KULLBACK-LEIBLER INFORMATION
THEORY

A BASIS FOR MODEL SELECTION AND INFERENCE

Kullback-Leibler Information or Distance

I(f,9) = [(x)log (gggg)) X,

| (f, g) isthe" information” lost when model gisused
to approximate full truth f.

| (f, g) isthe" distance" between a model and full truth.

Glimpse into derivation from K-L information to Al C:
I(f, 9) = JT(x)log (f(x)) dx — ff(x)log(g(x | &))dx.
I(f, 9) = E¢[log(f(x))] — Es[log(g(x | €))].

| (f, g) = Constant — E¢[log(g(x | €))],

or
| (f, g) — Constant = — E;[log(g(x | 6))].



The term E¢[log(g(x | 8))] becomes the quantity of interest, but cannot be
estimated. Akaikefound that its expectation

EfE¢[log(a(x | 8))]

can be estimated! An asymptotically unbiased estimator of the relative,
expected K-L information is

Iog(ﬁ(lé\’ | data)) — K,

where K isthe number of estimable parametersin the model.

Akaike (1973) then defined " an information criterion” (AlC) by multiplying
by — 2 ("taking historical reasonsinto account") to get

AIC = — 2log(£(6 | data)) + 2K .

Thus, one should select the model that yields the smallest value of AIC
because this model is estimated to be " closest” to the unknown reality that
generated the sample data, from among the candidate models considered.
ThereareR modelsintheset: gy, Qs, ---, Or-

This seems a very natural, simple concept; select the fitted approximating
model that is estimated, on average, to be closest to the unknown truth, f.

If all the models in the set are poor, AIC attempts to select the best
approximating model of those in the candidate set and ranks the rest.
Statistics such as R? are useful here. Thus, every effort must be made to
assure that the set of models is well founded. Much more hard thinking is
called for here.
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AIC Differences

Al C contains several types of constants and is a function of sample size, we

recommend computing (and presenting in publications) the Al C differences
(in addition to the actual AlC values),

where minAlC is the smallest AIC value in the set. Thus, that best model

has Amin = 0. Thelarger A;is, thelessplausibleisthe fitted model g;(x | /é)
as being the K-L best model for samples such as the data one has. The

simple differencing leading to A; can be used with AICc and QAICc, as
explained below.



Important Refinements to AIC

A Second Order AIC

Akaike derived an asymptotically unbiased estimator of K-L
information, however, AIC may perform poorly if there are too many
parametersin relation to the size of the sample.

A small-sample (second order) bias adjustment which led to a criterion that
iscalled AlIC. (Sugiura (1978) and Hurvich and Tsai (1989)),

AIC, ——2|09(£(9))+2K(n K= 1) !

This can berewritten equivalently as

2K(K+1)
AlIC, = —2Iog(L"(6’))+2K + k=1

or, equivalently,

AIC, = AIC 4 2K+

wheren issample size. Because AIC and AIC, converge when samplesizeis
lar ge, one should always use Al Cc.




M odification to AIC for Overdispersed Count Data

Count data have been known not to conform to simple variance
assumptions based on binomial or multinomial distributions. If the
sampling variance exceeds the theoretical (model based) variance, the
situation iscalled " overdispersion" or " extra-binomial variation."

The first useful approximation is based on a single variance inflation factor
(c) which can be estimated from the goodness-of-fit chi-square statistic (x?)
of the global model and its degr ees of freedom,

¢ = x2/df .

Given overdispersed data and a variance inflation factor, €, three things
should be done/consider ed:

N\
1. empirical estimates of sampling variances (var.(6;)) and covariances

(cove(8;, 8,)) should be inflated by multiplying by the estimate of c.
Note, the standard errorsareinflated by the squareroot of €.

2. model selection criteria need slight modification,

2 K(K+1)

QAIC, = — [ZIOQ(E(Q’))/@] K+ k-1

_ 2 K(K+1)
=QAIC+ T .

3. the parameter count, K must beincreased by 1 (for the estimation of ¢).



Some History

Akaike (1973) considered AIC and its information theoretic
foundations " ... a natural extension of the classical maximum likelihood
principle.” Interestingly, Fisher (1936) anticipated such an advance over 60
year s ago when he wrote,

"... an even wider type of inductive argument may
some day be developed, which shall discuss methods of
assigning from the data the functional form of the
population.”

Science Hypotheses and M odeling

A well thought out global model (where applicable) isimportant and
substantial prior knowledgeisrequired during the entire survey or
experiment, including the clear statement of the question to be addr essed
and the collection of thedata. Thisprior knowledgeisthen carefully input
into the development of the set of candidate models.

Without this background science, the entire investigation should probably be
considered only very preliminary.



MULTIMODEL INFERENCE

Making Inferences From More Than a
Single Model

The Likelihood of a Model

We can extend the concept of the likelihood of the parameters
given a model and data,

LO |x,0),

to a concept of the likelihood of the model given thedata (x ),
L(gi | x) o< exp(— 34Ai).

[Note the —3 here just erases the fact that Akaike multiplied
through by -2 to define his Al C]

To better interpret these relative likelihoods of models given the
data and the set of R models, we normalize them to be a set of
positive " Akaike weights' addingto 1:

exp(—3Ai)

= .
>oexp(—34¢)
r=1

W, =



Model Probabilities

A given w; is considered as the weight of evidence in favor of
model | as being the actual K-L best model in the set.

These are termed model probabilities. In fact, they are also
formally Bayesian posterior model probabilities (Burnham and
Anderson 2004). So, w; is the probability that model i is the
actual K-L best model in the set.

The bigger the A; value, the smaller the weight.

The bigger a A; is, the less plausible is model i as being the
actual K-L best model of full reality, based on the design and
sample size used.



Evidence Ratios

Evidencefor pairs of hypotheses or models can bejudged via an
evidenceratio. Such ratiosareinvariant to other modelsin or
out of the model set. Evidenceratios between model i and model
j aretrivial to compute, and can be gotten as,

L(g | x)/L(g | x)

Wi /W .

or

M ost often, one wantsthe evidence ratio between the best model
(b) and thej'™" model, wy/w; . Thereisastriking nonlinearity
between the evidenceratio and the A; values,

A Evidenceratio
2 2.7
4 7.4
8 54.6
10 148.4
15 1,808.0
20 22,026.5

50 72 billion.



Model Averaging

Sometimes there are several models that seem plausible, based
on the AIC. or QAIC, values. In thiscase, thereisaformal way
to base inference on more than a single model. A model
averaged estimator is

wherei indexesthe models.

Note, model averaging is needed to compute the unconditional
variance (below).



"Unconditional" Estimates of Precision

The precision of an estimator should ideally have 2 variance
components:

(1) the conditional sampling variance, given a model (Oar(lé\h | gi )),

and
(2) variation associated with model selection uncertainty. Thus,

Var(6) =
R A A A
S {Qar(ei | g) + (6 — 6)° } ,
i-1
wher e,

R
— > 6

i=1

P>

The estimated conditional standard error is,

3e(0) = \/ Var ().



Unconditional Confidence Intervals

A smple approximation to a (1 — «)100% unconditional
confidenceinterval isjust,

A A
0; £ 71.0/2'5€(6; ),

wherei isover the R models.

’ée(%i )=V Qar(%i ).

Such unconditional confidence intervals can be set around a

Then,

N
single/é or amodel averaged estimate 6.

The word "unconditional” is perhaps unfortunate as the
estimates of precision are still conditioned on the set of models.
They are "unconditional" in the sense that they are not
conditioned on a single (usually best) model.



Summary

The Principle of Parsimony provides a conceptual guide to model
selection.

Expected K-L information provides an objective criterion, based
on a deep theoretical justification.

AIC, and QAIC, provide a practical method for model selection
and associated data analysis and are estimates of expected,
relative K-L information.

AIC, AIC, and QAIC represent an extensions of classical
likelihood theory, are applicable across a very wide range of
scientific questions, and are quite smple to compute and
interpret in practice.



