
KULLBACK-LEIBLER INFORMATION
THEORY

A BASIS FOR MODEL SELECTION AND INFERENCE
________________________________________________________

Kullback-Leibler Information or Distance

                          ( , ) = ( ) log ,I f  g f x dx'  f x
g x

( )
( )±)

      I f, g g( ) is the "information" lost when model  is used
        to approximate full truth  .f

     I f, g( ) is the "distance" between a model and full truth.

Glimpse into derivation from K-L information to AIC:

                     I f  g f x f x dx f x g x dx( , ) ( ) log ( ( )) ( ) log ( ( )) .œ ±'  ' )

I f  g f x E g x( , ) E [log( ( ))] [log( ( ))].œ f f ± )

                   ( , ) Constant E [log( ( ))],I f  g g xœ  f ± )
or
                  ( , ) – Constant = – E [log( ( ))].I f  g g xf ± )



The term E [log( ( ))] becomes the quantity of interest, but cannot bef g x ± )

estimated.  Akaike found that its expectation

                                                  E E [log( ( ))]0 f g x ± )

can be estimated!  An asymptotically unbiased estimator of the relative,
expected K-L information is

 log( ( data)) ,^_ ) ±  K

where  is the number of estimable parameters in the model.K

Akaike (1973) then defined " " (AIC) by multiplyingan information criterion
by 2 ("taking historical reasons into account") to get

   AIC 2 log( ( data)) 2^œ  ± _ ) K .

Thus, one should select the model that yields the smallest value of AIC
because this model is estimated to be "closest" to the unknown reality that
generated the sample data, from among the candidate models considered.
There are  models in the set: R g g g" # Vß ß ÞÞÞß Þ

This seems a very natural, simple concept; select the fitted approximating
model that is estimated, on average, to be closest to the unknown truth,  .f

If all the models in the set are poor, AIC attempts to select the best
approximating model of those in the candidate set and ranks the rest.
Statistics such as R  are useful here.  Thus, every effort must be made to#

assure that the set of models is well founded.  Much more hard thinking is
called for here.
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K = Number of Parameters



AIC Differences
AIC contains several types of constants and is a function of sample size, we 
recommend computing (and presenting in publications) the AIC differences
(in addition to the actual AIC values),

 ?3 3œ AIC minAIC,
where minAIC is the smallest AIC value in the set.  Thus, that best model
has 0   The larger is, the less plausible is the fitted model ( )? ?min = . g x ^

i i ± )
as being the K-L best model for samples such as the data one has. The
simple differencing leading to can be used with AICc and QAICc, as?i 
explained below.



Important Refinements to AIC

A Second Order AIC
Akaike derived an asymptotically unbiased estimator of K-L

information, however, AIC may perform poorly if there are too many
parameters in relation to the size of the sample.

A small-sample (second order) bias adjustment which led to a criterion that
is called AIC  (Sugiura (1978) and Hurvich and Tsai (1989)),c

                             AIC  = –2 log( ( )) + 2  ,^
- _ ) K n

n K– 1
This can be rewritten equivalently as

AIC 2 log( ( )) + 2   ,^
- œ  _ ) K 2 ( 1)

1
K K

n K


 

or, equivalently,

AIC AIC  ,c œ  2 ( 1)
1

K K
n K


 

where  is sample size.  Because AIC and AIC  converge when sample size isn -

large, one should always use AICc.



Modification to AIC for Overdispersed Count Data

    Count data have been known not to conform to simple variance
assumptions based on binomial or multinomial distributions.  If the
sampling variance exceeds the theoretical (model based) variance, the
situation is called "overdispersion" or "extra-binomial variation."

The first useful approximation is based on a single variance inflation factor
( ) which can be estimated from the goodness-of-fit chi-square statistic ( )c ;#

of the global model and its degrees of freedom,

c df .^ œ ;#/

Given overdispersed data and a variance inflation factor, , three thingsĉ
should be done/considered:

1.  mpirical estimates of sampling variances ( ( )) and covariances^e var/ )3

     ( ( , )) should be inflated by multiplying by the estimate of^ ^cov  c./ ) )3 4

     Note, the standard errors are inflated by the square root of  .ĉ

2.  model selection criteria need slight modification,

 QAIC 2 log( ( ))  + 2   ,^ ^
- œ  Î ’ “_ ) c K 2 ( 1)

1
K K

n K


 

                = QAIC  .
2 ( 1)

1
K K

n K


 

3.  the parameter count,  must be increased by 1 (for the estimation of  ).K ĉ



Some History
Akaike (1973) considered AIC and its information theoretic

foundations "  a natural extension of the classical maximum likelihoodá
principle."  Interestingly, Fisher (1936) anticipated such an advance over 60
years ago when he wrote,

"  an even wider type of inductive argument mayá
some day be developed, which shall discuss methods of
assigning from the data the functional form of the
population."

Science Hypotheses and Modeling

A well thought out global model (where applicable) is important and
substantial prior knowledge is required during the entire survey or
experiment, including the clear statement of the question to be addressed
and the collection of the data.  This prior knowledge is then carefully input
into the development of the set of candidate models.

Without this background science, the entire investigation should probably be
considered only very preliminary.



MULTIMODEL INFERENCE

 Making Inferences From More Than a
Single Model

The Likelihood of a Model

We can extend the concept of the likelihood of the parameters
given a model and data,

                              ( , ),_ ) ± x g i

to a concept of the likelihood of the model given the data ( ),x

 _ ?( )  ( ) .g x exp-i i± º  1
2

[Note the –  here just erases the fact that Akaike multiplied1
2

through by –2 to define his AIC]

To better interpret these relative likelihoods of models given the
data and the set of  models, we normalize them to be a set ofR
positive "Akaike weights" adding to 1:

 wi œ
exp( )

exp( )
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

1
2

=1

1
2

?

?

i

r

R
r! .



Model Probabilities

A given is considered as the weight of evidence in favor ofw  i
model  as being the actual K-L best model in the set.i

These are termed In fact, they are alsomodel probabilities.
formally Bayesian posterior model probabilities (Burnham and
Anderson 2004).  So, is the probability that model  is w  i the3

actual K-L best model in the set.

The bigger the  value, the smaller the weight.?3

The bigger a  is, the less plausible is model  as being the?3 i
actual K-L best model of full reality, based on the design and
sample size used.



Evidence Ratios

Evidence for pairs of hypotheses or models can be judged via an
evidence ratio.  Such ratios are invariant to other models in or
out of the model set.  Evidence ratios between model  and modeli
j are trivial to compute, and can be gotten as,

                                 ( ) / ( )_ _g x g x- -i j± ±
or
                                             .w /wi j

Most often, one wants the evidence ratio between the best model
( ) and the  model,   . There is a striking nonlinearityb j w /wth

, j
between the evidence ratio and the  values,?3

                                     Evidence ratio?3

                         2                          2.7
                         4                          7.4
                         8                        54.6
                       10                      148.4
                       15                   1,808.0
                       20                 22,026.5
                       50                72 billion.



Model Averaging
Sometimes there are several models that seem plausible, based
on the AIC  or QAIC  values.  In this case, there is a formal way- -

to base inference on more than a single model.  A model
averaged estimator is

 )
_̂
œ  !

i

R
i i

=1
w ,^ )̂

where  indexes the models. i

Note, model averaging is needed to compute the unconditional
variance (below).



          "Unconditional" Estimates of Precision

The precision of an estimator should ideally have 2 variance
components:
(1) the conditional sampling variance, given a model var( ) ,^ ^Š ‹)i i± g
and
(2) variation associated with model selection uncertainty.  Thus,

 var( )^ )̂ œ

  var( ) ( ) ,^ ^ ^! ›
i

R
i i i i

=1

2w g^ š ) )±  )
_̂

where,

       )
_̂
œ  ŵ ^!

i

R
i i

=1
)

The estimated conditional standard error is,

                               se( ) var( ) .^
_̂

^) œ É )
_̂



Unconditional Confidence Intervals

A simple approximation to a (1 )100% unconditional !
confidence interval is just,

                                         se( ),
_ _^ ^^) )i i„ z1- /2!

where  is over the  models.i R

Then,

                                        se( ) var( ) .^
_ _^ ^^) )i iœ É

Such unconditional confidence intervals can be set around a
single  or a model averaged estimate .^ _̂

) )

The word "unconditional" is perhaps unfortunate as the
estimates of precision are still conditioned on the set of models.
They are "unconditional" in the sense that they are not
conditioned on a single (usually best) model.



Summary

The Principle of Parsimony provides a  to modelconceptual guide
selection.

Expected K-L information provides an , basedobjective criterion
on a deep theoretical justification.

AIC  and QAIC  provide a for model selection- - practical method 
and associated data analysis and are estimates of expected,
relative K-L information.

AIC, AIC  and QAIC represent an extensions of classical-

likelihood theory, are applicable across a very wide range of
scientific questions, and are quite simple to compute and
interpret in practice.


