Binomial Sampling and the Binomial Distribution
Characterized by two mutudly exclusive “events.”
Examples.
GENERAL: {successor falure {onorofff {head or tal} {zero or one}
BIOLOGY': {dead or dive} {captured or not captured} {reported or not reported}

These events are “outcomes' from asingle “trid.” Binomial or Bernoulli trials. For ntrids
one hasy “successes™ Thisis standard, generd symbolism. Theny isan integer,

0<y<n

The binomia parameter, denoted p, is the probability of success; thus, the probability of
failure is 1 or often denoted as . Denoting success or falureto p is arbitrary and makes no
difference.  Obvioudy, p+q = 1 because the events are assumed mutualy exclusve and
exhaudtive (a coin must be a head or atail and cannot remain resting on its edge!).

Thisis a good place to point out that these are only (approximating) models, and not full truth.
Truthisnot amode. A modd, by definition, is an gpproximation (and not truth). In fact, out of
a few million coin flips, one or more coins will remain sanding on edge — that is truth. The
binomiad mode does not dlow such redity. The idea is more easily understood for the
outcomes “dead” or “dive” In many cases, it is clear that an animd is dther dead or dive
however, such a smple dassficaion might be difficult in cases where an animd is “close to
death.” Even here, the binomia modd might be a very good gpproximation to truth or full
redity. We are, of course, interested in models that are very good approximations!

Of course, p is continuous and able to take any vaue between between 0 and 1 and including O
and 1. 0<p<L1 Itislikewise somewhat obvious that an estimator of the probability of
success is merely
D=y/n = number of successesnumber of trids.
The estimator P is unbiased; some other useful quantities are:
E(y) = np

Here is an example where the expectation is symbolized — we will employ this in many ways
darting with lecture 4. Let n = 100 flips of afar coin (thusp = 0.5). Then E(y) =100-0.5=



50. This was a case where the expectation of a datistic y was used. This procedure is
common in modeling data.

var(y) = npq = np(1-)
var(p) = (pa)/n

Var(®) = )/n

S = V@) = v 0a®).

You should recognize these from your earlier classes in datistics. These results show that
statistics such as y = number of successes dso have expected vaues. The use of “hats' to
denote estimators or estimates is important. One must no confuse as estimate (e.g., 119) with
the parameter (eg., 188, but usualy not known to the investigator). The expression var())
denotes the sampling variance; the uncertainty associated with the use of an estimator and
sample data. Findly, do not think that the standard error of the estimator, D in this case, is
anything other than the square root of the variance of the estimator . Note too, that

Var(p) = (Se()*.

Beginning dasses in ddidics often use smplified notation to ease learning; however,
occasiondly this becomes a hindrance in more advanced work. For example, often the
population mean 1 is estimated by the sample mean and denoted as X; this seems awkward and
we will merdy use 7i. The estimate of the population variance o is often denoted by % or S?
and this seems particularly poor, at least for FW663. Congder the usuad smple example from
ST001 class.

A random sample of n = 30 pigs are drawn and weighed exactly. The sample
data are the pig weights wy , Wy, Ws, ..., W3g. Anedimate of the varidbility in pig
welights across the pigs sampled isthe usud standard deviation,

Estimated standard deviation = & = \/ 3 (W) / n-1.

This is an estimate of the populaion sandard deviation, 0. Because a random
sample of the population was taken, the sample standard deviation can be taken as
avdid measure of the variation in pig weights in the population. Note, if only pigs
were weighed close to the road, then the standard deviation would be a measure
of the variation in the sample of 30 pigs; without a vaid way to make an inductive
inference to the population of pigs.



Now, indead of wanting a messure of variation in the weights of pigs in a
population (based on a sample), suppose one wanted to estimate some
parameter in the pig population? The obvious parameter here is the mean weight
. (or, perhaps 1., to denote it isthe mean weight). It turns out that the estimator
of thismean is

lll\J:ZWz’/n

and this estimator is unbiased, asymptoticaly minimum variance and asymptoticaly
normd (itisan “MLE" see below). Of course, we need a measure of its precison
or repeatability; thisis the estimated sampling variance,

Yar(h) = S, ~ W2 /n(n-1)
or its estimated standard error,
Se(j1) = v/ Var(i) .

Whenever we need a measure of the precison of an estimator, we turn to the sampling
variance or standard error (and perhaps coefficients of variation or confidence intervals). Note,
these measures of precison or uncertainty are, themselves, only estimates (note the “hat" to
indicate this).

If ameasure of the variation in the population membersis desired, one isinterested in estimating
the population standard deviation, o. The standard deviation does not change with sample Sze;
it is an innate vaue of the population. It has nothing to do with sampling, except that large
sample might often permit a better estimate of this population parameter.

You might turn to a random page in a scientific journd in your fied of interest and ask if these
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concepts about population variation o“ versus sampling varidion var(d) are made clear in

tables!

Quantities such as the sampling variance are parameters and they have edtimaors. For
example, in the case of the binomia modd, the sampling variance is

var(p) = p(1-p)in

and its etimator is

Var(p) =1/



This A notation might seem irritating at first, but it becomes essentid in red world problems.
Why? Perhaps the estimate of the sampling variance is severdly negdively biased in a
particular Situation; then one must worry about confidence interva coverage being less than the
nomind levd (eg., 0.90). Itiseasy to blur the digtinction between a parameter and its estimate.
For example, consder the person who has just weighted 50 mae and 50 femae pigs and
computed their sample means: /i,,, = 34Kg and fi; = 37Kg. Are these sample means
“gonificantly” different, he asks? Not or F test is needed to answer this question; of course
they are different! 34 # 37. Perhaps he really meant to ask if the estimated sample means
provided any evidence that the population parameters (um, and ) differed by sex? Of
course, he did.

The var(®) is redly shorthand for var(p| model), a measure of the sampling variation
(uncertainty) of P as an estimator of true p, given amodd. If ssmple size 7 oo, var(p) goesto
0. If true p varies from coin to coin, var(p) tells us nothing at &l about that other source of
variaion. Here, there are two variance components.

Consider a “population” of loaded coins, each with its own probability, p, of landing heads up
and p varies over coins (i.e, “individuad heterogeneity”). Then there is a population variance of
p, namdly o7 .

Draw asample of coins of Szek, flip each one n times, get

AN AN

LB P

Var(py ) tells us nothing about o2 . The variation among thefy, B ..., 1, reflects both variation
among the set of true p's (aﬁ) and the k sampling variances (each one conditiona on p of that
coin),

va(p|model), i=1,2, ...,k

Here, there is a sampling variance and a variance across individuads. We will see other
examples of “variance components.”

Things to ponder:
Do var() and o2 differ? Why?
How does one know which estimator to use? Are there generd methods for
finding such estimators?
What is the sampling variance of some parameter if a censusis conducted?
Why isit cdled asampling variance?
Review some old quizzes as away to bring up other issues and congder them.




Summary — Binomid Random Variables
1. nidenticd trids (eg. aflip of 20 pennies)
2. each Bernoulli trid resultsin one of two mutudly exclusive outcomes (e.g., head
or tail)
the Prob{ success} = p on each trid and this remains constant
Trids are independent events
y = number of successes; the random varigble after n trids.
p is the probability of success
Disthe estimator of the probability of success; p=y/n.
D=0.73isan estimate
The precision of the estimator is measured by Var(p) = (P0)/n, the estimated
sampling variance (or, the square root of Var(p), the estimated standard error

Se(d)).

Extended Example:

© oo N U AW

Congder n = 100 unfair pennies where the underlying binomia parameter isp = 0.70 (we know
this value in this example). In a prior FW-663 class 11 students each made 50 surveys each
involving flipping 100 unfair pennies. Thus, we have the results of 11x50=550 surveys, where
each survey involved flipping 100 pennies. For each survey, we have n=100, y= the number of
heads observed.

Clearly, p = p(H) = 0.7, g = 0.3, and p+g=1. The estimator isp = y/n. The histogram below
shows the frequency for the 550 independent surveys.
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Note that y is a random variable and has a probability distribution (as above). It is actudly a
discrete random variable (y cannot be 37.54 heads). In fact, we will see that this binomid
random varidble is gpproximately normdly distributed under certain conditions. Does the
digtribution of y above look somewhat “norma"?

b= E() = 0,699 and bias is estimated as E() — p = 0.699 —0.70 = -0.001. This estimate
of the bias suggedts that bias istrivid; in fact, we know that the bias of this estimator is 0. Our
estimate of biasis quite good in this case.

Note, percent relative bias (PRB) and rdlative bias (RB) are often useful:

PRleoo-[%(ﬁ)—e]/a ad RB :[%(6)—0]/9.



Binomial Probability Function
This function is of passng interes on our way to an underdanding of likdihood and log-
likehood functions. We will usualy denote probability functions asf and, in this case, f(y) which
is grictly pogtive and a function of the random variable y, the number of successes observed in

n trids. We will return to a coin flipping survey where the outcomes are head (H) with
probability p or tall (T) with probability 1-p. The binomid probability function is

fylnp=(}) e

The left hand Sdeis read “the probability of observing y, given n flips with underlying parameter

p. Thus, it is assumed that we know the exact values of n and p; only y is arandom varigble.

How isthisuseful? Let us start with a coin presumed to be “fair” i.e, p = 0.5.

Let n=11tridsor flipsand y isthe number of heads. The outcomes are below:
HHTHHHTTHHT,; thusy = 7 = the number of heads (H).

The order is not important, thus the outcomes could have been written as

HHHHHHHTTTT

and, in terms of probakilities (which are multiplicative under the assumption of independence),
we could write

P’ ()" as P ()T

Of course, p is assumed to be 0.5 if the coin is fair. Then, part of the probability function is
written Smply as

05" (1-0.5)H1-7 |

The full probability function, induding the binomia coefficient, is then

f(y |11, 0.5) = (1y1) 057 (1-0.5)!1-7



This function involves only one varidble, y = 7. This can be evauated numericaly; f(y | 11, 0.5)
=(330) x 0.5!! =0.16. So, in suUmmary, the probahility of getting 7 heads out of 11 flips of a
far coin is 0.16. Common sense leads one to bdieve tha this is not an unusud event, the
mathemétics alows one to quantify the issue. Th ahility to quantify probabilities is especidly
important when the modd and data are much more complex (as we shal soon see). In such
casg, intuition is often of little help.

The theory of probability was well advanced 200 years ago so, by now, you can only imagine
that many probability functions exist and are ussful in a huge array of practica problems.
However, probability functions are of little direct interest in biology because we rardly know the
parameters. In fact, biologists have a reverse problem — they have data (the n and the y) but do
not know the parameters (the p). Thisleadsto the likeihood function!



Binomid digributionfor n = 11, p = 0.5.
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Binomid digributionforn = 11, p = 0.15.
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Comparison of binomid digributions for n = 11, p = 0.5(red) and n = 11, p = 0.15
(green).
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