
Including Model Selection Uncertainty in Estimates of
Precision

or

Making Inferences From More Than a Single Model

Unconditional Estimates of Variances and Standard Errors

The precision of an estimator should ideally have 2 variance components: (1) the conditional
sampling variance, given a model  var( )  and (2) variation associated with model^ ^Š ‹)i i± M
selection uncertainty.  Buckland et al. (1997) provide an effective method to estimate an
estimate of precision that is not conditional upon a particular model.  Assume that the scalar
parameter  is in common to all models considered (e.g., , or , or ).  This will often be) 9% #N S
the case for our full set of  models, and is always the case if the objective is prediction. a priori
[If our focus is on a model structural parameter that appears only in a subset of our full set of
models, then we must restrict ourselves to that subset in order to make the sort of inferences
considered here about the parameter of interest.]

From Buckland et al. (1997) we will take the estimated unconditional var( ) as)̂
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and the  are the Akaike weights ( ) scaled to sum to 1.  The subscript  refers to the w i i3 3
>2?

model.   is a weighted average of the estimated parameter over  models (  = 1, 2, ..., ).)+ R i R
This estimator of the  variance is clearly the sum of 2 components:  theunconditional
conditional sampling variance var( ) and a term for the variation in the estimates across)̂i i± M
the  models ( ) The square root of these terms is then merely weighted by the .^R w)i a )̂ 2 .  3

This approach is very useful.  Obviously, the estimated conditional
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We expect even better approaches to be discovered over the next few years.

The approach of Buckland et al. (1997) entails an assumption of perfect pairwise correlation,
3 ) )ih i ha a, of and for all  (both and index models).  Such pairwise correlation^ ^

 ) )  i h i h Á
of 1 is unlikely, however, it will be high.  The choice of a value of 1 is3 3ih ihœ œ

conservative in that var( ) will tend to be too large if this assumption is in error.)̂a

Model Averaging

Sometimes there are several models that seem plausible, based on the QAIC  values.  In this-

case, there is a formal way to base inference on more than a single model.  This entails a
weighted average of the estimates of a parameter for  models.  Akaike weights are a naturalR
to use (alternative weights can come from estimates of model selection frequencies, based on
the bootstrap).  Again, we assume that the parameter  is the same across the models (or that)
only a subset of models containing the parameter of interest is considered).  Again, define the
estimator
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and in this case,  is the parameter of interest.  The estimator of the unconditional variance is)̂+
the same as that given above.

Unconditional Confidence Intervals

The matter of a (1 )100% unconditional confidence interval is now considered.  The !
simplest such interval is given by the end points
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where se( ) var( ) .^ ^ ^^) )i iœ É
Here, the confidence interval is set around a single  or a model averaged estimate When^ ^) )a. 
there is no model selection then an interval, conditional on Model  isi
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where it is clear what the degrees of freedom ( ) are for the -distribution.df t

When model selection is done, one needs an unconditional confidence interval.  If the degrees
of freedom for the estimator var( ), then for generally small degrees of freedom use^ ^df Mi i i ) ±

the interval
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where the adjusted standard error estimator is
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In cases where se( ) is not justified by a normal sampling distribution (as judged by^ ^^) )i i„ z1- /2!

the conditional distribution of ), intervals with improved coverage can be based on a)̂i

transformation of if a suitable transformation is known (e.g., the log and logit transforms).)̂i  

Profile Likelihood Intervals

A general alternative when there is no model selection is the profile likelihood interval
approach. We suggest here an adaptation of that approach that widens the likelihood interval
to account for model selection uncertainty.  Let the vector parameter  be partitioned into the)
component of interest, , and the rest of the parameters, denoted here as . Then the profile) #


likelihood, as a function of  (the subscript denotes the model used) for model  is given by)i iM
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almost always ( , ) has to be computed numerically. We define a profile deviancec_ )i i± x M
as
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The large sample profile likelihood interval ignoring model selection uncertainty is the set of
) cW ) ; ; !i i that satisfy the condition ( ) . Here,  is the upper 1  percentile of theŸ 2 2
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central chi-squared distribution on 1 . This interval is approximately a (1 )100% df  !
confidence interval.

The interval can be adjusted (widened) for model selection uncertainty: the set of all that)i 
satisfies
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