
                                          Random Effects Models

This is a very interesting class of models but even a partial understanding is fairly
difficult to achieve.  These notes will try to convey the general notion of random effects
models and the idea of “variance components."  We begin by considering a population where
the conditional survival parameters are  over a 25 year period (i.e., assume a species,known
where the annual survival probabilities of, say, adult males, are known exactly).  These
population parameters are denoted as These parameters have someS , S , S , ..., S .  " # $ #&

distribution (log-normal?, perhaps reasonably normal?).  Clearly the variation in the survival
parameters across years is measured by the usual population variance,
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where  is the mean of the 25 survival parameters.  Surprisingly, we can estimate  from the. 5=
#

MLEs and the sampling variance-covariance matrix from an appropriate model!  This seems
counter-intuitive as one might first think that the parameters  would beS , S , S , ..., S" # $ #&

needed to estimate .5#

The name “random effects" comes from the notion that the model is based on

                                           = ,S   3 =. + %3

where the  is an independent random variable with mean 0 and variance .  The population% 53
#

parameters fluctuate “randomly" around their mean .  Deviations from this mean are.=

“random."  Other names found in the general literature include variance components, errors-
in-variables regression, empirical Bayes, and “shrinkage" methods.  The notes provided here
are taken from an original ms. by Kenneth Burnham who has developed the theory for the
methods implemented in program .MARK

To understand the concept here, we consider a set of band recovery data, or open
population capture-recapture data, or known fate data, or other similar data set.  We assume
the data set represents a long time frame (e.g., 25 occasions) and the data are reasonably
“good."  We also assume (for the tutorial here, only) that a suitable structure of the sampling
probabilities (the ) is known or given and, therefore, not address this issue directly.r , p  or f4 4 4

Consider model ( ) with the 25 year-survival parameters We canS t S , S , S , ..., S .  " # $ #&

get MLEs for each of these 25 parameters and their estimated conditional sampling variance-
covariance matrix.  From these estimated values, we can estimate both  and  under the so-. 5=

#

called .random effects model

There are several reasons for wanting valid estimates of , including the need for this5#

quantity in population viability models.  In the past, people have often mistakenly used the
estimated sampling variance in these models.  This is in error.  Note, the sampling variance
can be driven toward 0 as sample size increases, while the variation in the parameter values of



a population is hardly a function of sample size.   is a characteristic of the population.  We5#

will consider three primary issues in these notes.

1.  Estimation of the Population Variance
We now consider the MLEs  (  = 1, 2, ..., 25) from model ( ) and their conditionalS j S t^

4

sampling variances, var( ).  It turns out that if one takes the MLEs and computes^ S Model t^
4 ±

the quantity,
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(where  is the mean of the 25 estimates), one has an estimate of the  variance [  +-S total 5#

!var( )/25].  By total variance we mean the variance among the 25 parameters^ S Model t^
4 ±

(i.e., ) plus the sampling variances, given the model (i.e., var( )/25).^5# ! S Model t^
4 ±

The notion behind getting an estimate of  is to realize that estimates of the5#

conditional sampling variances have been obtained through the usual likelihood methods.
Thus, we proceed in the obvious way to estimate ,5#
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Then,
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Thus, if one has estimates of the total variance and the sampling variance, they can estimate
5# by subtraction.  The subject is given in its simplest forms in Burnham et al. (1987:260-
278).  Of course, the method rests on the notion that one has “good" estimates of the sampling
variances of the estimates of survival probability for a good model.  Thus, variance inflation
and other issues must be carefully considered for fear of bias in estimating .5#

A profile likelihood interval can be set on  as a way to assess precision.  Under this5#

approach, the interval endpoints will always lie  0. 

2.  Estimation of Functions of Survival



In ANOVA, CANOVA and regression one can “partition" variation and sums of
squares into “components" (e.g., partitions by treatments, blocks, residual error, etc.).  In the
same way, the ( – ) can be partitioned for group effects, time trends, group covariates, etc.-! S S^

3

Thus, one might consider a logit( ) model as a linear function of these effects or factors.  SuchS
relationships will often decrease the “error" by  some of the ( – ).-explaining S S^! 3

This analysis feature will be demonstrated using program .  Here, the idea is theMARK
consider the population parameters fluctuating around means, conditional on the value of one
or more covariates; i.e.,  (where  is a covariate, or matrix of covariates).  Thus, just as.= 5± X X
in regression, the mean response is a function of another variable.

3.  Shrinkage Estimation
This is a difficult subject and we will try only to give some insights.  If one believes

the random effects model is a valid approximation, based on

                                           = ,S   3 =. + %3

then alternative estimates can be computed (denoted as ).  Such estimators are termed~S3

“shrinkage" estimators.  These estimates are not MLE but have some excellent theoretical
properties of their own (e.g., smaller expected mean squared error).  The shrinkage estimators
have the property

                                         |     <  , where | | is absolute value.~ ^ ^^S S3  l l  l B. .= =3

The estimator  is “shrunk" toward the estimated mean ( ).  The degree of this shrinkage~ ^S .=

(shriveling) depends on the variance components proportion,
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An individual estimate  may not happen to improve upon the corresponding MLE  in the^S S~
3 3

sense of being nearer to the parameter  in a given case, but overall the shrinkage estimatorsS3

are a set to be preferred as being closer to the true  if the random effects model apples withS3

5# > 0.

If  is a large proportion of the total variance, then the shrunk estimate will be much5#

like the MLE.  However, if  is a small proportion of the total variance, then  will shrink~
5# S

much more toward .  Biologists have had almost no experience with the concept of random.=

effects models, but the potential is quite exciting (see recent PhD dissertation by Alan
Franklin).

Summary



Often, with such a long (25 occasions) data set model (.) will be selected.  Clearly,S
this is a  as we know that conditional survival probability cannot remain exactly themodel
same over a quarter century.  While model (.) might be “best" in the sense of a bias–varianceS
trade-off, it might leave the investigator wondering about the variation in the parameters.
Thus, the estimation of  has relevance.  At the other extreme, assume that model ( ) is5# S t
selected; here the investigator has 25 estimates of the survival parameters, each perhaps with
substantial sampling variation.  This makes it difficult to see patterns (e.g., time trends or
associations) or understand the variation in the parameters.  Burnham's “random effects"
models are interesting in such cases.


