
              Binomial Sampling and the Binomial Distribution

Characterized by two mutually exclusive “events."

Examples:

   GENERAL:  {success or failure}     {on or off}      {head or tail}       {zero or one}

   BIOLOGY:  {dead or alive}   {captured or not captured}  {reported or not reported}

These events are “outcomes" from a single “trial."    For  trialsBinomial or Bernoulli trials. n
one has  “successes."  This is standard, general symbolism.  Then  is an integer,y y

                                             0    .Ÿ Ÿy n

The binomial parameter, denoted , is the ; thus, the p probability of success probability of
failure p q p is 1–  or often denoted as .  Denoting success or failure to  is arbitrary and makes no
difference.  Obviously, +  = 1 because the events are assumed mutually exclusive andp q
exhaustive (a coin must be a head or a tail and cannot remain resting on its edge!).

This is a good place to point out that these are only (approximating) , and not full truth.models
Truth is not a model.  A model, by definition, is an approximation (and not truth).  In fact, out of
a few million coin flips, one or more coins will remain standing on edge – that is truth.  The
binomial model does not allow such reality.  The idea is more easily understood for the
outcomes “dead" or “alive."  In many cases, it is clear that an animal is either dead or alive;
however, such a simple classification might be difficult in cases where an animal is “close to
death."  Even here, the binomial model might be a very good approximation to truth or full
reality.  We are, of course, interested in models that are very good approximations!

Of course,  is continuous and able to take any value between between 0 and 1 and including 0p
and 1.  0 1.  It is likewise somewhat obvious that an  of the probability ofŸ Ÿp estimator
success is merely

                          = =  number of successes/number of trials.p̂ y/n   

The estimator  is unbiased; some other useful quantities are:p̂

 E( ) = y np

Here is an example where the expectation is symbolized – we will employ this in many ways
starting with lecture 4.  Let  = 100 flips of a fair coin (thus  = 0.5).  Then E( ) = 100 0.5 =n p y †



50.  This was a case where the expectation of a statistic  was used.  This procedure isy
common in modeling data.

 var( ) =  = (1– )y npq np p

 var( ) = ( )/p pq n^

 
 var( ) = ( )/^ p pq n^ ^^

 se( ) = ( )/   = var( ) .^ ^ ^ ^p pq n p^^È È
You should recognize these from your earlier classes in statistics.  These results show that
statistics such as = number of successes also have expected values.  The use of “hats" toy 
denote estimators or estimates is important.  One must no confuse as estimate (e.g., 119) with
the parameter (e.g., 188, but usually not known to the investigator).  The expression var( )p̂
denotes the sampling variance; the uncertainty associated with the use of an estimator and
sample data.  Finally, do not think that the standard error of the estimator,  in this case, isp̂
anything other than the square root of the variance of the estimator .  Note too, thatp̂

                                          var( ) = (se( )) .^ ^ ^ ^p p #

Beginning classes in statistics often use simplified notation to ease learning; however,
occasionally this becomes a hindrance in more advanced work.  For example, often the
population mean  is estimated by the sample mean and denoted as ; this seems awkward and-. x
we will merely use .  The estimate of the population variance  is often denoted by  or .̂ 5# # #s S
and this seems particularly poor, at least for FW663.  Consider the usual simple example from
ST001 class.

A random sample of  = 30 pigs are drawn and weighed exactly.  The samplen
data are the pig weights An estimate of the variability in pigw , w , w , ..., w .  " # $ $!

weights across the pigs sampled is the usual standard deviation,

              Estimated standard deviation =  =  ( ) –1.5̂ Ê! ‚w –w n-
3

#

This is an estimate of the population standard deviation, .  Because a random5
sample of the population was taken, the sample standard deviation can be taken as
a valid measure of the variation in pig weights in the population.  Note, if only pigs
were weighed close to the road, then the standard deviation would be a measure
of the variation in the sample of 30 pigs; without a valid way to make an inductive
inference to the population of pigs.



Now, instead of wanting a measure of variation in the weights of pigs in a
population (based on a sample), suppose one wanted to estimate some
parameter in the pig population?  The obvious parameter here is the mean weight
. . (or, perhaps  to denote it is the mean ).  It turns out that the estimatorA weight
of this mean is

                                           = .̂ ! ‚w n3

and this estimator is unbiased, asymptotically minimum variance and asymptotically
normal (it is an “MLE" see below).  Of course, we need a measure of its precision
or repeatability; this is the estimated sampling variance,

                                  var( ) = ( ) ( 1)^ .̂ ! ‚w  – w n n–-
3

#

or its estimated standard error,

                                         se( ) = var( ) .^ ^ ^ ^. .È
Whenever we need a measure of the precision of an , we turn to the samplingestimator
variance or standard error (and perhaps coefficients of variation or confidence intervals).  Note,
these measures of precision or uncertainty are, themselves, only estimates (note the “hat" to
indicate this).

If a measure of the variation in the population members is desired, one is interested in estimating
the population standard deviation, .  The standard deviation does not change with sample size;5
it is an innate value of the population.  It has nothing to do with sampling, except that large
sample might often permit a better estimate of this population parameter.

You might turn to a random page in a scientific journal in your field of interest and ask if these

concepts about population variation  versus sampling variation var( ) are made clear in^5 )#

tables!

Quantities such as the sampling variance are parameters and they have estimators.  For
example, in the case of the binomial model, the sampling variance is

                                              var( ) = (1– )/p̂ p p n

and its estimator is

                                              var( ) = (1– )/  .^ p̂ p p n^ ^



This   notation might seem irritating at first, but it becomes essential in real world problems.^
Why?  Perhaps the  of the sampling variance is severely negatively biased in aestimate
particular situation; then one must worry about confidence interval coverage being less than the
nominal level (e.g., 0.90).  It is easy to blur the distinction between a parameter and its estimate.
For example, consider the person who has just weighted 50 male and 50 female pigs and
computed their sample means:  = 34Kg and  = 37Kg.  Are these sample means^ ^. .7 0

“significantly" different, he asks?  No or  test is needed to answer this question; of courset F
they are different!  34  37.  Perhaps he meant to ask if the estimated sample meansÁ really 
provided any evidence that the  (  and ) differed by sex?  Ofpopulation parameters . .7 0

course, he did.

The var( ) is really shorthand for var( ), a measure of the sampling variationp p model^ ^ ±

(uncertainty) of p as an estimator of true , given a model. If sample size  , var( ) goes to^ p p̂Å _

0. If true  varies from coin to coin, var( ) tells us nothing at all about that other source ofp p̂
variation.  Here, there are two variance components.

Consider a “population" of loaded coins, each with its own probability, , of landing heads upp
and  varies over coins (i.e., “individual heterogeneity"). Then there is a population variance ofp
p, namely 52

p .

Draw a sample of coins of size , flip each one  times, getk n

                                                ,p  p  p^ ^ ^
" 2 , ,á k .

var( ) tells us nothing about .  The variation among the ,  reflects both variation^ p p  p  p^ ^ ^ ^
i 52

2p k" , ,á

among the set of true 's ( ) and the  sampling variances (each one conditional on  of thatp k p52
:

coin),

                                      var( | ),  1, 2, , .p model i k^
i œ á

Here, there is a sampling variance and a variance across individuals.  We will see other
examples of “variance components."

Things to ponder:
   Do var( ) and  differ?  Why?p̂ 5#

   How does one know which estimator to use?  Are there general methods for
        finding such estimators?
   What is the sampling variance of some parameter if a census is conducted?
   Why is it called a ?sampling variance
    Review some old quizzes as a way to bring up other issues and consider them.



Summary – Binomial Random Variables:
 1.   identical trials (e.g. a flip of 20 pennies)n
 2.  each Bernoulli trial results in one of two mutually exclusive outcomes (e.g., head
        or tail)
 3.  the Prob{success} =  on each trial and this remains constantp
 4.  Trials are independent events
 5.   = number of successes; the  variable after  trials.y random n
 6.   is the probability of successp
 7.   is the  of the probability of success;  = .^p estimator p y/n^

 8.   = 0.73 is an .p̂ estimate
 9.  The precision of the estimator is measured by var( ) = ( )/ , the estimated^ p pq n^ ^^

         sampling variance (or, the square root of var( ), the  estimated standard error^ p̂
         se( )).^ p̂

Extended Example:

Consider  = 100 unfair pennies where the underlying binomial parameter is  = 0.70 (we known p
this value in this example).  In a prior FW-663 class 11 students each made 50 surveys each
involving flipping 100 unfair pennies.  Thus, we have the results of 11x50=550 surveys, where
each survey involved flipping 100 pennies.  For each survey, we have =100, = the number ofn y
heads observed.

Clearly,  = (H) = 0.7,  = 0.3, and + =1.  The estimator is  = .  The histogram below^p p q p q p y/n
shows the frequency for the 550 independent surveys.
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Note that  is a random variable and has a probability distribution (as above).  It is actually ay
discrete random variable (  cannot be 37.54 heads).  In fact, we will see that this binomialy
random variable is approximately normally distributed under certain conditions.  Does the
distribution of  above look somewhat “normal"?y

p p estimated p p estimate^
-

= E( ) = 0.699 and bias is  as  E( ) –  = 0.699 – 0.70 = -0.001.  This ^ ^^ ^

of the bias suggests that bias is trivial; in fact, we know that the bias of this estimator is 0.  Our
estimate of bias is quite good in this case.

Note, percent relative bias (PRB) and relative bias (RB) are often useful:

            PRB = 100 [E( ) – ]          and          RB =[E( ) – ]  .^ ^ ^ ^† ) ) ) )‚ ‚) )



                      Binomial Probability Function

This function is of passing interest on our way to an understanding of likelihood and log-
likehood functions.  We will usually denote probability functions as  and, in this case, ( ) whichf f y
is strictly positive and a function of the random variable  the number of successes observed iny,
n trials.  We will return to a coin flipping survey where the outcomes are head (H) with
probability  or tail (T) with probability 1– .  The binomial probability function isp p

                                 ( ) = (1– )   .f y n, p  p  p± Šn
y‹ C 8�C

The left hand side is read “the probability of observing , given  flips with underlying parametery n
p n p y.  Thus, it is assumed that we know the exact values of  and ; only  is a random variable.
How is this useful?  Let us start with a coin presumed to be “fair" i.e.,  = 0.5.p

Let  = 11 trials or flips and  is the number of heads.  The outcomes are below:n y

              HHTHHHTTHHT; thus  = 7 = the number of heads (H).y

The order is not important, thus the outcomes could have been written as

              HHHHHHHTTTT

and, in terms of probabilities (which are multiplicative under the assumption of independence),
we could write

                   (1– )              as                (1– )   .p  p p  pC (8�C ""�(

Of course,  is assumed to be 0.5 if the coin is fair.  Then, part of the probability function isp
written simply as

                                        0.5  (1–0.5)   .( ""�(

The full probability function, including the binomial coefficient, is then

                            ( 11, 0.5) =   0.5  (1–0.5)f y ± Š ‹11
y

( ""�(



This function involves only one variable,  = 7.  This can be evaluated numerically; ( 11, 0.5)y f y ±
= (330) x 0.5  = 0.16.  So, in summary, the probability of getting 7 heads out of 11 flips of a""

fair coin is 0.16.  Common sense leads one to believe that this is not an unusual event, the
mathematics allows one to quantify the issue.  Th ability to quantify probabilities is especially
important when the model and data are much more complex (as we shall soon see).  In such
case, intuition is often of little help.

The theory of probability was well advanced 200 years ago so, by now, you can only imagine
that many probability functions exist and are useful in a huge array of practical problems.
However, probability functions are of little direct interest in biology because we rarely know the
parameters.  In fact, biologists have a reverse problem – they have data (the  and the ) but don y
not know the parameters (the ).  This leads to the likelihood function!p



Binomial distribution for 8 œ ""ß : œ !Þ&Þ
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Comparison of binomial distributions for (red) and 8 œ ""ß : œ !Þ& 8 œ ""ß : œ !Þ"&
(green).
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