
KULLBACK-LEIBLER INFORMATION THEORY
A BASIS FOR MODEL SELECTION AND INFERENCE

Kullback-Leibler Information or Distance

 ( , ) = ( ) log ,I f  g f x dx'  f x
g x

( )
( )±)

        I f, g g f( ) is the "information" lost when  is used to approximate .
        I f, g( ) is the "distance" between a model and truth (i.e., full reality).

I f g( , ) can be written equivalently as 

                     ( , ) ( ) log ( ( )) ( ) log ( ( )) .I f  g f x f x dx f x g x dxœ ±'  ' )

Note, each of the two terms on the right of the above expression is a statistical expectation
with respect to  (truth).  Thus,f

 I f  g f x g x( , ) E [log( ( ))] E [log( ( ))].œ f f ± )

The first expectation E [log( ( ))] is a constant across models, thus,f f x

                                      ( , ) Constant E [log( ( ))],I f  g g xœ  f ± )
or
                  ( , ) – Constant  – E [log( ( ))].I f  g g xœ f ± )

The term ( ) – Constant  is a , directed distance between  and ; now if oneŠ ‹I f g relative f g, 

could compute or estimate  Thus, becomes the quantity ofE [log( ( ))]. E [log( ( ))] f fg x g x± ±) )

interest, but cannot be estimated.  Akaike found that its expectation

                                        E  E [log( ( ))]0 f g x ± )

can be estimated!  An asymptotically unbiased estimator of the relative, expected K-L
information is

 log( ( data)) ,^_ ) ±  K

where  is the number of estimable parameters in the model, .  Akaike's finding of a relationK g
between the relative K-L distance and the maximized log-likelihood has allowed major



practical and theoretical advances in model selection and the analysis of complex data sets
(see Stone 1982, Bozdogan 1987, and deLeeuw 1992).

Akaike (1973) then defined " " (AIC) by multiplying by 2,an information criterion 

   AIC 2 log( ( data)) 2^œ  ± _ ) K . 

Thus, one should select the model that yields the smallest value of AIC because this model is
estimated to be “closest" to the unknown reality that generated the data, from among the
candidate models considered.  The model set is defined as   Thus, there are g g g R"ß # Vß ÞÞÞß Þ
models in the candidate set.

This seems a very natural, simple concept; select the fitted approximating model that is
estimated, on average, to be closest to the unknown truth, .  If all the models in the set aref
poor, AIC attempts to select the best approximating model of those in the candidate set and
ranks the rest. Statistics such as  are useful here to help quantify that some models are, atR#

least, of some use.  Thus, every effort must be made to assure that the set of models is well
founded.
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K = Number of Parameters

                                               AIC Differences
Because AIC contains various constants and is a function of sample size, we routinely

recommend computing (and presenting in publications) the  (in addition toAIC differences
the actual AIC values),
 ?3 3œ AIC minAIC,

where minAIC is the smallest AIC value in the set.  Thus, that best model has   = 0.  The?min

larger  is, the less plausible is the fitted model ( ) as being the K-L best model for?i ig x ^± )



samples such as the data one has.  The simple differencing leading to can be used with?i 
AICc and QAICc, as explained below.

Important Refinements to AIC
A Second Order AIC

Akaike derived an asymptotically unbiased estimator of K-L information, however,
AIC may perform poorly if there are too many parameters in relation to the size of the sample.
A small-sample (second order) bias adjustment which led to a criterion that is called AICc
(Sugiura (1978) and Hurvich and Tsai (1989)),

                                 AIC  = –2 log( ( )) + 2  ,^
- _ ) K n

n  K –  1
where the penalty term is multiplied by the correction factor ( 1).  This can be rewrittenn/ n–K–
equivalently as

AIC 2 log( ( )) + 2   ,^
- œ  _ ) K 2 ( 1)

1
K K  

n  K  


 
or, equivalently,

AIC AIC  ,c œ 
2 ( 1)

1
K K  

n  K  


 

where  is sample size.  Because AIC and AIC  converge when sample size is large, one cann -

always use AICc.

Modification to AIC for Overdispersed Count Data
Count data have been known not to conform to simple variance assumptions based on

binomial or multinomial distributions.  If the sampling variance exceeds the theoretical (model
based) variance, the situation is called "overdispersion" or "extra-binomial variation."
Cox and Snell (1989) discuss modeling of count data and note that the first useful
approximation is based on a single variance inflation factor ( ) which can be estimated fromc
the goodness-of-fit chi-square statistic ( of the global model and its degrees of freedom,;#) 

c df .^ œ ;#/

The variance inflation factor should be estimated from the global model.  There are most
effective, computer intensive approaches to the estimation of the variance inflation factor (not
ocvered in this introduction).

Given overdispersed data and an estimated variance inflation factor, , three things must beĉ
done/considered:

1.  mpirical estimates of sampling variances (var ( )) and covariances (cov ( , ))^ ^ ^e / /) ) )3 3 4

     should be inflacted by multiplying by the estimate of Note, the standard error c.  

     must be inflated by the square root of  .ĉ



            2.  modified model selection criteria must be used,

 QAIC 2 log( ( ))  + 2  ,^ ^œ  Î’ “_ ) c K
and

 QAIC 2 log( ( ))  + 2   ,^ ^
- œ  Î ’ “_ ) c K 2 ( 1)

1
K K  

n  K  


 

              = QAIC  .
2 ( 1)

1
K K  

n  K  


 

            3.  the parameter count,  must be increased by 1 (for the estimation of ).K c

Some History
Akaike (1973) considered AIC and its information theoretic foundations “  a naturalá

extension of the classical maximum likelihood principle.   Interestingly, Fisher (1936)
anticipated such an advance over 60 years ago when he wrote,

“  an even wider type of inductive argument may some day beá
developed, which shall discuss methods of assigning from the
data the functional form of the population."

Science Hypotheses and Modeling

A well thought out global model (where applicable) is important and substantial prior
knowledge is required during the entire survey or experiment, including the clear statement
of the question to be addressed and the collection of the data.  This prior knowledge is then
carefully input into the development of the set of candidate models.  Without this
background science, the entire investigation should probably be considered only very
preliminary.

Making Inferences From More Than a Single Model
We can extend the concept of the likelihood of the parameters given a model and
data,
                                          ( , ),_ ) ± x g i

to a concept of the likelihood of the model given the data ( ),x

      _ ?( )  exp( ) .g xi i± º  1
2

[Note the –  here just erases the fact that Akaike multiplied through by –2 to1
2

define his AIC]



To better interpret these relative likelihoods of models given the data and the set
of  models, we normalize them to be a set of positive "Akaike weights" addingR
to 1:

 wi œ
exp( )

exp( )


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1
2

=1

1
2

?

?

i

r

R
r! .

A given is considered as the weight of evidence in favor of model  as beingw ii 
the actual K-L best model in the set.

These are termed In fact, they are also formally Bayesianmodel probabilities.
posterior model probabilities (Burnham and Anderson 2004).  So, is thew  3
probability i that model  is the actual K-L best model in the set.

The bigger the  value, the smaller the weight. The bigger a  is, the less? ?3 3

plausible is model  as being the actual K-L best model of full reality, based oni
the design and sample size used.  Again, most applications of the above will be
using AICc or QAICc.

Evidence Ratios
Evidence for pairs of hypotheses or models can be judged via an evidence ratio. 
Such ratios are invariant to other models in or out of the model set.  Evidence
ratios between model  and model  are trivial to compute, and can be gotten as,i  j

                                 ( ) / ( )_ _g x g x- -i j± ±
or
                                             .w /wi j
Most often, one wants the evidence ratio between the best model ( ) and the b jth

model,   . There is a striking nonlinearity between the evidence ratio andw /w, j
the  values,?3

                       ?3              Evidence ratio

                         2                          2.7
                         4                          7.4
                         8                        54.6
                       10                      148.4
                       15                   1,808.0
                       20                 22,026.5
                       50                72 billion.



Model Averaging
Sometimes there are several models that seem plausible, based on the AIC  or-

QAIC  values.  In this case, there is a formal way to base inference on more than-

a single model.  A model averaged estimator is

 )
_̂

 œ !
i

R
i i

=1
w ,^ )̂

where  indexes the models. Note, model averaging is needed to compute the i
unconditional variance (below).

                        "Unconditional" Estimates of Precision

The precision of an estimator should ideally have 2 variance components:
(1) the conditional sampling variance, given a model var( ) , and^ ^Š ‹)i i± g
(2) variation associated with model selection uncertainty.  Thus,

 var( )  var( ) ( ) ,^ ^
_ _^ ^
  

^ ^) ) ) )œ ! ›
i

R
i i i i

=1

2w g^ š ± 

where,

       )
_̂
œ  ŵ ^!

i

R
i i

=1
)

Obviously, the estimated conditional standard error is,

                         
_

     se(  )  var(  ) .^ ^ ^) œ É )
_̂

Unconditional Confidence Intervals
A simple approximation to a (1 )100% unconditional confidence interval is !
just,

                                         se( ),
_ _^ ^^) )i i„ z1- /2!

where  is over the  models.i R
Of course,



                                        se( ) var( ) .^
_ _^ ^^) )i iœ É

Such unconditional confidence intervals can be set around a single  or a model)̂

averaged estimate . When there is no model selection then an interval,
_̂
)

conditional on model  is the usual,i

                                   se( ),^ ^^) )i df i i„ ±t g,1- /2!

where it is clear what the degrees of freedom ( ) are for the -distribution.df t

The word "unconditional" is perhaps unfortunate as the estimates of precision
are still conditioned on the set of models.  They are "unconditional" in the sense
that they are not conditioned on a single (usually best) model.

Summary
The Principle of Parsimony provides a  to model selection.conceptual guide

Expected K-L information provides an , based on a deepobjective criterion
theoretical justification.

AIC  and QAIC  provide a for model selection and associated- - practical method 
data analysis and are estimates of expected, relative K-L information.

AIC, AIC  and QAICc represent an extensions of classical likelihood theory, are-

applicable across a very wide range of scientific questions, and are quite simple
to compute and interpret in practice.
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