Expected Value of an Estimator

The datidtical expectation of an esdimator is useful in many indances.  Expectations are an
“average’ taken over dl possble samples of 9ze n. The processis fairly smple when working
with discrete random varigbles. As an example, we examine apopulation of 4 rats (rat A, B, C,
and D) each with a number of ticks (exact counts of the number of ticks on each of therats are;
A=2 ticks, B=4 ticks, C=2 ticks and D=8 ticks). We are interested in the mean number of
ticks per rat, say ;1 (aparameter). It seems reasonable to use the sample mean /1 = #ticks/n as
an esimator of 1. We decide to take a sample of sze 2 for the example. Using the binomia
coefficient we find that there are 6 ways to choose a sample of 2 rats from a population of 4
ras (“4 choose 2" = 6). The sample data are summarized below:

Sanpl e No. ticks Sanpl e nean
AB 6 3
AC 4 2
AD 10 5
BC 6 3
BD 12 6
CD 10 5.

This covers al possible samples of size 2 (n=2) and the corresponding estimates, /.. The meen
of these values is the expected value of the estimator /1:

(3+2+5+3+6+5)/6 = 24/6 = 4.

Thus, the expected value of the estimator /i is4; thisis denoted as E(1i). The population total =
16 ticks (i.e,, 2+4+2+8= 16) for the 4 individud rats, then the population mean i = 16/4 = 4.
In this case, the expected value of the estimator /i (denoted E(1)) is unbiased. In generd, bias
iswritten

bias = E(9) — 6,

where 6 is some parameter and Dis ts esimator. Recall, 6 is often used as a generic symbol
for a parameter; # could be a surviva probability, a mean, population Sze, resighting
probability, etc.

It isimportant to separate two kinds of bias:

“small sample bias". Given amodd, thisbias goesto 0 as sample Size goesto co.
Thisis often atrivia concern and assumes, with real data, that one knows the

exact modd to use. The magnitude of the biasis often gpproximately 1/n. Thus,

if sample sze is 90, the biasis about 0.011; atrivid consideration when dl the

other issues are considered. If one assumes the modd and has but asmal sample



size, then often bias-adjusted estimators can be found. Brownie et d. (1985) has
many examples of this, denoted with atilde, eg., S. Such adjustments are
easy only if the estimator isin closed form.

Far more important is the idea of “mode bias." Here the modd for the data
ispoor and substantid bias can often be expected. Thisis one reason why the
issue of modd sdlection is so important.

A note: the whole notion of small sample bias has been perhaps overblown in the gatistica and
goplied literature. One reads that an estimator is “unbiased” and implies that everything is fine
with al aspects of the sudy. This statement only revealsthat if the modd isthe true modd, then
on average, in repeated sampling, the estimator equas the parameter. Thisis pretty shalow. It
is aworthwhile concept, but one must understand its (minor) relevance.

Note aso that the bias-adjusted estimator 6 isnot the MLE anymore and puts one in apogtion
of usng a dightly less likely vaue as a esimate of the parameter. This is done to achieve a
property that has relevance to many other samples that were never taken! A trade-off.

It would be instructive to compute the expectation of the estimator /i for samplesize of 3. This
is computationally easy, but think hard to fully understand the concept here.  Perhaps you
should add arat to the population (then N = 5) and let it have 16 ticks. Then, compute ; and /i
and assess the bias in the estimator. Thiswould be agood exercise.

There are many practicd cases where it is essentidly impossble to compute the exact
expectation of an estimator (we will see many such cases in FW663). Often we can estimate

the expected value by Monte Carlo smulation; denote this as /I%(/H\). Here, “computer intensive'
methods draw a very large number of samples (say, 1000 or 10,000), compute the value of the
edimate, based on a particular estimator, and then average these. If done carefully, this
procedure provides a good estimate of the expected value of an estimator. Improved estimates
of such expected vaues can be had by further increasing the number of smulation repetitions.
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