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Abstract: Program MARK is the most comprehensive
software application available for analyzing data from
marked individuals, making full use of the linear mod-
els paradigm to provide a robust analytical and statis-
tical framework.  I briefly describe how to use MARK
to implement some general linear models, focusing on
the structure and modification of the design matrix.
My intent is to provide a general understanding of the
main concepts, as applied generally to analysis of vari-
ance and specifically to analysis of data from marked
individuals. With any software application as complex
and comprehensive as MARK, a great many details
exist that are potentially important for a given analysis.
Some details are theoretical (determined by the type of
data being analyzed and the models being fit), and
some mechanical (involving various means to use
MARK to accomplish the desired task).  A basic
understanding of these concepts is essential for using
MARK, for either simple or complex analyses.
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Increasingly, the management and conservation of nat-
ural systems requires the statistical analysis of data to
draw inferences concerning the populations inhabiting
those systems.  This increasing use of statistical meth-
ods has in part been advanced by the growing avail-
ability of computer software, which has made applica-
tion of various statistical models (including many
theoretical ones) both tractable and efficient for wild-
life and conservation scientists.

This relationship between software and application
has been fundamental to recent increases in data analy-
sis from marked individuals.  Whereas the general con-
cepts behind some typical data analyses (e.g., mark–
recapture analysis of data from live encounters, recov-

ery analysis of data from dead recoveries, analysis of
known-fate telemetry data) are familiar, applying these
approaches to data analysis has often lagged because
of the difficulty in finding and using appropriate com-
puter software.  Further, the available software was often
written by specialists, for specialists, and was often
difficult to use without significant technical support.

Over the past 15 years, there has been a significant
increase in the number of software applications available
for analysis of data from marked individuals.  However,
many of the early efforts (e.g., JOLLY, JOLLYAGE;
Pollock et al. 1990)—although significantly easier to
use than previously available software (e.g., SURVIV;
White 1983)—were extremely limited in their utility.
Much software consisted of a set of predefined
(“canned”) models that the user then selected among;
little if any flexibility existed in the software to modi-
fy the analysis to suit individual needs and purposes.
While program SURVIV arguably provides infinite
flexibility (such that SURVIV continues to be a major
research tool), the program is not easy to use.

This situation changed significantly with the
advent of program SURGE (SURvival Generalized
Estimation; Pradel and Lebreton 1991, Cooch et al.
1997).  SURGE represented a fundamental paradigm
shift in both the principle and application of analyzing
data from marked individuals (although SURGE is pri-
marily intended for analysis of mark–recapture data,
the underlying principles apply in general).  SURGE
provided the ability to model mark–recapture data
within a generalized linear models framework.  SURGE
uses the concept of linear models (discussed in greater
detail below) to allow the user to fit any model of arbi-
trary design to their data, significantly extending the
capabilities of earlier, more restricted applications
such as JOLLY and JOLLYAGE. For example, SURGE,
and the linear models approach, made it easy to test
models where various parameters were constrained to
be linear functions of other variables, using 1 of several
possible link functions (see Appendix), strictly analo-
gous to familiar analysis of variance (ANOVA) and
analysis of covariance (ANCOVA) approaches. The
linear models approach, combined with the philosophy
of sequential step-wise model fitting (sensu Lebreton
et al. 1992), was an important event that precipitated a
notable increase in the diversity and sophistication of
analyses of mark–recapture datasets.  Whereas the
basic concepts of linear models and model selection
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were not new, SURGE was the first software applica-
tion to codify these approaches.

The release of SURGE was followed soon by the
increasing incorporation of a general linear models
approach in other software applications.  However, 2
more recent advances have shifted the paradigm still
further. 

First, the concept of a graphical user interface
(GUI) has radically changed the way that most users
interact with the computer.  SURGE represents a clas-
sic command-line application, echoing the days of
DOS and UNIX.  Although this is not a limitation for
many individuals, the procedure creates some signifi-
cant impediments to learning the software for users
accustomed to GUI-based software.  The first applica-
tion of a GUI for data analysis from marked individu-
als was program SURPH (Smith et al. 1994).  In many
respects, SURPH represented an extension of SURGE,
in terms of the user interface and some of the technical
capabilities.  Whereas SURGE retained greater flexi-
bility in model fitting (owing to a stricter adherence to
a general linear models approach), SURPH added sev-
eral important diagnostic capabilities, including good-
ness of fit testing, the ability to model individual co-
variates, and a variety of options for model selection. 

Second, the release of program MARK (White and
Burnham 1999) represented a logical extension of the
trends initiated by SURGE and SURPH, and MARK
significantly surpassed the capabilities of both.  These
extended capabilities are important in 4 respects.  First,
while clearly owing a legacy to SURPH in terms of the
GUI-based approach, MARK significantly extends the
ease-of-use and flexibility of the graphical interface.
Second, whereas both SURGE and SURPH were
focused on analysis of mark–recapture data, MARK
can handle numerous data types, including (but not
limited to) mark–recapture, dead recovery, and teleme-
try data.  Third, MARK implements many recent
advances in the theory of model selection.  Finally, for
all data and analysis types, MARK implements a con-
sistent linear models approach to model fitting.

Here, I introduce the linear models approach imple-
mented in MARK. I review the concepts underlying
general linear models, then provide a more detailed
examination of the concept of a design matrix—which
lies at the heart of how linear models are applied using
MARK.  I do not discuss the actual mechanics of using
MARK or the broader considerations of model selec-
tion (in either an a priori or a posteriori context); these
are explained in considerable detail elsewhere (see
http://www.cnr.colostate.edu/~gwhite/mark/mark.htm
and associated links).  I focus on providing a general
understanding of the linear models paradigm and how
it is implemented in MARK.

LINEAR MODELS: A BASIC REVIEW
For users with a background in linear models, much of
this presentation may be oversimplified.  Texts by

Neter et al. (1996) and Kleinbaum et al. (1988) are
good technical references.

The basic idea underlying linear models can be
stated quite simply: the response variable in any statis-
tical analysis can be expressed as a linear regression
function of 1 or more other factors.  In fact, any
ANOVA-type design can be analyzed using linear
regression models (although interpretation of interac-
tions is sometimes complex).  In general, for data col-
lected from marked individuals, the response variable
is often a rate or proportion (e.g., survival or recapture
rate) that must be transformed prior to analysis using a
linear models approach (see Appendix).  For the rest of
this article, I assume the response variable has been
suitably transformed.

In general, a linear model can be expressed in
matrix form as

y = Xβ + ε

where y is a vector of responses (i.e., a vector of the
response variables), β is a vector of parameters (e.g.,
the intercept and 1 or more slopes), X is a matrix with
either “0” or “1” elements, or values of independent
variables, and ε is a vector of random error terms.

In cases of analysis of variation of the response
variable among different levels of 1 or more classifica-
tion (i.e., treatment or factor) levels, parameter β in
vector β represents each level of a factor.  The ele-
ments of X (generally referred to as the design matrix;
discussed below) are chosen to exclude or include the
appropriate parameters for each observation.  These
elements are often referred to as either dummy or indi-
cator variables (indicator is generally used only when
“1” or “0” are used as the coding variables).

The following simple example illustrates the
underlying connection between a linear regression
model and ANOVA.  Suppose you have collected data
on the scutum width of male and female individuals of
some insect species.  You are interested in whether the
difference in mean scutum width between the sexes
differs more than would be expected by random
chance.  Normally, you might consider using a single-
classification (Model I) ANOVA for this type of analy-
sis. Recall that for this sort of analysis, any single vari-
ate Y (in this case, Y = scutum width), can be
decomposed as:

Yij = µ + αi + εij

Each variate Yij is the sum of the global mean (µ), the
deviation due to the classification factor (sex; αi), and
the random error term (εij).  In this example, with 2
levels of the classification factor (i.e., males and
females), we test for differences of the type (α1 – α2).
If α1 – α2 = 0 (the null hypothesis), then we would
conclude no significant group effect (i.e., no signifi-
cant difference in group means between the sexes).
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How could we use linear regression to approach the
same analysis? In a regression analysis, each variate Y
would be decomposed as:

Yi = β0 + β1xi + εi

In this case, each variate Yi is the sum of the prod-
uct of the slope (β1) and the variable x, the intercept
(β0), and a random error term (ε).  In this case, the
hypothesis tested is whether the estimate of the slope is
significantly different from 0 (H0: β1 = 0).  However,
what is the variable “x”?  This is the key to under-
standing the connection between the regression model
and the ANOVA analysis.  In the regression formulation,
x represents a coding variable specifying male or female
(i.e., sex, the classification variable in the ANOVA
analysis).  The coding variable takes on the value of 0 or
1 (0 for females, 1 for males).  We regress the response
variable Y (scutum width) on the coding variable for
sex.  If the slope (β1) is not different from 0, then we
interpret this as evidence that the numerical value of
the coding variable does not significantly influence vari-
ation in our data.  Put another way, if the slope does not
differ from 0, then this indicates no significant differ-
ence between the sexes.  This is entirely analogous to
test of the (α1 – α2) hypothesis in the ANOVA analysis. 

In matrix notation (above), the regression model
for this analysis becomes:

where there are K individuals in each sex (although a
balanced design is not required), and the design matrix
X consists of 2 columns of 0 and 1 dummy variables
(the first corresponding to the intercept β0, and the sec-
ond corresponding to the dummy variable coding for a
given sex, β1).  In fact, in this example, if we use “1”
to code for males, and “0” to code for females, then the
intercept (β0) would represent the estimate for female
survival, while the β1 term would reflect (male survival
– female survival) such that β0 + β1 = (female) + (male-
female) = male survival. The structure of the design
matrix is discussed in more detail in the next section.

Models of the form y = Xβ + ε are called linear
models because the nonerror part of the expression Xβ
is a linear combination of the parameters (and not
specifically because of the relationship of ANOVA to

linear regression).  Program MARK uses this general
linear models approach as the basis for all analysis
(data) types available.

DESIGN MATRIX: THE BASICS
In program MARK, the default design matrix for a
given analysis is determined by the parameter structure
of the model you are trying to fit (number of groups,
number and structure of the parameters).  This design
matrix is then modified in various ways to examine the
relative fit of different models.  To understand this
process, it is essential to understand how the design
matrix is constructed. 

I introduce the concept of a design matrix by the
following example.  Suppose you are doing a typical
ANOVA on data with a single classification factor
(e.g., treatment).  Suppose that 4 levels exist for this
factor (e.g., a control and 3 levels of the treatment).
You want to test the hypothesis that there is no hetero-
geneity among treatment levels (H0: µ1 = µ2 = µ3 = µ4).
Recall from the preceding discussion that this problem
can be formulated as an applied linear regression prob-
lem; in fact, this is precisely how MARK treats the
problem—using a linear regression of the appropriate-
ly transformed response variable (see Appendix).
Also, recall that the regression approach to ANOVA
involves using coding for the different levels of the
treatment.  One coding scheme uses 0/1 dummy vari-
able coding.

Recall the previous example (above), which had 1
treatment or classification factor (sex), with 2 levels (male
and female). The corresponding regression model was 

Y1 = β0 + β1xi + ε1

where x represented a coding variable specifying male
or female (i.e., sex, the classification variable in the
ANOVA analysis).  The coding variable took on the
value of 0 or 1 (0 for females, 1 for males). 

How would the regression model look for our pre-
sent example, with 4 levels of the treatment factor
instead of 2?  How can we use a simple 0 or 1 dummy
variable coding scheme (which clearly has only 2 lev-
els) to accommodate a treatment factor with 4 levels?
The key is to consider the answer to the following
question: if xi can take on 1 of 2 values (0 or 1), then
how many values of xi do we need to specify k levels
of the classification variable (i.e., the treatment vari-
able)? The answer is k − 1 (which corresponds to the
degrees of freedom for a single-classification ANOVA).
Thus, for the present example, x1, x2, and x3 would be:

x1 = {1 if treatment 1 x2 = {1 if treatment 2 x3 = {1 if treatment 3
0 if other               0 if other            0 if other

Clearly, when the coefficients for x1, x2, and x3 are all
0, then the treatment level must be 4 (other). Thus, our
regression equation for this example would be:

Y11 1 0 ε11
Y12 1 0 ε12
. . . .
. . . .
. . . .

y = Y1k = 1 0 β0 + ε1k = Xβ + ε
Y21 1 1 β1 + ε21
Y22 1 1 ε22
. . . .
. . . .
. . . .
Y2k 1 1 ε2k
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Y1 = β0 + β1xi + β2x2 + β3 x3 + ε1

In this case, β0 is the intercept, while β1, β2, and β3
correspond to the slopes for each of the levels of the
treatment factor.  Since there are 4 levels of the treat-
ment, 3 slopes are needed to code 4 levels of the treat-
ment because 1 treatment level corresponds to the case
where all 3 slopes are 0.  Parameters β1, β2, and β3
refer to treatment levels 1, 2, and 3, respectively.  If x1 =
x2 = x3, then β0 refers to treatment level 4. In other
words, the intercept corresponds to treatment level 4. 

From this step, it is straightforward to derive the
design matrix (so-called because it fully represents the
design of the analysis).  The design matrix is a matrix
showing the structure of the dummy coding variables in
the analysis.  Because there are 4 parameters being
estimated in the equation (β0, β1, β2, and β3)—each
corresponding to the 4 levels of the main effect—then
the design matrix will be a (4 × 4) square matrix.

To help construct the design matrix, we can decom-
pose the general regression equation for this analysis
(above) into n regression equations, where n is the
number of parameters in the regression equation (i.e.,
the number of levels of the main effect; n = 4).

Treatment Equation 
1 Yi = β0(1) + β1(1) + β2(0) + β3(0)  
2 Yi = β0(1) + β1(0) + β2(1) + β3(0)  
3 Yi = β0(1) + β1(0) + β2(0) + β3(1)  
4 Yi = β0(1) + β1(0) + β2(0) + β3(0)  

The design matrix X simply corresponds to the matrix of
the coefficient multipliers (in bold) in these equations. 

1  1  0  0

X = 1  0  1  0
1  0  0  1
1  0  0  0

However, although this seems logical enough, there
are a number of alternative parameterizations of the
design matrix—each of which yields the same para-
meter estimates and model fit—but have different
interpretations.  For example, all 3 of the following
design matrices (X1, X2, and X3) give equivalent
results for our example problem:

1  1  0  0 1  0  0  0 1  1  0  0

X1= 1  0  1  0   X2 = 0  1  0  0  X3 = 1  0  1  0
1  0  0  1 0  0  1  0 1 0  0  0
1  0  0  0 0  0  0  1 1 -1 -1 -1

X1 is the design matrix we derived previously; we esti-
mate an intercept term for the last treatment level, and
then an additional treatment effect for treatment levels
2, 3, and 4 (with the intercept corresponding to treat-
ment 4).  In X2, each row corresponds to a parameter
and each column corresponds to a parameter. Thus,

each parameter represents a treatment estimate. In X3,
we estimate a mean parameter among treatment levels,
and then an offset for each of the 4 levels; the first col-
umn corresponds to the mean treatment value, and the
remaining columns provide the treatment effects.  If
you are familiar with linear and matrix algebra, then
you might recognize matrix X2 as an identity matrix
(1’s along the diagonal, 0’s along the off-diagonal).
Program MARK allows you to specify the type of
default design matrix used in a given analysis.

An important fact in design matrices is that the
number of rows corresponds to the number of levels of
the main effect, whereas the number of columns corre-
sponds to the number of these parameters you are try-
ing to individually estimate.  As you will see in the
next section, this distinction becomes important when
fitting models where parameters are constrained to be
functions of 1 or more effects.

Finally, a more complex example uses 2 groups (e.g.,
males and females) with multiple levels of treatment
within group (i.e., within sex).  This example is analo-
gous to a 2-way ANOVA, with 2 main effects (treatment
and sex).  Again, assume there are 4 possible treatment
levels.  The response variable Y can be decomposed as:

Yijk = µ + αi + βj + (αβ)ij + εijk

where αi is the sex (group) effect, βj is the treatment
effect, and (αβ)ij is the interaction of the 2.  The corre-
sponding regression equation would be:

Yi = β0 + β1(sex) + β2(T2) + β3(T3) + β4(T4) +
β5(sex.T2) + β6(sex.T3) + β1(sex) + β7(sex.T4) + ε

If we derive the design matrix directly from this expres-
sion, then we see that we have 8 rows: 2 levels for sex
(male or female) multiplied by 4 treatment levels with-
in sex. The design matrix X also would have 8 columns,
corresponding to the intercept, the sex (group effect),
and the treatment and interaction terms, respectively:

X =

The first column represents the intercept, the second
column the group (sex) effect (1 = male, 0 = female),
columns 3−5 represent the treatment effect, and
columns 6−8 represent the interactions of sex and
treatment.

Suppose, for example, rather than the full model
(with interactions), you wanted to fit the additive model
consisting of the 2 main effects (no interaction term):

1  1  1  0  0  1  0  0
1  1  0  1  0  0  1  0
1  1  0  0  1  0  0  1
1  1  0  0  0  0  0  0
1  0  1  0  0  0  0  0
1  0  0  1  0  0  0  0
1  0  0  0  1  0  0  0
1  0  0  0  0  0  0  0



3477.1 Linear models in program MARK • Cooch

Yijk = µ + αi + βj + εijk

Using the design matrix X (above), this is easily
accomplished by simply deleting the columns corre-
sponding to the interaction terms:

X =

FITTING CONSTRAINED MODELS:
MODIFYING THE DESIGN MATRIX
As implied in the preceding section, the design matrix
can be modified by simply modifying 1 or more
columns.  However, this is appropriate only in cases
where you are eliminating 1 or more main effects, or
interactions of main effects.  In this section, we discuss
the more general issue of modifying the design matrix,
as a necessary step in fitting constrained models to
allow testing various hypotheses.

Suppose you have conducted the following experi-
ment. Each year, for 5 years, you capture, mark, and
release a sample of both male and female individuals
from some population of interest.  You wish to estimate
survival rate of these individuals over the 5 years of the
experiment for both sexes.  First, given that there are 5
years of the study, only 4 intervals (time between capture
occasions) exist for which survival can (in theory) be
estimated (year 1 to year 2, year 2 to year 3, year 3 to year
4, and year 4 to year 5); in essence, 4 levels of time.  You
want to know if survival varies among these time levels,
which is analogous to asking if survival varies as a func-
tion of some treatment.  Thus, time can (in effect) be con-
sidered a treatment effect.  When considering data analy-
sis from marked individuals, time (days, months, years)
can be thought of variously as both a treatment (i.e.,
classification variable), or as a linear covariate.  In this
first example, we discuss the former, since it is crucial
for understanding how to use linear models with MARK.

Consider first either sex alone.  The design matrix X
for an analysis where time is considered a fixed effect
(or treatment) for this example of a 5-year study would
look identical to the 1 for our previous example (note
we use the default intercept-based design matrix):

X =

Suppose you believe that survival is significantly
lower over the second and third intervals (i.e., from year

2 to year 3 and from year 3 to year 4) because of some cli-
matic event in those years.  Specifically, you believe that

survivalyear 2 → year 3 = survivalyear 3 → year 4

and

survivalyear 1 → year 2 = survivalyear 4 → year 5

This is strictly analogous to an analysis where only 2
levels of the treatment (A and B, respectively) exist:

A ΒΒ ΒΒ ΑΑ
Yr 1 → Yr 2 → Yr 3 → Yr 4 → Yr 5 

How would the design matrix corresponding to this
analysis look?  The answer depends on the starting
regression model for your analysis. For example, given
that there are only 2 possible survival rates to be esti-
mated (A or B), you might use the expression:

Yi = β0 + β1xi + εi

such that the corresponding design matrix X would be: 

X = 1  1
1  0

Alternatively, you might use the expression

Yi = β0 + β1xi + β2xi + β3xi εi

In other words, you have full time-dependent parame-
terization; 1 parameter for each interval.  Obviously,
ignoring the A or B condition for the moment, the
appropriate design matrix X would be:

1  1  0  0
1  0  1  0

X =  1  0  0  1
1  0  0  0

How can this design matrix be modified (constrained)
to reflect the A or B hypothesis?  The key is to remem-
ber that in a design matrix, the number of rows corre-
sponds to the number of parameters in the model, where-
as the number of columns corresponds to the number of
these parameters you are trying to estimate individually.
In this example, we have 4 total parameters.  Howev-
er, because of the A or B constraint, only 2 of them are
being estimated (i.e., we want a survival estimate for
A, and another for B).  Thus, the design matrix would
be reduced to a matrix with 4 rows, but only 2 columns:

1 0
1 1  

X = 1 1
1 0

1  1  1  0  0
1  1  0  1  0
1  1  0  0  1
1  1  0  0  0
1  0  1  0  0
1  0  0  1  0
1  0  0  0  1
1  0  0  0  0

1  1  0  0
1  0  1  0
1  0  0  1
1  0  0  0
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which is equivalent to:

1   0
0   1  

X =  0   1
1  0

Again, the distinction in this example depends on the
number of parameters included in the linear regression
model.  However, note that in both cases, only 2 para-
meters are being estimated, even though the design
matrices differ in the number of rows (4 vs. 2); the
number of columns is the same in both cases.

Now, consider the additional complication of con-
sidering both sexes simultaneously.  Clearly, this is
equivalent to the 2-way ANOVA noted above, with 2
main effects (in this case the time treatment, and sex).
There are 4 time levels, and 2 levels of sex.  The
response variable Y can be decomposed as:

Yijk = µ + αi + βj + (αβ)ij + εijk

where αi is the sex (group) effect, βj is the time effect,
and (αβ)ij is the interaction of the 2 effects.  The corre-
sponding regression equation would be:

Yi = β0 + β1(sex) + β2(T1) + β3(T2) + β4(T3) +
β5(sex.T1) + β6(sex.T2) + β7(sex.T3) + ε

where Tx refers to the different time intervals.  As above,
if we derive the design matrix directly from this expres-
sion, then we see that we have 8 rows: 2 levels for sex
(male or female) multiplied by 4 time levels (intervals
between occasions) within sex.  Because we are con-
straining survival to be a function of some climatic event
(the A or B effect noted above), the design matrix X
would have 4 columns, corresponding to the intercept,
the sex (group effect), the climatic event term, and the
interaction of the sex and climate terms, respectively:

X =

For the final example, instead of constraining the
parameter to be a function of some discrete climatic
variable, we constrain the parameter to be a linear
function of time.  To code for a linear trend, you need
to write a series of increasing (or decreasing) numbers,
1 through n (where n is the number of occasions to
which you want to fit the “trend”).  You don’t have to
start with the number 1, but you do need to use the
sequence {starting value} + 1, {starting value} + 2,

and so on.  If we consider the case of 2 sexes, and 5
occasions (for time intervals), then the appropriate
design matrix X would be: 

X =

Clearly, this design matrix corresponds to ANCOVA,
where variation in the response variable is modeled as
a linear function of sex (the discrete classification vari-
able) and a linear covariate (in this case, time).

SUMMARY
The design matrix lies at the heart of understanding
linear models and how they are applied using MARK.
I have attempted to provide a basic review of the con-
cepts underlying general linear models, focusing on
the derivation of the design matrix.  Using MARK to
analyze data from marked individuals involves several
steps: specifying the data type, the number of treat-
ment or classification groups, and the parameter struc-
ture of the model.  These in turn determine the struc-
ture of the design matrix.  Virtually all analyses made
using MARK involve application of the design matrix.
The GUI-based interface to MARK makes it easy to
modify the elements of the design matrix to build con-
strained or alternate models.  For example, MARK has
a number of ways to specify the starting structure of
the design matrix.  It also has a variety of matrix
manipulation functions that are available to the user
via a series of menu selections, essentially a spread-
sheet paradigm.  However, understanding the logic of
linear models and the construction of the design matrix
are essential to successfully using MARK as an analy-
sis tool.   
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APPENDIX

Link Functions
Under a general linear models approach, variation

in the response variable (which will reflect the data
type used in the analysis) is modeled as a linear func-
tion of 1 or more explanatory variables.  The only
major distinction between typical regression analyses
and analysis of data from marked individuals is that
rates (survival, movement, resight) are not normal
response variables, in the sense that they are con-
strained to be values from 0 → 1. If you simply
regressed “live = 1, dead = 0” or “seen = 1, not seen =
0” on some set of explanatory variables x, then it is
quite conceivable that for some values of x, the esti-
mates of the particular rate could be >1 or <0, which
are clearly impossible.

In general, the solution to this problem is to trans-
form the probability, such that the transformed proba-
bility is mapped from [0,1] to [−∞, +∞].  For example,
suppose you want to express a dichotomous (i.e., bina-
ry) response variable Y (e.g., survival or recapture) as
a function of 1 or more explanatory variables.  Let Y =
1 if alive or present; otherwise Y = 0. Let x be a vector
of explanatory variables, and p = Pr(Y = 1|x) is the
probability of the response variable you want to
model.  We can construct a linear function of this prob-
ability by using a certain type of transform of the prob-
ability, p. For example, the logit transformation (1 of a
several transformation or link functions you can use
with MARK; see below) is given as:

logit(p) = ln (1−p
p

) = α + βx

where α is the intercept, β is the vector of slope para-
meters, and

eα+βx

p =  1 + eα+βx

In other words, we can express the probability of the
event (survival or recapture) as a linear function of a
vector of explanatory variables.

The logit (or logistic) model is a special case of a
more general class of linear models where function f =
f(µ) of the mean of any arbitrary response variable is
assumed to be linearly related to the vector of explana-
tory variables.  The function f is the link between the
random component of the model (the response vari-
able) and the fixed component (the explanatory vari-
ables).  For this reason, the function f(µ) is often
referred to as a link function.  MARK allows you to
choose among a number of different link functions,
some of which are more appropriate for certain types
of analyses than others.  The default link is the sin link,
which has good properties for analyses that use what is
known as the identity matrix (see text).  For models
that do not use the identity matrix (such as constrained
models), the logit link is preferred.

Program MARK estimates the intercept and vector
of the slope parameters, using the specified link, and
then reconstitutes the values of the parameter from the
values of the explanatory variables, x. Program
MARK does this in 2 steps: (1) first, MARK reconsti-
tutes estimates of the parameter from α, β, and x, and
then (2) MARK computes values of the parameter
from f using the back transform f −1.


