
                             Expected Value of an Estimator

The statistical expectation of an estimator is useful in many instances. Expectations are an
“average" taken over all possible samples of size .n  The process is fairly simple when working
with discrete random variables.  As an example, we examine a population of 4 rats (rat A, B, C,
and D) each with a number of ticks (exact counts of the number of ticks on each of the rats are:
A=2 ticks, B=4 ticks, C=2 ticks and D=8 ticks).  We are interested in the mean number of
ticks per rat, say  (a parameter).  It seems reasonable to use the sample mean  = # ticks/ as^. . n 
an estimator of .  We decide to take a sample of size 2 for the example.  Using the binomial.
coefficient we find that there are 6 ways to choose a sample of 2 rats from a population of 4
rats (“4 choose 2" = 6).  The sample data are summarized below:

            Sample No. ticks Sample mean
                   AB            6               3
                   AC            4               2
                   AD           10               5
                   BC            6               3
                   BD           12               6
                   CD           10               5 .

This covers all possible samples of size 2 ( =2) and the corresponding estimates, .  The mean^n .

of these values is the expected value of the estimator :.̂

                              (3+2+5+3+6+5)/6 = 24/6 = 4.

Thus, the expected value of the estimator  is 4; this is denoted as E( ).  The population total =^ ^. .
16 ticks (i.e., 2+4+2+8= 16) for the 4 individual rats, then the population mean  = 16/4 = 4..

In this case, the expected value of the estimator  (denoted E( )) is .  In general, bias^ ^. . unbiased
is written

                                  bias = E( ) – ,)̂ )

where  is some parameter and  is its estimator.  Recall,  is often used as a generic symbol^) ) )
for a parameter;  could be a survival probability, a mean, population size, resighting)
probability, etc.

It is important to separate two kinds of bias:

 “ ".  Given a model, this bias goes to 0 as sample size goes to .small sample bias _
 This is often a trivial concern and assumes, with real data, that one knows the
 exact model to use.  The magnitude of the bias is often approximately 1/ .  Thus,n
 if sample size is 90, the bias is about 0.011; a trivial consideration when all the
 other issues are considered.  If one assumes  model and has but a small samplethe



 size, then often bias-adjusted estimators can be found.  Brownie et al. (1985) has
  many examples of this, denoted with a tilde, e.g.,  Such adjustments areS. 

~

 easy only if the estimator is in closed form.

 Far more important is the idea of “ ."  Here the model for the datamodel bias
 is poor and substantial bias can often be expected.  This is one reason why the
 issue of model selection is so important.

A note:  the whole notion of small sample bias has been perhaps overblown in the statistical and
applied literature.  One reads that an estimator is “unbiased" and implies that everything is fine
with all aspects of the study.  This statement only reveals that  the model is the true model, thenif
on average, in repeated sampling, the estimator equals the parameter.  This is pretty shallow.  It
is a worthwhile concept, but one must understand its (minor) relevance.

Note also that the bias-adjusted estimator  is not the MLE anymore and puts one in a position
~
)

of using a slightly less likely value as a estimate of the parameter.  This is done to achieve a
property that has relevance to many other samples that were never taken!  A trade-off.

It would be instructive to compute the expectation of the estimator  for sample size of 3.  This.̂
is computationally easy, but think hard to fully understand the concept here.  Perhaps you
should add a rat to the population (then  = 5) and let it have 16 ticks.  Then, compute  and ^N . .
and assess the bias in the estimator.  This would be a good exercise.

There are many practical cases where it is essentially impossible to compute the exact
expectation of an estimator (we will see many such cases in FW663).  Often we can estimate

the expected value by Monte Carlo simulation; denote this as E( ).  Here, “computer intensive"^ )̂
methods draw a very large number of samples (say, 1000 or 10,000), compute the value of the
estimate, based on a particular estimator, and then average these.  If done carefully, this
procedure provides a good estimate of the expected value of an estimator.  Improved estimates
of such expected values can be had by further increasing the number of simulation repetitions.
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