Model M_0

Assume that $t=3$ capture occasions. Then, $2^3 = 8$ possible capture histories are defined as the following X matrix. The number of animals with each of these capture histories is $X_1, X_2, ..., X_8$. A short-hand notation for all possible capture histories is X_{w}. To the right of each row is the portion of the complete likelihood that pertains to this capture history for Model M_0.

$$
\begin{array}{c|ccc}
 i & j = 1 & 2 & 3 \\
 1 & 1 & 0 & 0 \\
 2 & 0 & 1 & 0 \\
 3 & 0 & 0 & 1 \\
 4 & 1 & 1 & 0 \\
 5 & 1 & 0 & 1 \\
 6 & 0 & 1 & 1 \\
 7 & 1 & 1 & 1 \\
 8 & 0 & 0 & 0 \\
\end{array}
\begin{array}{c}
p^{X_1} (1 - p)^{X_1} (1 - p)^{X_1} \\
(1 - p)^{X_2} p^{X_2} (1 - p)^{X_2} \\
(1 - p)^{X_3} (1 - p)^{X_3} p^{X_3} \\
p^{X_4} p^{X_4} (1 - p)^{X_4} \\
p^{X_5} (1 - p)^{X_5} p^{X_5} \\
(1 - p)^{X_6} p^{X_6} p^{X_6} \\
p^{X_7} p^{X_7} p^{X_7} \\
(1 - p)^{X_8} (1 - p)^{X_8} (1 - p)^{X_8}
\end{array}
$$

The X matrix forms a multinomial with 8 cells, of which 7 are observed. Cell 8, with frequency X_8 is not observed. The complete likelihood is then

$$L(N, p|X_w) = \frac{N!}{X_1! X_2! X_3! X_4! X_5! X_6! X_7! X_8!} p^{(X_1 + X_2 + X_3 + 2X_4 + 2X_5 + 2X_6 + 3X_7)} (1 - p)^{(2X_1 + 2X_2 + 2X_3 + X_4 + X_5 + X_6 + 3X_7)}$$

Now, make the following substitutions into the complete likelihood:

$$n_1 = X_1 + X_4 + X_5 + X_7$$

$$n_2 = X_2 + X_4 + X_6 + X_7$$

$$n_3 = X_3 + X_5 + X_6 + X_7$$

resulting in
Likelihoods for Mark-Recapture Models

\[\mathcal{L}(N, p|X_\omega) = \frac{N!}{X_1!X_2!X_3!X_4!X_5!X_6!X_7!X_8!} p^{(n_1 + n_2 + n_3)} (1 - p)^{(N - n_1) + (N - n_2) + (N - n_3)} \]

With additional simplification and the substitutions

\[X_8 = N - M_{t+1} \]

\[n. = n_1 + n_2 + n_3 \]

the likelihood expressed in terms of the minimal sufficient statistics is achieved:

\[\mathcal{L}(N, p|X_\omega) = \frac{N!}{X_1!X_2!X_3!X_4!X_5!X_6!X_7!y!(N - M_{t+1})!} p^{n.} (1 - p)^{(tN - n.)} \]

Model \(M_t \)

Assume that \(t=3 \) capture occasions. Then, \(2^3 = 8 \) possible capture histories are defined as the following \(X \) matrix. The number of animals with each of these capture histories is \(X_1, X_2, ..., X_8 \).

To the right of each row is the portion of the complete likelihood that pertains to this capture history for Model \(M_t \).

<table>
<thead>
<tr>
<th>i</th>
<th>j = 1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 0 0</td>
<td>(p_1 x_1) ((1 - p_2)^{x_1}) ((1 - p_3)^{x_1})</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 1 0</td>
<td>((1 - p_1)^{x_2}) (p_2 x_2) ((1 - p_3)^{x_2})</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 0 1</td>
<td>((1 - p_1)^{x_3}) ((1 - p_2)^{x_3}) (p_3 x_3)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 1 0</td>
<td>(p_1 x_4) (p_2 x_4) ((1 - p_3)^{x_4})</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 0 1</td>
<td>(p_1 x_5) ((1 - p_2)^{x_5}) (p_3 x_5)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0 1 1</td>
<td>((1 - p_1)^{x_6}) (p_2 x_6) (p_3 x_6)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1 1 1</td>
<td>(p_1 x_7) (p_2 x_7) (p_3 x_7)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0 0 0</td>
<td>((1 - p_1)^{x_8}) ((1 - p_2)^{x_8}) ((1 - p_3)^{x_8})</td>
<td></td>
</tr>
</tbody>
</table>

The \(X \) matrix forms a multinomial with 8 cells, of which 7 are observed. Cell 8, with frequency
Likelihoods for Mark-Recapture Models

X_8 is not observed. The complete likelihood is then

$$\ell(N, p_j | X_\omega) = \frac{N!}{X_1!X_2!X_3!X_4!X_5!X_6!X_7!X_8!} \cdot \frac{p_1^{(X_1 + X_4 + X_5 + X_7)}}{(1 - p_1)^{(X_2 + X_3 + X_6 + X_8)}} \times \frac{p_2^{(X_2 + X_4 + X_6 + X_7)}}{(1 - p_2)^{(X_1 + X_3 + X_5 + X_8)}} \times \frac{p_3^{(X_3 + X_5 + X_6 + X_7)}}{(1 - p_3)^{(X_1 + X_2 + X_4 + X_8)}}$$

Now, make the following substitutions into the complete likelihood:

- $n_1 = X_1 + X_4 + X_5 + X_7$
- $n_2 = X_2 + X_4 + X_6 + X_7$
- $n_3 = X_3 + X_5 + X_6 + X_7$

resulting in

$$\ell(N, p_j | X_\omega) = \frac{N!}{X_1!X_2!X_3!X_4!X_5!X_6!X_7!X_8!} \times p_1^{n_1}(1 - p_1)^{(N - n_1)} p_2^{n_2}(1 - p_2)^{(N - n_2)} p_3^{n_3}(1 - p_3)^{(N - n_3)}$$

With additional simplification and the substitutions

- $X_8 = N - M_{t+1}$

the likelihood expressed in terms of the minimal sufficient statistics is achieved:

$$\ell(N, p_j | X_\omega) = \frac{N!}{X_1!X_2!X_3!X_4!X_5!X_6!X_7!(N - M_{t+1})!} \times p_1^{n_1}(1 - p_1)^{(N - n_1)} p_2^{n_2}(1 - p_2)^{(N - n_2)} p_3^{n_3}(1 - p_3)^{(N - n_3)}$$
Model M_b

Assume that $t=3$ capture occasions. Then, $2^3 = 8$ possible capture histories are defined as the following matrix. The number of animals with each of these capture histories is $X_1, X_2, ..., X_8$. To the right of each row is the portion of the complete likelihood that pertains to this capture history for Model M_b.

i	j = 1 2 3	
1	1 0 0	$p^{X_1} (1 - c)^{X_1} (1 - c)^{X_1}$
2	0 1 0	$(1 - p)^{X_2} p^{X_2} (1 - c)^{X_2}$
3	0 0 1	$(1 - p)^{X_3} (1 - p)^{X_3} p^{X_3}$
4	1 1 0	$p^{X_4} c^{X_4} (1 - c)^{X_4}$
5	1 0 1	$p^{X_5} (1 - c)^{X_5} c^{X_5}$
6	0 1 1	$(1 - p)^{X_6} p^{X_6} c^{X_6}$
7	1 1 1	$p^{X_7} c^{X_7} c^{X_7}$
8	0 0 0	$(1 - p)^{X_8} (1 - p)^{X_8} (1 - p)^{X_8}$

The X matrix forms a multinomial with 8 cells, of which 7 are observed. Cell 8, with frequency X_8 is not observed. The complete likelihood is then

$$\mathcal{L}(N, p, c | X_ω) = \frac{N!}{X_1! X_2! X_3! X_4! X_5! X_6! X_7! X_8!} p^{(X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7)} \times (1 - p)^{(2X_2 + 2X_3 + X_7 + 2X_8)} c^{(X_4 + X_5 + X_6 + 2X_7)} (1 - c)^{(2X_1 + X_2 + X_4 + X_7)}$$

Now, make the following substitutions into the complete likelihood:

$u_1 = X_1 + X_4 + X_5 + X_7$
$u_2 = X_2 + X_6$
$u_3 = X_3$

$m_1 = 0$
$m_2 = X_4 + X_7$
$m_3 = X_5 + X_6 + X_7$
Likelihoods for Mark-Recapture Models

\[m. = X_4 + X_5 + X_6 + 2X_7 \]

\[M_1 = 0 \]
\[M_2 = u_1 = X_1 + X_4 + X_5 + X_7 \]
\[M_3 = u_1 + u_2 = X_1 + X_4 + X_5 + X_7 + X_2 + X_6 \]
\[M_4 = u_1 + u_2 + u_3 = M_{t+1} \]
\[M. = 2u_1 + u_2 = 2X_1 + 2X_4 + 2X_5 + 2X_7 + X_2 + X_6 \]
\[M. - m. = 2X_1 + X_4 + X_5 + X_2 \]

resulting in

\[
\mathcal{L}(N, p, c | X_\omega) = \frac{N!}{X_1!X_2!X_3!X_4!X_5!X_6!X_7!X_8!} \left(1 - p \right)^{(\ell N - M. - M_{t+1})} \left(1 - c \right)^{(M. - m.)} \]

With the additional substitution

\[X_8 = N - M_{t+1} \]

the likelihood expressed in terms of the minimal sufficient statistics is achieved:

\[
\mathcal{L}(N, p, c | X_\omega) = \frac{N!}{X_1!X_2!X_3!X_4!X_5!X_6!X_7!(N - M_{t+1})!} \left(1 - p \right)^{(\ell N - M. - M_{t+1})} \left(1 - c \right)^{(M. - m.)} \]