THE MULTINOMIAL DISTRIBUTION

Discrete digribution  -- The Outcomes Are Discrete. A generdization of the binomid
digribution from only 2 outcomes to k outcomes.

Typicd Multinomid Outcomes:

red A areal yearl
white B area? year2
blue C area3 year3
D aread yeard
F areab never

Individud trids are independent.
Outcomes are mutually exclusive and all inclusive.
Throwing Dice and the Multinomial Distribution

Assume that adieis thrown 60 times (n=60) and arecord is kept of the number of timesal, 2,
3,4,5, or 6isobserved. The outcomes of these 60 independent trids are shown below:

“Face" Number Notation
1 13 Vi
2 10 Yo
3 8 Y3
4 10 W
5 12 Y5
6 7 Y6
60 n

Each trid (e.g., throw of a die) has a Mutudly Exdusve Outcome (1 or 2 or 3or . .. or 6).
Note that thereis atype of dependency in the cdll countsin that once

nandyi, y2, Y3, Y4, and ys

are known, then yg can be gotten by subtraction, because the total (n) is known. Of course,
the dependency applied to any count, not just yg.



This dependency is seen in the binomid asit is not necessary to know the number of talls, if the
number of heads and the total (n) are known. The “last” cdll is redundant.

The multinomid digribution is useful in a large number of applicaions in ecology. Its
probability function fork =61is

n
fly; | n, p;) = (yz) p¥ ps2 py’ Py Py Py

This dlows one to compute the probability of various combinations of outcomes, given the
number of trids and the parameters. That is, the parameters must be known.

The multinomial coefficient ()r/l) is shorthand for

/(6! @) ).

where! is the factorid operator (5! =5-4-3-2-1=120). Thisterm does not involve any
of the unknown parameters and is ignored for many estimation issues.

In the die tossing data, k = 6 and the multinomia coefficient is
60! / (13! 10! 81 10! 12! 7!) ,

which isavery large number.
Some examples. Supposeyou roll afar die6 times (6 trids), Firs, assume(yi, Yo, Y3, Y4, Y5,
V) isamultinomia random variable with parameters

pi=p2=- - - :p6:]j63ndn:6_

What isthe probability of that each face is seen exactly once? Thisissmply

- e (1\° -
f(L1,1,1,1,1]6, 6, 16, U6, 16, U6, 16) = & (1) =335

What is the probability that exactly four 1's and two 2's occur? Then,



4 2
f(4,2,0,0,0,0]6,1/6, U6, U6, U6, 16, 116) = ;Lo (3) (3)" = 1582

hardly a high probability.

What is the probability of getting exactly two 3'stwo 4's and two 5s? Try this and get familiar
with the notation and use of the probability function. You can see why such a tool might be
useful if you were a gambler and wanted to know something quantitative about “the odds' of
various outcomes. Hopefully, your answer will be about 5/2592.

Biologists have the reverse problem in their research. They do not know the parameters — they
want to estimate parameters from data, usng a moddl. These issues are the domain of the
likelihood and log-likelihood functions.

If the dieis“fair" we know that the probability of any of the 6 outcomesis 1/6. B, if thedieis
known to be unfair, how might we estimate the probabilities (p;), i= 1, 2, ..., 6, that underlie the
data observed?
The key to this estimation issue is the multinomial distribution and, particularly the likelihood
and log-likelihood functions.

L@ |data) or L(p; [N,y

“thelikelihood of the parameters, given the data.”

At firg, the likelihood function looks messy but it is only a different view of the probability
function. Both functions assume n is given; the probability function assumes the parameters are
given, while the likeihood function assumes the data are given. The likeihood function for the
multinomia disribution is

n
L(p; |n,yg)= (yz) p¥ ps? py’ Py’ Py Py

The firgt term (multinomia coefficient--more on this below) is a congtant and does not involve
any of the unknown parameters, thus we often ignoreit.



Note, > p; = 1, does this make sense to you? Why?

Because of the dependency, there are only 5 “free" parameters, the 6! one is defined by the
other 5 and the total, n. We will use the symbol K to denote the tota number of estimable
parametersin amodd; here K = 5. Then, the likelihood function could be written as

n 5. \n-Dy
£ ny) = (5) o2 ol o o4 2 (1-0)
i=1

This gets a bit awkward, but necessary to keep the concept clearly in mind.

If the die had 10-20 faces, the likdihood would be messy to write out. Thus, a shorthand
notation is merely,

k.
L(pi|ny;)=CIIp
i=1

where C is the multinomid coefficient and the symbol ] is the product operator. Here, one
must remember that the find term (k") is actually

i=1

Products are often difficult to work with, thus the log-likelihood function is of primary interest,
l0g. (£(i | n, yi))
or, often

loge (£)

for short, or more generaly



log. L0 | data),
where 6 = parameters (e.g., the p;) and the data are given. Not only is this convenient, but it is

the basis for many procedures in gatistics. For multinomia random variables, the log-likelihood
IS

l0g. (£(p; | n,¥;)) =10g(C) +y110g.(p1) + yaloge(P2) + - - - +Yidoge(pi)-

Taking natura logarithms makes products into sums. A shorthand notation is

k
l0g. (£(pi [ 1,¥)) = 10ge(C) + Y-v;100: ().

i=1

The log-likelihood function links the DATA (n, y;) with the unknown PARAMETERS
(p;) through a MODEL and makes implicit the ASSUMPTIONS. Thisisthe basisfor
rigorousinference.

The log-likelihood function is the (optima) basis for estimation of parameters and their precison
(variance, stlandard errors, coefficients of variation and confidence intervals), in addition to other
important quantities.

Note, each term that includes the parametersin the log-likelihood function is of the form
DATA * LOG(PROBABILITY).

In the example, just above, the DATA arey; and PROBABILITY isp;, thus

Yi - 100e(p;) -

The typicd log-likelihood function is the sum of such terms (plus, sometimes, the binomid or
multinomia coefficient, which does not involve the parameters). Get used to seeing log-
likdihood functionsin thisform,



k

%yz- - loge (p;) -

TheFisher Information Matrix and the Variance-Covariance Matrix
Measures of precison of the parameter estimator or notion of repeatability.

Referencer Section 1.2.1.2 (pages 12-14) in Burnham et . (1987).



