MODELS FOR TAGGING AND BANDING OF ANIMAL POPULATIONS

There is a large class of models for the analysis of bird banding (Europeans refer to this as bird ringing) or fish tagging data. Typically a number of animals are marked each year at about the same time of the year and during a relatively short period of time (3-4 weeks, perhaps). These animals are subject to harvest following banding and some proportion of the harvested individuals have their band or tag reported to a central location or agency. The harvest could be over a short time period or extend over nearly all of the year. The purpose of these sampling programs to most often to estimate the probability of survival.

The periods do not have to be years nor do the periods have to be of equal length. The primary reference to this class of models is Brownie et al. (1985). Program MARK allows a very general analytical approach to the estimation of parameters in this setting.

Known Constants:

R_{i} The number of animals banded or tagged in year i.

Random Variables:

$m_{i j}$ The number of bands or tags reported in year j from releases in year i. A matrix of recoveries.

The word "encountered" is a useful, general term for recovered, reported, resighted, sampled, etc.

Parameters:

S_{j} Conditional probability of survival in year j, given the animal is alive at the beginning of year j.
S_{j} Relates to the interval between banding/tagging periods!
r_{j} Conditional probability of being reported in year j, given the fish died in year j.

Program SURVIV and publications such as Brownie et al. (1985) used f_{j} as a "recovery probability." Here, we use a "reporting probability" r_{j},

$$
r_{j}=\frac{f_{j}}{\left(1-S_{j}\right)},
$$

This parameterization allows banding or tagging data and capture-recapture data to be modeled under a common framework and allows the recovery process to be separated from the survival process.

Tag Recovery Data Can be Viewed as;

Encounter History

Why Model?

The model links, in a formal manner, the data $\left\{R_{i}, m_{i j}\right\}$, assumptions, unknown parameters (the S_{j} and r_{j}) and allows rigor in making inductive inferences via likelihood and information theory.

Models are an essential component of science.

Problems occur if an estimate $\hat{S}_{j}>1$; this is a diagnostic indicating an over-parameterized model. The model assuming the survival and reporting probabilities
$\{S, r\}$ are constant always have estimates in the $\{0,1\}$ range.
Note, of course, $S=1-M$ where M is total mortality rate; a finite rate (not instantaneous).

Modeling band recovery data involves reparameterizing the multinomial likelihood and loglikelihood. First, we look at the structure of the parameters that might be hypothesized to underlying recovery data that we observe.

Consider the small data set on (simulated) striped bass -

i	R_{i}	$m_{i j}$				
		$j=1$	2	3	4	5
1	2000	30	70	114	43	15
2	2000		80	97	55	19
3	2000			169	46	10
4	2000				72	24
5	2000					34

Notice that 43 fish tagged in year 1 were harvested by anglers and reported in year 4; m_{14}, shown in bold.

Each row of the table (recovery matrix) is a multinomial distribution (under certain assumptions). Animals banded or tagged in year 1 are reported in year $1,2, \ldots, 5$ or "never."

The Saturated Model has as many parameters as there are cells. Here the subscripts i and j denote year-specific parameters (the j), specific to each banded cohort (the i).

Number Tagged	Expected Number of Tags Reported (dead)			
	${ }^{j}=1$	2	3	4
R_{1}	$R_{1} \theta_{11}$	$R_{1} \theta_{12}$	$R_{1} \theta_{13}$	$R_{1} \theta_{14}$

Thus, $K=15$ as there are 15 cells.

Model $\left\{\boldsymbol{S}_{\boldsymbol{t}}, r_{t}\right\}$ Here the subscript t denotes year-specific parameters.

Number Tagged	Expected Number of Tags Reported (dead)				
	$j=1$	2	3	4	5
R_{1}	$R_{1}\left(1-S_{1}\right) r_{1}$	$R_{1} S_{1}\left(1-S_{2}\right) r_{2}$	$R_{1} S_{1} S_{2}\left(1-S_{3}\right) r_{3}$	$R_{1} S_{1} S_{2} S_{3}\left(1-S_{4}\right) r_{4}$	$R_{1} S_{1} S_{2} S_{3} S_{4}\left(1-S_{5}\right) r_{5}$
R_{2}		$R_{2}\left(1-S_{2}\right) r_{2}$	$R_{2} S_{2}\left(1-S_{3}\right) r_{3}$	$R_{2} S_{2} S_{3}\left(1-S_{4}\right) r_{4}$	$R_{2} S_{2} S_{3} S_{4}\left(1-S_{5}\right) r_{5}$
R_{3}			$R_{3}\left(1-S_{3}\right) r_{3}$	$R_{3} S_{3}\left(1-S_{4}\right) r_{4}$	$R_{3} S_{3} S_{4}\left(1-S_{5}\right) r_{5}$
R_{4}				$R_{4}\left(1-S_{4}\right) r_{4}$	$R_{4} S_{4}\left(1-S_{5}\right) r_{5}$
R_{5}					$R_{5}\left(1-S_{5}\right) r_{5}$

Model $\left\{\boldsymbol{S}_{\boldsymbol{t}}, \boldsymbol{r}\right\}$ Note the r appears without a subscript, meaning this parameter is constant.

Number Tagged	Expected Number of Tags Reported (dead)				
	$j=1$	2	3	4	5
R_{1}	$R_{1}\left(1-S_{1}\right) r$	$R_{1} S_{1}\left(1-S_{2}\right) r$	$R_{1} S_{1} S_{2}\left(1-S_{3}\right) r$	$R_{1} S_{1} S_{2} S_{3}\left(1-S_{4}\right) r$	$R_{1} S_{1} S_{2} S_{3} S_{4}\left(1-S_{5}\right) r$
R_{2}		$R_{2}\left(1-S_{2}\right) r$	$R_{2} S_{2}\left(1-S_{3}\right) r$	$R_{2} S_{2} S_{3}\left(1-S_{4}\right) r$	$R_{2} S_{2} S_{3} S_{4}\left(1-S_{5}\right) r$
R_{3}			$R_{3}\left(1-S_{3}\right) r$	$R_{3} S_{3}\left(1-S_{4}\right) r$	$R_{3} S_{3} S_{4}\left(1-S_{5}\right) r$
R_{4}				$R_{4}\left(1-S_{4}\right) r$	$R_{4} S_{4}\left(1-S_{5}\right) r$
R_{5}					$R_{5}\left(1-S_{5}\right) r$

Model $\left\{\boldsymbol{S}, r_{t}\right\}$ In this case, survival is constant, but reporting probability is time-specific.

Number Tagged		Expected Number of Tags Reported (dead)			
	$j=1$	2	3	4	5
R_{1}	$R_{1}(1-S) r_{1}$	$R_{1} S(1-S) r_{2}$	$R_{1} S S(1-S) r_{3}$	$R_{1} S S S(1-S) r_{4}$	$R_{1} \operatorname{SSSS}(1-S) r_{5}$
R_{2}		$R_{2}(1-S) r_{2}$	$R_{2} S(1-S) r_{3}$	$R_{2} S S(1-S) r_{4}$	$R_{2} S S S(1-S) r_{5}$
R_{3}			$R_{3}(1-S) r_{3}$	$R_{3} S(1-S) r_{4}$	$R_{3} S S(1-S) r_{5}$
R_{4}				$R_{4}(1-S) r_{4}$	$R_{4} S(1-S) r_{5}$
R_{5}					$R_{5}(1-S) r_{5}$

Model $\{\boldsymbol{S}, \boldsymbol{r}\}$ Note, here neither parameter is subscripted, implying they are constants.

Number Tagged	Expected Number of Tags Reported (dead)					
	$j=1$	2	3	4	5	
R_{1}	$R_{1}(1-S) r$	$R_{1} S(1-S) r$	$R_{1} S S(1-S) r$	$R_{1} S S S(1-S) r$	$R_{1} S S S S(1-S) r$	
R_{2}			$R_{2}(1-S) r$	$R_{2} S(1-S) r$	$R_{2} S S(1-S) r$	$R_{2} S S S(1-S) r$
R_{3}				$R_{3}(1-S) r$	$R_{3} S(1-S) r$	$R_{3} S S(1-S) r$
R_{4}					$R_{4}(1-S) r$	$R_{4} S(1-S) r$
R_{5}						$R_{5}(1-S) r$

Model $\left\{S, r^{\prime}, r_{3}\right\}$ This notation denotes that S and r are constant, except for r in year 3 .

Number Expected Number of Tags Reported (dead)
Tagged

	$j=1$	2	3	4	5
R_{1}	$R_{1}(1-S) r$	$R_{1} S(1-S) r$	$R_{1} S S(1-S) r_{3}$	$R_{1} S S S(1-S) r$	$R_{1} S S S S(1-S) r$
R_{2}			$R_{2}(1-S) r$	$R_{2} S(1-S) r_{3}$	$R_{2} S S(1-S) r$
R_{3}			$R_{3}(1-S) r_{3}$	$R_{3} S(1-S) r$	$R_{2} S S S(1-S) r$
R_{4}					$R_{4}(1-S S(1-S) r$
R_{5}					$R_{4} S(1-S) r$
					$R_{5}(1-S) r$

WHY? Reporting probability in year 3 hypothesized to be very different than in normal years.
The striped bass could have been shown with the number never recovered shown:

i	R_{i}	$m_{i j}$				never	
		$j=1$	2	3	4		
1	2000	30	70	114	43	15	1728
2	2000		80	97	55	19	1749
3	2000			169	46	10	1775
4	2000				72	24	1904
5	2000					34	1966

The number never recovered from tagging in year 2 is 1749 and its expectation under Model $\left\{S_{t}, r_{t}\right\}$ is:

$$
R_{2}-\left(R_{2}\left(1-S_{2}\right) r_{2}+R_{2} S_{2}\left(1-S_{3}\right) r_{3}+R_{2} S_{2} S_{3}\left(1-S_{4}\right) r_{4}+R_{2} S_{2} S_{3} S_{4}\left(1-S_{5}\right) r_{5}\right)
$$

or

$$
2000-(80+97+55+19)=1749 .
$$

The expected number never recovered varies by model; e.g., for Model $\{S, r\}$ is

$$
R_{2}-\left(R_{2}(1-S) r+R_{2} S(1-S) r+R_{2} S S(1-S) r+R_{2} S S S(1-S) r\right)
$$

and this could be computed given the parameters S and r.

Program MARK computes these values, however, one must be aware of this additional cell in the multinomial distribution.

For modeling in a likelihood framework, we will need probabilities. These can be obtained by merely dividing the expected cell values by the number banded/tagged.

The Saturated Model

Number Tagged		Matrix of Cell Probabilities for $\boldsymbol{m}_{\boldsymbol{i}}$			$\mathbf{E}\left(\boldsymbol{m}_{i j} / \boldsymbol{R}_{\boldsymbol{i}}\right)$
	$j=1$	2	3	4	5
R_{1}	$\boldsymbol{\theta}_{11}$	θ_{12}	θ_{13}	θ_{14}	θ_{15}
\mathbf{R}_{2}		θ_{22}	θ_{23}	θ_{24}	θ_{25}
R_{3}			θ_{33}	θ_{34}	θ_{35}
R_{4}				θ_{44}	θ_{45}
R_{5}					θ_{55}

None of these K parameters are of any biological interest. The saturated model serves as a basis for judging fit of other models. The saturated model fits the data perfectly; no other model will fit as well. The deviance of the saturated model is zero.

Thus, $K=15$ as there are 15 cells.
$\operatorname{Model}\left\{\boldsymbol{S}_{t}, r_{t}\right\}$
Number \quad Matrix of Cell Probabilities for $\boldsymbol{m}_{i j} \mathrm{E}\left(\boldsymbol{m}_{\boldsymbol{i j}} / \boldsymbol{R}_{\boldsymbol{i}}\right)$
Tagged

R_{1}	$\left(1-S_{1}\right) r_{1}$	$S_{1}\left(1-S_{2}\right) r_{2}$	$S_{1} S_{2}\left(1-S_{3}\right) r_{3}$	$S_{1} S_{2} S_{3}\left(1-S_{4}\right) r_{4}$	$S_{1} S_{2} S_{3} S_{4}\left(1-S_{5}\right) r_{5}$
R_{2}		$\left(1-S_{2}\right) r_{2}$	$S_{2}\left(1-S_{3}\right) r_{3}$	$S_{2} S_{3}\left(1-S_{4}\right) r_{4}$	$S_{2} S_{3} S_{4}\left(1-S_{5}\right) r_{5}$
R_{3}			$\left(1-S_{3}\right) r_{3}$	$S_{3}\left(1-S_{4}\right) r_{4}$	$S_{3} S_{4}\left(1-S_{5}\right) r_{5}$
R_{4}				$\left(1-S_{4}\right) r_{4}$	$S_{4}\left(1-S_{5}\right) r_{5}$
R_{5}					$\left(1-S_{5}\right) r_{5}$

Model $\{s, r\}$

Number \quad Matrix of Cell Probabilities for $\boldsymbol{m}_{i j} E\left(m_{i j} / \boldsymbol{R}_{i}\right)$
Tagged

R_{1}	$(1-S) r$	$S(1-S) r$	$S S(1-S) r$	$S S S(1-S) r$	$S S S S(1-S) r$	$\left(1-\left(1-S^{5}\right) r\right)$
R_{2}		$(1-S) r$	$S(1-S) r$	$S S(1-S) r$	$S S S(1-S) r$	$\left(1-\left(1-S^{4}\right) r\right)$
R_{3}			$(1-S) r$	$S(1-S) r$	$S S(1-S) r$	$\left(1-\left(1-S^{3}\right) r\right)$
R_{4}				$(1-S) r$	$S(1-S) r$	$\left(1-\left(1-S^{2}\right) r\right)$
R_{5}					$(1-S) r$	$(1-(1-S) r)$

We will switch back and forth between expected values and probabilities, so people need to get familiar with both expressions.

Consider the $\log _{e} \mathcal{L}\left(S, r \mid R_{1}, m_{1 j}\right)$ for the first year of release of tagged bass. This is the log of the likelihood of the parameters (the constant survival probabilities S and r), given the data from tagging in year 1 (the R_{1} and $m_{1 j}$)

Consider the original data set on (simulated) striped bass and the first row of the $m_{i j}$ matrix;

i	R_{i}	$m_{i j}$				
		$j=1$	2	3	4	5
1	2000	30	70	114	43	15
2	2000		80	97	55	19
3	2000			169	46	10
4	2000				72	24
5	2000					34

The cell probabilities under Model $\{\boldsymbol{S}, \boldsymbol{r}\}$ are:

Number Tagged	Matrix of Cell Probabilities for $\boldsymbol{m}_{\boldsymbol{i j}}$				$\mathrm{E}\left(\mathrm{m}_{i j} / \mathbf{R}_{i}\right)$
\boldsymbol{R}_{1}	$(1-S) r \quad S(1-S) r$	$S S(1-S) r$	SSS(1-S)r	$\operatorname{SSSS}(1-S) r$	$\left(1-\left(1-S^{5}\right) r\right)$
R_{2}	$(1-S) r$	$S(1-S) r$	$S S(1-S) r$	$S S S(1-S) r$	$\left(1-\left(1-S^{4}\right) r\right.$)
R_{3}		$(1-S) r$	$S(1-S) r$	$S S(1-S) r$	$\left(1-\left(1-S^{3}\right) r\right)$
R_{4}			$(1-S) r$	$S(1-S) r$	$\left(1-\left(1-S^{2}\right) r\right)$
R_{5}				(1-S) r	(1-(1-S) r)

The the \log-likelihood of the parameters S and r, given the data (the number released in year 1 and the number of tag recoveries reported in year j from those released in year 1).

$$
\begin{aligned}
\log _{e} \mathcal{L}\left(S, r \mid R_{1}, m_{1 j}\right) & =m_{11} \log ((1-S) r)+m_{12} \log (S(1-S) r)+m_{13} \log (S S(1-S) r)+ \\
& m_{14} \log (S S S(1-S) r)+m_{15} \log (S S S S(1-S) r) \\
& +(\text { a term for those never reported, MARK handles this })
\end{aligned}
$$

The log-likelihood function for the tag recoveries from releases in year 2 is similar,

$$
\begin{gathered}
\log _{e} \mathcal{L}\left(S, r \mid R_{2}, m_{2 j}\right)=m_{22} \log ((1-S) r)+m_{23} \log (S(1-S) r)+m_{24} \log (S S(1-S) r)+ \\
m_{25} \log (S S S(1-S) r)+\text { "never" }
\end{gathered}
$$

The log-likelihood functions for the tag recoveries from releases in years 3,4 and 5 are
$\log _{e} \mathcal{L}\left(S, r \mid R_{3}, m_{3 j}\right)=m_{33} \log ((1-S) r)+m_{34} \log (S(1-S) r)+m_{35} \log (S S(1-S) r)+$ "never"
$\log _{e} \mathcal{L}\left(S, r \mid R_{4}, m_{4 j}\right)=m_{44} \log ((1-S) r)+m_{45} \log (S(1-S) r)+$ "never"
$\log _{e} \mathcal{L}\left(S, r \mid R_{5}, m_{5 j}\right)=m_{55} \log ((1-S) r)+$ "never"
Example, the log-likelihood for releases in year 3:

$$
\begin{array}{r}
\log _{e} \mathcal{L}(S, r \mid 2000,169,46,10)=169 \log ((1-S) r)+46 \log (S(1-S) r)+10 \log (S S(1-S) r) \\
+(\mathbf{2 0 0 0 - 1 6 9 - 4 6 - 1 0}) \log (1-[((\mathbf{1 - S) r})+(S(\mathbf{1 - S}) r)+(S S(\mathbf{1 - S}) r)])
\end{array}
$$

This function assumes the "data" are given; indeed, the data here include the 2000 fish tagged, and the number of recoveries in years 3,4 , and 5 . Only the parameters are unknown and the objects of interest. The log-likelihood function here is a function only of S and r.

Note the final term for those fish never reported from the 2,000 released is shown explicitly in the final expression (above, in bold blue).

The total log-likelihood for all the recovery data for the 5 years of release is merely the sum of the individual log-likelihoods (assuming independence of tagged cohorts),

$$
\log _{e} \mathcal{L}\left(S, r \mid R_{i}, m_{i j}\right)=\log _{e}\left(\mathcal{L}_{1}\right)+\log _{e}\left(\mathcal{L}_{2}\right)+\ldots+\log _{e}\left(\mathcal{L}_{5}\right)
$$

Thus,

$$
\begin{aligned}
& \log _{e} \mathcal{L}\left(S, r \mid R_{i}, m_{i j}\right)=m_{11} \log ((1-S) r)+m_{12} \log (S(1-S) r)+m_{13} \log (S S(1-S) r)+ \\
& +\quad m_{14} \log (S S S(1-S) r)+m_{15} \log (S S S S(1-S) r) \\
& +\quad m_{22} \log ((1-S) r)+m_{23} \log (S(1-S) r)+m_{24} \log (S S(1-S) r)+m_{25} \log (S S S(1-S) r) \\
& + \\
& +m_{33} \log ((1-S) r)+m_{34} \log (S(1-S) r)+m_{35} \log (S S(1-S) r) \\
& +\quad m_{44} \log ((1-S) r)+m_{45} \log (S(1-S) r) \\
& +m_{55} \log ((1-S) r) \quad \text { (plus a complex "never recovered" term). }
\end{aligned}
$$

Note, each term involving parameters in the log-likelihood function is of the form

DATA * LOG(PROBABILITY).

The "DATA" are the R_{i} (number tagged in year i) and the $m_{i j}$ (number of tags recovered in year j from releases in year i). The "PROBABILITY" of observing the data is some expression of the unknown, underlying parameters, given a particular model (the S_{j} and the r_{j}). These are often called "cell probabilities."

Little complications that are important (trust MARK):

1. A multinomial cell must be included for the fish in each released cohort that are "never" recovered.
2. The multinomial coefficient $\binom{n}{y_{i}}$ is shorthand for

$$
n!/\left(\left(y_{1}\right)!\left(y_{2}\right)!\cdots\left(y_{k}\right)!\right)
$$

This term does not involve any of the unknown parameters and is ignored for many estimation issues. MARK handles this issue.

In the striped bass tagging we have 5 multinomial coefficients in the overall likelihood; each of the form

$$
\binom{R_{i}}{m_{i j}} \text {, where } i=1, \ldots, 5
$$

For $i=1$,

$$
R_{1}!/\left(\left(m_{11}\right)!\left(m_{12}\right)!\cdots\left(m_{15}\right)!\left(R_{1}-\sum m_{1 j}\right)!\right)
$$

or

$$
2000!/(30!70!114!43!15!(2000-272)!)
$$

You can see why it is convenient to ignore this term! Program DERIVE does such things easily; we will get to it soon.

Some Questions:

1. What if some tags are taken from animals harvested in year j, but not reported to the agency until year $j+\kappa$? Thus, the analyst thinks the animal was harvest in a latter year? What is the likely effect of the estimators S_{i} ?
2. What if the sample size R_{i} was actually made up of m groups of brood mates. What might one worry about (in terms of the multinomial model)?
3. What if you banded animals for 19 years and then stopped; however, sport harvest continued for many more years. What might parameters might you estimate? What might be expected about the precision of the estimators?
4. The total log-likelihood is a sum of the log-likelihoods for each of the 5 cohorts. But this is based on the notion that the cohorts are independent. Is this a good assumption? Why? Why not? When might it fail?

Why is Brownie et al. (1985) hard to follow? Why so much notation that seems not to be covered in lectures? Why is the log-likelihood function not more prominent?

When the first edition of the "Banding Analysis Handbook" was published (1978) the emphasis was on estimators that existed in "closed form." That is, the calculus was used to take first partial derivatives of the log-likelihood function, set these to zero, and solve the resulting set of equations to get computable estimators "formulae." The parameter being estimated was on the RHS and the data could be substituted for the notation on the LHS and a numerical value produced. For example, on the cover we see the estimator (in closed form),

$$
\hat{f}_{i}=\frac{R_{i} C_{i}}{N_{i} T_{i}} \text { for } i=1, \ldots, k
$$

The 4 quantities on the LHS are statistics that come from the data and are known (although R_{i}, C_{i}, and T_{i} are observed random variables). A numerical value of the estimator (i.e., an estimate) is obtained by plugging in values for the 4 statistics and computing an estimate of f for each year i Easy enough, that is what one might expect. This was a useful approach and served the research and management community well during the 1970s and 1980s. There are problems with this approach:

1. Lots of notation is needed (see Chapters 2, 3, and 4). This is a bother to students trying to cope with the mass of symbols, subscripts, Greek characters, etc.
2. The notation has changed over the years as close relationships were found with the open capture-recapture models.
3. Many (most) models of real biological data do not have closed form estimators (they do not exist).
4. In some ways, the focus on the closed form estimators hinds the important concept of a loglikelihood and its parameterization, the notion of parameter values that maximize this function, etc.
5. While some estimators are "computable" and exist in "closed form" they are often tedious and error-prone if done by hand (e.g., Brownie et al. 1985:75-78). All such calculations are done by computer anyway, thus we are teaching FW663 with relatively little emphasis on closed form estimators and all the associated notation required. Our approach puts a premium on the numerical maximization of the log-likelihood and the shape of this function.
