscapes 
(Passalacqua et al., 2015). Accordingly, nearly every study on the identification of artificial levees has exclusively 
used topography or topographic-derived geomorphic variables with the exception of two studies that used spec-
tral signatures (Steinfeld et al., 2013; Steinfeld & Kingsford, 2013). Identification of levees at regional scales has 
used maximum curvature, entropy, and residual topography from lidar digital terrain models (Sofia et al., 2014). 
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At the national scale, Wing et al. (2019) used geomorphic variables derived from the National Elevation Dataset 
(NED) to determine which geomorphic features are important to retain in a hydrodynamic flood model during 
DEM coarsening, although the study was not specifically intended to recognize artificial levees.

Researchers have used different methods of analyzing variables to predict artificial levee location, including 
logistic regression and image segmentation (Steinfeld et al., 2013), statistical analysis (Sofia et al., 2014), hill-
shade and wavelet analysis (Czuba et al., 2015) and visual inspection (Czuba et al., 2015; Steinfeld et al., 2013). 
Although not yet applied to identifying artificial levees, the modeling capabilities of machine learning techniques 
make them a suitable application in the geosciences (Lary et  al., 2016). Machine learning techniques, which 
include decision trees, neural networks, and support vector machines, are especially effective at recognizing 
patterns in complex data or in scenarios where the underlying principles are poorly understood (Valentine & 
Kalnins, 2016). Random forest modeling is a supervised machine learning technique that builds decision trees 
and predicts category labels, is relatively fast, and can result in high predictive accuracy compared to other 
machine learning techniques (Breiman, 2001; Choi et al., 2020). The high accuracy of random forest models 
compared to other machine learning techniques has made random forest a popular choice for detecting surface 
and subsurface anthropogenic features as well as hydrological predictions (Cho et al., 2019; Deines et al., 2017). 
However, the validity of methods used to detect artificial levees in previous studies and machine learning tech-
niques to detect artificial levees at the regional or national scale are unknown.

We aim to improve upon these previous studies by employing and testing different categories of data (i.e., 
geomorphic, land cover type, and distance from stream) and different types of models (general logistic models 
[GLM], random forest models [RF], and support vector machine models [SVM]) to the specific problem of iden-
tifying artificial levee locations. We generated a calibrated 100-year hydrogeomorphic floodplain as the extent 
of our analyses because this floodplain contains most known levee locations and at 10% of the contiguous U.S. 
(CONUS) area, reduces the computational requirements of the CONUS analysis. We use a case study of seven 
different 8-digit hydrologic unit code (HUC8) watersheds (Seaber et al., 1987), to test the effects of sample size, 
ratio of levee to non levee data, and model variables on model accuracy. We use known levee locations from the 
NLD to generate data from levee and non levee locations for training and validation. We conduct a leave-one-out 
cross-validation on 1,171 levees in the lower Mississippi Basin to understand how a highly accurate RF model 
detects undocumented levees. At the CONUS level, we generate two different sized datasets (n = 30,600 and 
3,060,000) for training and validation and test the accuracy of a selection of models and variables based on the 
results of the case study. We apply the most accurate model (trained on data sampled from 2,142,000 locations 
across the CONUS) to the entire CONUS floodplain and analyze the results to determine the location, length, 
and stream order association of potential levees that are not identified by the NLD. Our primary objective is to 
estimate the locations, spatial distribution, and stream order association of artificial levees across the contiguous 
U.S., especially as they relate to the completeness of the NLD.

We organize our work as follows. First, we provide a site description and justification of the seven HUC8 water-
sheds we chose as case studies along with information about our modeling approach and the data we used in the 
case study, in the leave-one-out cross validation, and in the CONUS study. We then present our results using 
different accuracy measures. Finally, we discuss implications for understanding the completeness of the NLD 
and ideas for future research.

2.  Materials and Methods
2.1.  Overview

In general, our modeling included the following major steps. First, we chose seven diverse 8-digit HUC basins for 
a case study (Figure 1). We then created a CONUS-scale 100-year hydrogeomorphic floodplain using GFPLAIN 
at a 30 m resolution (Nardi et al., 2019) in ArcGIS Pro (ESRI Inc., 2020). We used this floodplain as the studies’ 
geographic extent. For each case study basin, we created multi-layered raster files with each variable represented 
by a layer. We used R software (R Core Team, 2020) and an NLD shapefile to test different variables, sample 
sizes, machine learners, and GLMs. Then, using R and ArcGIS Pro we conducted a leave-one-out cross-valida-
tion using ∼1,100 artificial levees in the HUC2 lower Mississippi River basin (Figure 1) to determine how the 
model predicts undocumented levees. We then applied our approach to the entire CONUS (Figure 1) and gener-
ated two differently sized data sets using Google Earth Engine (GEE; Gorelick et al., 2017) and ArcGIS Pro. 
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Finally, we applied the most accurate model trained from the larger CONUS data set to the CONUS floodplain, 
creating a prediction surface map. This map was then segmented and compared to the NLD to determine which 
artificial levees were not documented.

Throughout, we used a full suite of accuracy metrics to assess model performance such as true and false rates and 
confusion matrices, when possible. In the case study, we used Cohen’s kappa coefficient, which assesses inter-
classifier agreement and is sensitive to class prevalence (Fitzgerald & Lees, 1994) to compare the performance of 
nearly 1,000 models. This coefficient, like all measures, is an imperfect index of overall accuracy (Foody, 2020). 
However, the comparison of many models using multiple measures of performance is unfeasible. To mitigate this, 
we test sample size, sampling ratio, model variables and type again in the national study, using multiple accuracy 
metrics to select which model to apply to the CONUS.

2.2.  Site Descriptions

For the case studies, we chose seven distinct HUC8 watersheds across the 48 contiguous states to represent a 
wide variety of geographic, land cover, and hydrologic conditions (Figure 1, Table 1). The seven basins range in 
size from the 1,700 km 2 lower Columbia River in the Pacific Northwest to the 7,900 km 2 Little Snake River on 
the Colorado-Wyoming border. Climates of the seven locations range from the semi-arid Middle Kern River in 
southern California to the humid subtropical lower Red River in southern Louisiana and the humid continental 

Figure 1.  Location of the 18 HUC2 watersheds and seven HUC8 watersheds (HUC8 number listed below each basin’s name) selected for the case study with average 
annual hydrographs and elevation bars (on the hydrographs’ y-axes), representing the proportion of the basin in that elevation range.



Water Resources Research

KNOX ET AL.

10.1029/2021WR031308

5 of 18

Hudson River in upstate New York. Relief ratios, the dimensionless ratio of the total vertical elevation difference 
in a basin divided by the basin length (Schumm, 1956), are an especially important consideration because arti-
ficial levees are distinguishable from other locations as particularly steep and rough terrain in the alluvial plains 
of the Midwest (e.g., 0.001 relief ratio of the Middle Wabash along the Illinois—Indiana border and the 0.002 
relief ratio of the Middle Arkansas in Kansas) but seem more flat in comparison in the mountains of California or 
New York (e.g., 0.031 and 0.013 relief ratios of the Middle Kern and the Hudson, respectively). The primary land 
cover of each basin (Table 1) varies between cultivated crops (e.g., the Middle Wabash and the Middle Arkansas), 
to herbaceous or shrub/scrub (e.g., the Middle Kern and the Little Snake), to woody wetlands or forest (e.g., the 
Lower Red, the Hudson, the Columbia).

2.3.  Hydrogeomorphic Floodplain Delineation

We established a CONUS floodplain calibrated to FEMA special flood hazard areas A and AE using the 
GFPLAIN algorithm (Nardi et al., 2019) and the 1 arc-second (∼30 m resolution) NED (Table 2). The FEMA 
special flood hazard maps’ coverage of the CONUS (∼60% of the CONUS area) makes them suitable as valida-
tion for CONUS flood hazard models, but unsuitable as a stand-alone CONUS floodplain. Valued for its conti-
nental coverage, the accuracy of FEMA maps varies and can be less accurate than local high quality flood models 
(Blessing et al., 2017). Previous studies have used FEMA floodplain maps for either calibration or validation 
(e.g., Annis et al., 2022; Nardi et al., 2018; Wing et al., 2017), as the level of agreement between hydrogeomor-
phic models and other flood models indicates the suitability of this type of application, especially in data-poor 
areas (Lindersson et al., 2021). Lower model accuracy of hydrogeomorphic floodplains in certain areas (e.g., dry, 
steep, flat areas or those near the coast; Annis et al., 2022; Lindersson et al., 2021) is mitigated by our calibration 
at the 2-digit HUC basin level. The GFPLAIN algorithm identifies geomorphic floodplains in two main steps: 
(a) terrain analysis of a DEM for basin drainage extraction and (b) floodplain delineation. It uses an adaption of a 
scaling regression from Leopold and Maddock (1953) to relate stage to upstream contributing area:

𝐹𝐹𝐹𝐹𝑖𝑖 = 𝑎𝑎𝑎𝑎
𝑏𝑏�

where FHi is the maximum flow depth at a location for the recurrence interval i, a, and b are dimensionless scal-
ing parameters, and A is the contributing area for that location (Scheel et al., 2019). Calibration was conducted 

HUC8 Basin name
Primary land 

cover a

Maximum 
Strahler 
stream 
order b

Mean 
annual 

discharge 
(m 3/s)

Mean 
peak 

annual 
discharge 

(m 3/s)
Area 
(km 2)

Relief 
ratio

Principal sources of flood-
causing precipitation or runoff c References

17080006 Lower 
Columbia

Evergreen 
forest

9 7,533 14,915 1,754 0.017 Rain from extratropical cyclone 
on snowmelt

Simenstad et al. (2011); 
Cannon (2015)

02020003 Hudson Deciduous 
forest

6 404 2,767 4,936 0.013 Rain from extratropical cyclone 
on snowmelt

Jackson et al. (2005)

18030003 Middle Kern Herbaceous 6 46 149 6,779 0.031 Extratropical cyclone or 
associated front

Katibah (1984)

05120111 Middle 
Wabash

Cultivated 
crops

7 343 1,761 5,253 0.001 Rain from extratropical cyclone 
on snowmelt

Scheel et al. (2019)

14050003 Little Snake Shrub/Scrub 6 32 147 7,926 0.001 Rain from extratropical cyclone 
on snowmelt

Blaschak (2012); 
Caskey (2013); 

Caskey et al. (2015)

08040301 Lower Red Woody 
wetlands

8 6,173 15,282 2,350 0.001 Extratropical cyclone or 
associated front

Knox and 
Latrubesse (2016)

11030013 Middle 
Arkansas

Cultivated 
crops

7 124 800 2,350 0.002 Rain from extratropical cyclone 
on snowmelt

Guilliams (1998); 
Matthews et al. (2005)

 aSource is the 2016 NLCD.  bStream order based on Strahler (1952).  cSources of flood-causing precipitation or runoff based on Hirschboeck (1991).

Table 1 
Attributes of Each Basin Used in the Case Study
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by comparing model performance with FEMA flood maps on stream segments from the first six stream orders in 
each 2-digit HUC basin using the F measure of fit, which is the ratio of floodplain area correctly modeled to the 
total area modeled and predicted by FEMA (Equation 4 of Horritt & Bates, 2001). We kept parameter a constant 
at 0.0035 while varying b between 0.25 and 0.42, given the strong linear correlation of the two parameters (Annis 
et al., 2019). The range of b was selected based on previous studies (Annis et al., 2019; Nardi et al., 2006, 2018; 
Scheel et al., 2019). A third parameter, contributing area threshold, was kept constant at 50 km 2 based on previous 
studies (Annis et al., 2019; Scheel et al., 2019). Values for the b parameter 0.32, 0.34, and 0.36 resulted in the 
highest F measure of fit during floodplain calibration (Figure S1 in Supporting Information S1). The complete 
results are located in Supplemental Information.

2.4.  Data

We used national, publicly available data sources (Table 2) in our analyses. The geomorphic variables (slope, 
planform curvature, profile curvature, relative elevation, and aspect difference) were developed according to 
Wing et al. (2019) from the National Elevation Dataset (NED 10 with resolution of 1/3 arc-second and approxi-
mately 10 m) based on its higher vertical accuracy compared to other nationally available topographic data sets 
(Gesch et al., 2014). We included the 2016 National Land Cover Database (NLCD) due to its national coverage 
and the expected association of artificial levees with certain land covers. We developed the six variables accord-
ing to the distance from stream order one through six using the National Hydrology Dataset Plus High Resolution 
(NHD Plus) to capture the expected proximity of artificial levees to streams.

2.5.  Model Development and Implementation

2.5.1.  Case Study Modeling

Similar data processing and modeling procedures were followed in the case and national studies (Figure 2). For 
the case studies, R software was used to process data sources (R Core Team, 2020). Twelve raster layers (all of the 
variables in Table 2 except “basin,” which was added after sampling), each with a 10 m resolution, were created 
for the calibrated 100-year hydrogeomorphic floodplains in each of the seven basins (Table 1). We randomly 
sampled levee locations from the NLD and non-levee locations from other places within the GFPLAIN flood-
plain using over 480 general logistic models (GLMs), random forest models (RFs), and support vector machine 
models (SVMs) with various sample sizes, non-levee to levee sample size ratios (absence/presence), and different 
combinations of variables (Table 3). We defined and tested the full model as model 1 with all variables: the five 
geomorphic variables (slope, profile curvature, planform curvature, relative elevation, and aspect difference), the 

Variable Data Set Type Resolution

Geomorphic variables Slope National Elevation Dataset; Gesch et al. (2002) Raster 10 m

Planform curvature

Profile curvature

Relative elevation

Aspect difference

Land cover variable Land cover National Land Cover Database, 2016; Jin et al. (2019) Raster 30 m

Spatial variables Distance from stream order 1 stream National Hydrology Dataset Plus High Resolution; Buto and Anderson (2020) Vector –

Distance from stream order 2 stream

Distance from stream order 3 stream

Distance from stream order 4 stream

Distance from stream order 5 stream

Distance from stream order 6 stream

Basin boundaries USGS Hydrologic Unit Maps; Seaber et al. (1987) Vector –

Table 2 
Variables and Data Sets Used in the Study
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2016 NLCD, the six distance-from-stream-order variables, and the HUC8 basin (Table 2). We also tested models 
with each of the variables removed from the full model and some other combinations.

We analyzed the impacts of sample size, ratio of levee to non levee (presence to absence) data, and model varia-
bles on GLM, RF, and SVM performance through separate comparisons of the performance of models generated 
from a large number of data sets in which only those (e.g., sample size) quantities varied. We used 113 independ-
ent data sets varying from 110 to 13,900 sampled locations per basin with model 1. Based on those results, in 

Figure 2.  Workflow for the case and national studies. (a) In the case study we (1) generated 7 individual multi-layered rasters 
for each HUC8 basin hydrogeomorphic floodplain where each layer is a variable (2). (3) We combined random samples 
taken from levee (the NLD) and non-levee locations and (4) fit different GLM, RF, and SVM models as discussed above. 
We then assessed results. (b) In the national study, we (1) generated polygons around the NLD levees and all other areas in 
the hydrogeomorphic floodplain in each HUC2 basin to assist random sampling in ArcGIS Pro. (2) We generated random 
samples from the CONUS for two different sized data sets (n = 30,600 and 3,060,000) using GEE to generate the geomorphic 
variable values and ArcGIS Pro to generate the NLCD and distance from stream order 1–6 variables. (3) We fit different RF 
models to the data and applied the highest performing model to the contiguous U.S. hydrogeomorphic floodplain (4). We 
generated data from each HUC2 basin in ArcGIS Pro, imported and fit the data in R, and exported the model results back into 
ArcGIS Pro where we mapped, segmented, and then analyzed the results.

Model Total variables Variables

1 13 Geomorphic variables (slope, profile curvature, 
planform curvature, relative elevation, aspect 

difference), NLCD, basin, distance from stream 
order 1–6

2 12 Model 1 without slope

3 12 Model 1 without profile curvature

4 12 Model 1 without planform curvature

5 12 Model 1 without relative elevation

6 12 Model 1 without NLCD

7 12 Model 1 without aspect difference

8 12 Model 1 without basin

9 7 Model 1 without distance from stream order variables

10 6 Distance from stream order variables only

11 11 Model 1 without distance from stream order variables 
and aspect difference

12 8 NLCD, basin, distance from stream order 1–6

Table 3 
Model Names and Variables in the Study



Water Resources Research

KNOX ET AL.

10.1029/2021WR031308

8 of 18

which the RF model outperformed SVM and GLM models at every sample size, we narrowed subsequent case 
study analyses to RF models only though we revisited all three model types at the CONUS level. The impacts of 
varying ratios of levee to non levee data to RF performance were analyzed using 93 independent data sets with 
absence to presence ratios ranging from 0.04 to 23.6. We attempted to hold sample size constant but experienced 
a range of 812 to 856 total sampled locations for each dataset due to varying “NA” value generation resulting from 
imperfect replacement of NA values sampled from masks. Absences were sampled everywhere in the GFPLAIN 
floodplain, excluding a 10 m buffer from the NLD centerlines. RF models with absence to presence ratios of 0.7 
had the highest performance. Accordingly, we used this ratio for subsequent analyses although we tested ratios of 
0.7 and 1.0 at the CONUS scale. We analyzed RF model performance with different variables using 50 independ-
ent data sets each consisting of data from 1,000 locations per basin with a 0.7 absence to presence ratio. Training 
data consisted of 70% of each data set with 30% used for validation. The results of these processes guided the 
CONUS study.

We conducted a leave-one-out cross-validation (Stone, 1974) with 1,171 NLD levees in the lower Mississippi 
Basin to understand how a parsimonious RF model (model 12) using the NLD and distance-to-stream-order 
variables behaved with undocumented levees that were not in the NLD. Given the close proximity of artifi-
cial levees (e.g., 74% of NLD levees in the LMR basin are within 5 km of each other) and the size of data sets 
(n > 3,000,000) used in the CONUS study, this cross validation best approximates a model's ability to detect 
undocumented levees. Using a 170,000-location sample with a 0.7 absence to presence ratio, we added a “levee 
ID” to each levee and wrote R code to iterate through each levee by first removing that levee from the data set, 
generating a model from 70% of the remaining data, applying the model to the withheld levee data, and record-
ing the model accuracy. This process was conducted for each of the 1,171 artificial levees. We also recorded the 
shortest distance between each levee to understand how proximity impacted model performance.

2.5.2.  National Modeling

In the national study, we tested different model types (GLM, RF, and SVM) and model variables using two 
different sized datasets generated from the CONUS floodplain for training and validation. We selected the most 
accurate model based on multiple accuracy metrics, a RF model trained on 2,142,000 sampled locations with 
land cover, HUC2 basin, and six distance from stream order 1–6 variables and applied it to the entire CONUS 
floodplain using ArcGIS Pro and R.

We used ArcGIS Pro to generate two polygons in each of the 18 HUC2 basins: a “levee” polygon within 10 m 
of the NLD, and a “non-levee” polygon for other areas in the hydrogeomorphic floodplain. Based on analyses in 
the case study, we randomly generated two differently sized data sets both with 0.7 absence to presence ratios: 
(a) 700 non-levee and 1000 levee locations in each HUC2 basin (total n ∼ 30,600) and a much larger sample with 
(b) 70,000 non-levee and 100,000 levee locations in each HUC2 basin (total n = 3,060,000) for all 13 variables 
required for model 1. We used 70% of each data set for model training (n = 21,420 sampled locations for the small 
data set and 2,142,000 sampled locations for the large data set). We used GEE cloud computing and the Terrain 
Analysis in Google Earth Engine (TAGEE) script (Safanelli et al., 2020) to calculate the five geomorphic varia-
bles (Table 2). The land cover variable and the distance-from-stream-order variables were generated in ArcGIS 
Pro. These data were exported into R and fit to different models (Table 4).

We selected the best performing model based on a full suite of accuracy measurements (Table  4). We then 
generated a 30 m resolution raster from the calibrated CONUS 100-year hydrogeomorphic floodplain contain-
ing ∼880,000,000 pixels. Working by HUC2 basin, we generated the dataset for each location in ArcGIS Pro, 
exported the data into R, applied the model, and exported the predicted values (in the case of RF models “1” or 
“0”) back into ArcGIS Pro, where the predicted values were mapped and segmented. Segments were analyzed to 
determine whether they were already represented in the NLD, which stream order they were meant to “protect” 
against, and to estimate their length using segment attributes.

3.  Results
3.1.  Case Studies

RF models demonstrated the best predictive performance for identifying artificial levees at every sample size, 
followed by SVM models (Figure  3a). The GLMs demonstrated the worst performance of all three models. 
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Because the RF models demonstrated the best performance, all our subsequent results in the case study focus on 
RF model outputs. An absence-to-presence ratio of 0.7 resulted in the best RF model performance, but data with 
ratios between 0.45 and 1.24 performed well (Figure 3b). Furthermore, RF performance continued to improve 
with larger sample sizes from each basin, exceeding a kappa of 0.8 for sample sizes larger than 1,000.

Different RF models, each with 100 trees of three variables sampled at each node, were applied to 50 different 
random samples from 1,000 sampled locations and a 0.7 absence/presence ratio (Figure 4). Model 1, with all 
variables, only slightly outperformed models with one less variable with kappas in the 0.75–0.8 range. A model 
without any geomorphic variables (model 12) performed almost as well as the full model.

Model a ML b Size c Ratio d k e TP Rate f TN Rate g FP Rate h FN Rate i

1 RF 1700 0.7 0.69 0.87 0.82 0.18 0.13

1 RF 1700 1 0.69 0.82 0.88 0.12 0.18

1 GLM 1700 1 0.47 0.68 0.80 0.20 0.32

1 SVM 1700 1 0.55 0.83 0.74 0.26 0.17

12 RF 1700 0.7 0.65 0.87 0.77 0.23 0.13

1 RF 170,000 0.7 0.85 0.95 0.90 0.10 0.05

12 RF 170,000 0.7 0.94 0.99 0.95 0.05 0.01

12 + relative elevation RF 170,000 0.7 0.89 0.97 0.92 0.08 0.03

12 + profile curvature RF 170,000 0.7 0.90 0.98 0.93 0.07 0.02

12 + aspect difference RF 170,000 0.7 0.87 0.97 0.91 0.09 0.03

12 + slope RF 170,000 0.7 0.89 0.97 0.92 0.08 0.03

 a“Model” corresponds to the variables listed in Table 3.  bThe “ML” column denotes the machine learning or statistical model used.  c“Size” denotes the total sample 
size taken from each HUC2 basin for both model training and testing.  d“Ratio” denotes the ratio of absence to presence in the sample.  eThe result denotes the Cohen's 
kappa of the model on the testing sample, where we used a 70/30 random split for training and validation in all models.  fTrue positive rate.  gTrue negative rate.  hFalse 
positive rate.  iFalse negative rate.

Table 4 
Model Performance in the National Study

Figure 3.  Model performance using Cohen’s kappa in the case study. (a) GLM, RF, and SVM model performance with sample size varying from 110 to 13,900 
sampled locations total in the seven basins for 113 independent samples. The gray envelopes are 95% confidence intervals for logistic models, depicted by a solid line, 
fit to the data (b) Performance of 93 independent RF models by varying absence/presence ratio of sampled locations while controlling for sample size (n ∼ 832 sampled 
locations).
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3.2.  Leave-One-Out Cross-Validation

An RF model using model 12 detected 61% of levees when they were left out of the training dataset. Detected 
levees were longer than undetected levees such that sum of the length of detected levees (7,473 km) represented 
94% of total levee length (7,910 km; Figure 5a). Levees were close together, with 74% of levees within 5 km of 
each other and 94% of levees within 25 km (Figure 5b).

3.3.  National Study

We tested different variables, model types, sample sizes and absence/presence ratios using models trained at a 
national scale (Table 4). As in the case study, RF models outperformed SVMs and GLMs with RF model perfor-
mance increasing with sample size. We were initially surprised to discover that model 12, without any of the five 
geomorphic variables, outperformed the model 1 by 0.1 kappa and other performance measures (Table 4, Figure 
S2 in Supporting Information S1). Further, we did not initially test model 12 in the case study, and only added it 
after discovering it here.

The performance of model 12 corresponds to a 97% accuracy, meaning that 97% of the known non-levee and 
levee locations in the ∼918,000 CONUS validation sample were predicted correctly, although the results of this 
study indicate that many false-positives may represent undocumented artificial levees (what we call potential 
levees). However, the model performance varied spatially, ranging from 0.813 kappa in the California HUC2 
basin to 0.999 kappa in the Upper Colorado HUC2 basin, correlating to the inverse of the NLD levee total length 
in each HUC2 basin.

Potential artificial levees, those areas identified that may be artificial levees and are not identified by the NLD, 
are listed in Table 5 (which also lists NLD levees separately). Potential levees were concentrated in the upper and 
lower Mississippi and the Missouri basins (basins 7, 8, 10 in Table 5 and Figure 6). Potential levees were also 
concentrated along streams of order 2 to 6, constituting 75% of total levee length (Figure 7). There were 146,404 
potential levees identified constituting a total length of 182,213 km (Table 5). Normalized artificial levee length 
(the total length of NLD or potential levees associated with stream order X divided by the combined length of 
streams with stream order X) gives a sense of how streams of a particular order are impacted by artificial levees. 

Figure 4.  RF model performance by Cohen’s kappa and variables for 50 data sets, each with a 0.7 ratio of absence to presence data and ∼1,000 sampled locations. 
Boxplots are plotted along with individual model values. The model number on the x-axis corresponds to models listed in Table 2.
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Artificial levees provide greater “protection” along streams of greater order, with normalized length approaching 
0.20 for stream order 10 (Figure 7). Potential levees and those documented in the NLD represent coverage of 2% 
of the total length of streams in the contiguous United States.

To illustrate a few locations where we identified levees not present in the NLD and to discuss how the model 
works, we highlight three potential levees and the raw model results (prior to segmentation) that we were able 
to ascertain are definitely levees (Figure 8). Brookville, Indiana sits at the confluence of the East Fork White-
water River (stream order 7) and the Whitewater River (stream order 8), which is a tributary to the Ohio River 
(Figure 8a). This artificial levee was built along the East Fork Whitewater River and is more than 850 m long, 
1–2 m tall, and has been the subject of a riverwalk project (Norwood, 2020). This illustrates how undocumented 
artificial levees influence hydrogeomorphic floodplains, as the 100-year floodplain and detection are immedi-
ately next to the levee. Elaine, Arkansas is situated several kilometers from the Mississippi River next to an old 
meander scar and is “protected” from Mississippi River floods by kilometers of massive artificial levees. One 
400 m section of artificial levee is not documented in the NLD (Figure 8b). Arcata, California is a tidally influ-
enced community situated next to Arcata Bay and the Pacific Ocean in northern California. The area was subject 
to salt marsh reclamation for pasturage during the last 150 years (Murray & Wunner, 1980). This 200 m length 
of artificial levee, visible from U.S. Route 101, was likely built to reclaim floodplain along Jacoby Creek for 
pasturage (Figure 8c). Detected in the raw model results, this large segment was not included in the final results 
because the segment overlapped a NLD levee to the north. These results indicate the value of buffering the hydro-
geomorphic floodplain by 100 m and considering how to separate model results from the NLD.

4.  Discussion
4.1.  Location and Prevalence of Artificial Levees

Our analysis indicates that the NLD may only show 20.4% of the artificial levees in the CONUS. Over 62% 
of potential levees are concentrated in the upper and lower Mississippi basins and the Missouri basins, with 
potential levee length exceeding documented levee length by factors of seven, five, and nine, respectively 

Figure 5.  Results from the leave-one-out cross-validation. (a) Longer levees were detected more often than shorter levees so that detected levees represent 94% of total 
levee length. (b) Levees are close together, with 74% of levees within 5 km of each other and 94% within 25 km.
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(Figure 6, Table 5). Potential levee length in the Ohio basin exceeds NLD 
levees by a factor of 11. These details, combined with the concentration of 
potential levees along smaller stream orders (Figure 7), seems to reflect the 
long history of artificial levee construction in the lower Mississippi River 
basin and early interventions along the Mississippi and Ohio Rivers, such 
as the 1824 Rivers and Harbors Bill (Wohl,  2005). We suspect that NLD 
and potential levees represent a continuum in which NLD levees represent 
one pole with larger levees more recently built with state or federal funds, 
and designed to “protect” against streams of a larger order. The other pole 
is represented by potential levees which are smaller, built longer ago and 
by landowners, and situated next to smaller streams. We see this dynamic 
illustrated in the California basin, where potential levee length is half that of 
NLD levee length (Table 5), reflecting the later period (i.e., early twentieth 
century) of artificial levee construction in that basin (ASCE, 2017) and better 
documentation that comes with more recent construction.

4.2.  Spatial and Geographic Implications of Findings

Characterizing the shape of Earth’s surface is considered the primary method 
for quantitative land-surface analysis (Sofia,  2020). Our understanding of 
landscapes arises from human cognition of spatial patterns in the field (Roer-
ing et  al.,  2013), so it is reasonable that geomorphic variables are nearly 
the exclusive set of variables used in recent efforts to detect artificial levees 
and other earthworks. Nonetheless, topographic patterns are only one way 
to parameterize geomorphic features. A quick review of efforts to model 
other physical phenomena with less pronounced topographic profiles, such 
as wetlands, indicates a willingness of researchers to explore other ancillary 
variables such as “distance to stream” (e.g., Ansari & Golabi, 2019; Berhane 
et al., 2018; Golden et al., 2016). Unlike other geomorphic features of mostly 
natural origin, artificial levees are constructed solely by humans to protect 

infrastructure from river floods. They are anthropogenic features that are intimately tied to human land cover and 
hydrologic features. Consequently, the spatial patterns humans have created in building levees are real and useful 
for modeling.

We are interested in the causes of the difference in accuracy between models that use land cover and stream 
order variables (e.g., model 12) and those models using geomorphic variables (e.g., model 1). Detecting artificial 
levees presents significant technical challenges due to their small size, geographic ubiquity, and varied morphol-
ogy (Steinfeld & Kingsford, 2013). Artificial levees can be massive structures or features nearly invisible to both 
the eye and topographically based analyses (Figure S3 in Supporting Information S1), with the height of some 
artificial levees less than the vertical error of topographic datasets (e.g., the mean relative vertical accuracy of 
the NED is 0.81 m with the accuracy of 95% of locations within 2.93 m (Gesch et al., 2014)). Furthermore, 
the resampling process of digital elevation models tends to smooth topographic crests (such as those of levees) 
making the features even more topographically stealthy or even invisible (Wing et al., 2019). Consequently, it is 
not surprising that spatial and land cover patterns seem to be more useful than geomorphic patterns in a national 
study given the diverse geomorphic signatures of both documented artificial levees (such as those in Figure S3 
in Supporting Information S1, which can be used as training data) and undocumented levees. Other researchers 
working at the national scale or larger (e.g., Grill et al., 2019) recognized the strong correlation of lateral discon-
tinuity structures with human development and employed nightlight intensity as a proxy for lateral discontinuity 
in the absence of global records of artificial levees and other structures.

Recent investigations have raised concerns over validation strategies for large scale modeling studies where the 
employment of spatially autocorrelated training and validation data leads to inflated estimates of model accuracy 
(e.g., Ploton et al., 2020). The issue is covered extensively, especially in the ecological literature (see Roberts 
et al., 2017), but we consider it appropriate to discuss the suitability of the validation techniques employed here. 
Karasiak et al. (2021) explains how the winner of a land cover classification contest was able to employ geographic 

HUC2 basin NLD (km) Potential levees (km)

New England (1) 89 25

Mid-Atlantic (2) 617 2,220

South Atlantic-Gulf (3) 2,410 5,921

Great Lakes (4) 41 277

Ohio (5) 1,148 12,216

Tennessee (6) 45 40

Upper Mississippi (7) 4,804 35,374

Lower Mississippi (8) 7,912 38,657

Souris-Red-Rainy (9) 466 459

Missouri (10) 4,438 39,221

Arkansas-White-Red (11) 2,939 16,073

Texas-Gulf (12) 2,403 9,230

Rio Grande (13) 1,074 965

Upper Colorado (14) 154 9

Lower Colorado (15) 1,582 1,471

Great Basin (16) 133 392

Pacific Northwest (17) 2,082 10,747

California (18) 14,306 8,916

Total Length (km) 46,643 182,213 

Note. Potential levees were identified by this study and are not part of the 
NLD.

Table 5 
NLD and Potential Levee Lengths (km) by HUC2 Basin
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pixel location only due to the ostensible spatial autocorrelation of the training and validation data sets. Unlike 
that example, and as previously discussed, we consider the spatial patterns expressed by the distance from stream 
order and land cover variables to be real patterns created by humans because land cover and stream flow were 
primary factors in the decision process that led to artificial levee construction. In addition, our method of mapping 
model 12 over the GFPLAIN floodplain is considered interpolation, not extrapolation, because we are applying 
the model in the same domain (i.e., the same geographic extent and variable domain) as that from which the train-
ing data are generated. Validation error of random samples is considered accurate in models with applications 

Figure 6.  A spatial and stream order representation of potential and NLD artificial levees by HUC8 and HUC2 basin. (a) 
The number of potential levees per HUC8 basin. HUC2 basin boundaries, in bold, are denoted by number. Three black dots 
indicate potential levees examined in Figure 8. (b) The number of NLD levees per HUC8 basin with HUC2 basin boundaries 
in bold. (c) The proportion of potential artificial levee length along each stream order in 18 HUC2 basins.
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in similar geographic and variable domains (Roberts et  al.,  2017). Unlike 
the problematic models discussed by Ploton et al.  (2020), our training and 
validation samples (n ∼ 3,060,000) are drawn from the same geographic and 
variable space as the model application area (the full 100-year GFPLAIN 
floodplain). We are not applying the model in a different geographic area. 
The detection of unknown levees representing 94% of total levee length in the 
leave-one-out cross-validation substantiates these claims. Initially, our use of 
the 2-digit HUC code, instead of the 8-digit code, as a variable was driven by 
the RF package’s (Liaw & Wiener, 2002) limit of 32 levels for a factor varia-
ble. Our experience indicates that the use of the 18 levels of the 2-digit HUC 
code strikes the right balance between harnessing RF's ability to model large 
samples without overfitting (Breiman, 2001) and the need to apply spatial 
patterns locally. After even a casual perusal of the USACE NLD website 
(https://levees.sec.usace.army.mil), it is reasonable to suspect that different 
areas of the United States might exhibit different spatial patterns of artificial 
levees and thus employing the natural basin configuration at the regional 
scale is appropriate. An example of this is the artificial levee density differ-
ence between basins such as the lower Mississippi Basin and California Basin 
(with a relatively high density of artificial levees) and the New England basin 
(with a relatively low density). Another consideration for modeling is that the 
2-digit HUC basin level is the most specific HUC code designation so that all 
basins contain known levees. CONUS models using HUC4 basins or larger 
HUC code designators would have basins without training data.

4.3.  Future Directions

Several areas appear promising for future research. First, artificial levee 
detection from a truly object-based approach could allow for the introduction 
of several object-based variables such as levee length and volume, mimicking 
the methods that experienced engineers or geomorphologists might employ 
to judge whether a structure is an artificial levee. Second, including additional 
variables, such as stream order 7–10 variables and spectral properties, could 
improve model accuracy. To test additional variables and the idea of using a 
larger sample size, we added a larger training sample size and a distance from 

Figure 7.  Potential and NLD artificial levee stream orders by normalized length and the sum of levee length for that order. 
NLD and potential levees are annotated by green and orange colors, respectively.

Figure 8.  Aerial and perspective images of potential artificial levees 
discovered during this process. The white circle and arrow on the aerial 
image indicates the perspective location for the perspective image. Black 
lines correlate locations between the two images. Raw model results, prior 
to segmentation, are plotted in orange (detected) and green (not detected). 
(a) Brookville, Indiana levee is visible as a long linear feature in aerial 
imagery, on Google Street view, and written about in an online news article 
(Norwood, 2020). (b) Elaine, Arkansas levee on the Mississippi River is 
connected to a NLD levee (indicated by a red line) but remains undocumented. 
(c) Arcata, California levee along the Gannon Slough and U.S. Route 101 is 
likely related to salt marsh reclamation for pasturage.

https://levees.sec.usace.army.mil/
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stream order 10 variable in the lower Mississippi Valley (Table 6, Figure S4 
in Supporting Information S1). Both ideas improved model accuracy, with 
increased sample size resulting in the greatest gains.

Third, we suggest coupling a geomorphic post-processing technique using 
high resolution topographic data with this model to determine whether the 
areas identified as potential-levees are shaped like levees. Although we found 
that including geomorphic variables reduced predictive power at the national 
scale, assessing how “levee like” potential levees are geomorphically in a 
subsequent step could help prioritize ground-truthing efforts. Fourth, the 
incorporation of field validation of potential levees similar to the validation 
of barriers conducted by Jones et al. (2019) would improve model certainty. 
Actual ground-truthing of potential levees identified here could comple-
ment the methods currently in use to document artificial levees for the NLD, 

resulting in a more complete and certain database. Fifth, revisiting this analysis in a decade could benefit from 
expanded computing ability and more open source options for object based classification, a more thorough NLD 
as training data, and a more accurate NHD Plus HR. Sixth, the causes of the spatial patterns of potential and NLD 
levees, illustrated in Figure 6, deserve more detailed exploration.

5.  Conclusions
Our exploration of different variables and models to detect artificial levees led to a random forest model with land 
cover and stream order variables. Applying this model in a 100-year geomorphic floodplain in the contiguous 
US indicated the potential for 182,000 km of artificial levees that are not included in the national levee database, 
suggesting that the database contains 20.4% of artificial levee length in the continental US. These levees missing 
from the national database were concentrated in the lower and upper Mississippi and Missouri basins and mostly 
along streams of order 2 through 6. When normalized for total stream length, larger stream orders were more 
impacted than smaller streams, with more than a third of stream order 10 streams impacted by NLD or potential 
levees. Ideas for future directions include methods that could further improve model performance and validation.
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