
                          THE MULTINOMIAL DISTRIBUTION

Discrete distribution  -- The Outcomes Are Discrete.  A generalization of the binomial
distribution from only 2 outcomes to  outcomes.k

Typical Multinomial Outcomes:

red A area1 year1
white B area2 year2
blue C area3 year3 
 D area4 year4 
 F area5 never

Individual trials are independent.
Outcomes are mutually exclusive and all inclusive.

                Throwing Dice and the Multinomial Distribution

Assume that a die is thrown 60 times ( =60) and a record is kept of the number of times a 1, 2,n
3, 4, 5, or 6 is observed.  The outcomes of these 60 trials are shown below:independent 

 “Face" Number Notation

 1 13 y"
 2 10 y#
 3  8 y$
 4 10 y%
 5 12 y&
 6  7 y'
  
                                  60             n

Each trial (e.g., throw of a die) has a  (1 or 2 or 3 or . . . or 6).Mutually Exclusive Outcome
Note that there is a type of  in the cell counts in that oncedependency

                                 and andn y , y , y , y ,  y" # $ % &

are known, then  can be gotten by subtraction, because the total ( ) is known.  Of course,y n'

the dependency applied to any count, not just .y'



This dependency is seen in the binomial as it is not necessary to know the number of tails, if the
number of heads and the total ( ) are known.  The “last" cell is redundant.n

The multinomial distribution is useful in a large number of applications in ecology.  Its
probability function for  = 6 isk

                     (y ) = f n, p y  p  p  p  p  p  pn
3 ± 3 3 " # $ % & '

C C C C C CŠ ‹ " # $ % & ' 

This allows one to compute the probability of various combinations of outcomes, given the
number of trials and the parameters.  That is, the parameters must be known.

The   s shorthand formultinomial coefficient Šy   in
3‹

                                ( )! ( )! ( )! ,n!/ y y yŠ ‹" # 5† † †

where ! is the factorial operator  (5! = 5 4 3 2 1 = 120).   This term does not involve any† † † †
of the unknown parameters and is ignored for many estimation issues.

In the die tossing data,  = 6 and the multinomial coefficient isk

                                60! 13! 10! 8! 10! 12! 7! ,‚ Š ‹
which is a very large number.

Some examples:  Suppose you roll a fair die 6 times (6 trials),  First, assume (y , y , y , y ," # $ %  y ,&
y') is a multinomial random variable with parameters

                              =  =  =  = 1/6 and  =6.p  p p n" # † † † '

What is the probability of that each face is seen exactly once?  This is simply

          (1, 1, 1, 1, 1, 1 6, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6) =      =  .f ± 6! 1 5
(1!) 6 4' Š ‹' $#

What is the probability that exactly four 1's and two 2's occur?  Then,



      (4, 2, 0, 0, 0, 0 6, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6) =        =   ,f ± 6! 1 1 5
4! 2! (0!) 6 6 52

4 2
4 Š Š‹ ‹ "&&

hardly a high probability.

What is the probability of getting exactly two 3's two 4's and two 5's?  Try this and get familiar
with the notation and use of the probability function.  You can see why such a tool might be
useful if you were a gambler and wanted to know something quantitative about “the odds" of
various outcomes.  Hopefully, your answer will be about 5/2592.

Biologists have the reverse problem in their research.  They do not know the parameters – they
want to estimate parameters from data, using a model.  These issues are the domain of the
likelihood and log-likelihood functions.

If the die is “fair" we know that the probability of any of the 6 outcomes is 1/6.  But, if the die is
known to be unfair, how might we estimate the probabilities ( ),  = 1, 2, ..., 6, that underlie thep i3

data observed?

The key to this estimation issue is the and, particularly themultinomial distribution likelihood 
and log-likelihood functions.

                                 ( data)      or     ( )_ ) _± p n, y3 3±

“the likelihood of the parameters,  the data."given

At first, the likelihood function looks messy but it is only a different view of the probability
function.  Both functions assume  is given; the probability function assumes the parameters aren
given, while the likelihood function assumes the data are given.  The likelihood function for the
multinomial distribution is

                     ( ) = _ p n, y y  p  p  p  p  p  pn
3 3 3 " # $ % & '

C C C C C C
± Š ‹ " # $ % & ' 

The first term (multinomial coefficient--more on this below) is a constant and does not involve
any of the unknown parameters, thus we often ignore it.



Note,  = 1, does this make sense to you?  Why?!p3

Because of the dependency, there are only 5 “free" parameters, the 6  one is defined by the>2

other 5 and the total, .  We will use the symbol  to denote the total number of estimablen K
parameters in a model; here  = 5.  Then, the likelihood function could be written asK

                 ( ) = 1–_ p n, y y  p  p  p  p  p  pn
3 3 3 3" # $ % &

C C C C C C
± Š !‹ Š ‹" # $ % &

i=1

5 n–  !
i=1

5

i

This gets a bit awkward, but necessary to keep the concept clearly in mind.

If the die had 10-20 faces, the likelihood would be messy to write out.  Thus, a shorthand
notation is merely,

                                     ( ) = C _ p n, y p3 3 3
C

± #
i = 1

k
3

where C is the multinomial coefficient and the symbol  is the product operator.  Here, one#
must remember that the final term (k ) is actually>2

                                                 1–  .Š !
i=1

k-1

p3
C‹n–  !

i=1

k-1

i

Products are often difficult to work with, thus the  is of primary interest,log-likelihood function

                                         log ( )/Š ‹_ p n, y3 3±

or, often

                                                log ( )/ _

for short, or more generally



                                            log ( data),/_ ) ±

where  = parameters (e.g., the ) and the data are given.  Not only is this convenient, but it is) p3
the basis for many procedures in statistics.  For multinomial random variables, the log-likelihood
is

     log ( )  = log (C) + log ( ) + log ( ) +     + log ( )./ / / / /# #Š ‹_ p n, y y p y p y p3 3 " "± † † † k k

Taking natural logarithms makes products into sums.  A shorthand notation is

                     log ( )   = log (C) + log ( )./ / / 3Š ‹ !_ p n, y y p3 3 3±
k

i=1

The log-likelihood function links the ) with the unknown DATA (n, y PARAMETERS3

(p MODEL ASSUMPTIONS3) through a  and makes implicit the .  This is the basis for
rigorous inference.

The log-likelihood function is the (optimal) basis for estimation of parameters and their precision
(variance, standard errors, coefficients of variation and confidence intervals), in addition to other
important quantities.

Note, each term that includes the parameters in the log-likelihood function is of the form

                            DATA * LOG(PROBABILITY).

In the example, just above, the DATA are  and PROBABILITY is , thusy p3 3

                                          y log ( ) .3 3/† p

The typical log-likelihood function is the sum of such terms (plus, sometimes, the binomial or
multinomial coefficient, which does not involve the parameters).  Get used to seeing log-
likelihood functions in this form,



                                          y log ( ) .!
i=1

k
3 3/† p

The Fisher Information Matrix and the Variance-Covariance Matrix

Measures of precision of the parameter estimator or notion of repeatability.

Reference:  Section 1.2.1.2 (pages 12-14) in Burnham et al. (1987).


