
                       A Resampling Method Called the Bootstrap

Monte Carlo and bootstrap methods are both computer intensive methods used frequently is
applied statistics.  The bootstrap is a type of Monte Carlo method applied based on observed data
(Efron and Tibshirani 1993, Mooney and Duval 1993).  The bootstrap was described by Bradley
Efron (1979) and he has written much about the method and its generalizations since then.
Thousands of papers have been written on the bootstrap in the past 2 decades and it has found very
wide use in applied problems.  The bootstrap can be used for several purposes, here we we focus on
robust estimation of sampling variances or standard errors and (asymmetrical) confidence intervals.  It
has found use in estimation of model selection frequencies and a variety of other applications.

The bootstrap has enormous potential for the biologist with programming skills; however, its
computer intensive nature will continue to hinder its use.  We believe that at least 1,000 bootstrap
reps are needed in many applications.  Often 10,000 reps are needed for some aspects of model
selection.  In extreme cases, reliable results could take days of computer time to apply the bootstrap
to complex data analysis cases.

The fundamental idea of the model-based sampling theory approach to statistical inference is
that the data arise as a sample from some conceptual probability distribution, .  Uncertainties of ourf
inferences can be measured if we can estimate  There are ways to construct a nonparametricf.
estimator of (in essence) from the sample data.  The most fundamental idea of the bootstrap methodf 
is that we compute measures of our inference uncertainty from that estimated sampling distribution of
f with. However, in practical application, the bootstrap means using some form of resampling 
replacement x B xfrom the actual data, , to generate  bootstrap samples, Often, the data� �

* .  

(sample) consist of independent units and it then suffices to take a simple random sample of size ,n n
with replacement  n , from the units of data, to get one bootstrap sample (i.e. “rep").  However, the
nature of the correct bootstrap data re-sampling can be more complex for more complex data
structures.

The set of  bootstrap samples is a proxy for a set of  independent real samples from (inB B f 
reality we have only one actual sample of data).  Properties expected from replicate real samples are
inferred from the bootstrap samples by analyzing each bootstrap sample exactly as we first analyzed
the real data sample.  From the set of results of sample size we measure our inference uncertaintiesB 
from sample to (conceptual) population (see figure).  The bootstrap can work well for large sample
sizes ( ), but may not be reliable for small (say 5, 10 or even 20), regardless of how manyn n 
bootstrap samples, , are used.B

Estimation of the Sampling Variance
In many cases one can derive an estimator of the sampling variance of an estimator from

general likelihood theory.  In other cases, an estimator may be difficult to derive or many not exist in
closed form.  For example, the finite rate of population change ( ) can be derived from a Leslie-
population projection matrix (a function of age-specific fecundity and age-specific, conditional
survival probabilities).  The bootstrap is handy for variance estimation in such cases.



Consider a sample of weights of 27 rats (  = 27); the data aren

    57 60 52 49 56 46 51 63 49 57 59 54 56 59 57 52 52 61 59 53 59 51 51 56 58 46 53.

The sample mean of these data = 54.6667, standard deviation = 4.5064 with cv = 0.0824.  For
illustration, what if we wanted an estimate of the standard error of cv.  Clearly, this would be
nonstandard; however is represents a way to illustrate the bootstrap.  We owe this example to Ken
Burnham.

First, we draw a random subsample of size 27 .  Thus, while a weight ofwith replacement
63 appears in the actual sample, perhaps it would not appear in the subsample; or is could appear
more than once.  Similarly, there are 3 occurrences of the weight 57 in the actual sample, perhaps the
resample would have, by chance, no values of 57.  The point here is that a random sample of size 27
is taken  from the original 27 data values.  This is the first bootstrap resamplewith replacement
(b=1).  From this resample, one computes , the se( ) and the cv and stores this in memory.^ ^ ^. .

Second, the whole process is repeated B times (where we will let B = 1,000 reps for this
example).  Thus, we generate 1000 resample data sets (b = 1, 2, 3, ..., 1000) and from  ofeach
these we compute ,  se( ) and the cv and store these values.^ ^ ^. .

Third, we obtain the standard error of the cv by taking the standard deviation of the 1000 cv
values (corresponding to the 1000 bootstrap samples).  The process is simple.  In this case, the
standard error is 0.00917.

Just as the analysis of a single data set can have many objectives, the bootstrap can be used
to provide insight into a host of questions.  For example, for each bootstrap rep one could compute
and store the conditional variance-covariance matrix, goodness-of-fit values, the estimated variance
inflation factor, model selected, confidence interval width or other quantities.

The illustration of the bootstrap on the rat data is called a nonparametric bootstrap as nothing
is assumed (like a parametric distribution) about the underlying process that generated the data.  We
only assume that the data in the original sample were “representative" and that sample size was
moderately large.  The parametric bootstrap is frequently used and allows assessment of bias.  The
use of the parametric bootstrap will be illustrated by the estimation of the variance inflation factor, .ĉ

Consider an open population capture-recapture study in a setting where the investigators
suspect a lack of independence because of the way that family groups were captured in the field.
Data analysis reveals /df = 3.2.  The investigators suspected some extra-binomial variation, but;#
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are surprised by the large estimate of .  They suspect the estimator is biased high and decide to useĉ
a parametric bootstrap to investigate their suspicion.  They realize that program  can beRELEASE
used to do Monte Carlo simulations and output a file with the goodness of fit statistics.

They input the MLEs from the real data into  as if they were parameters (  andRELEASE 94
p4) and use the numbers of new releases in the field data as input.  Then the amount of extra binomial
variation (called EBV in ) is specified.  In this illustration, let EBV  2.  They then runRELEASE ´
1000 Monte Carlo reps and obtain the information on the estimated variance inflation factor for each



reps.  The average of these 1000 values gives E( ); the question is “does E( ) = 2."  It is likely that^ ^ ^c c^

the estimator  is positively biased.  This result provides insight to the investigators on what do toĉ
about overdispersion in their data.

This bootstrap is parametric in that parameters were specified (in this case, from the MLEs
from real data that were available) and used in a (known) model to generate Monte Carlo data.  The
nonparametric bootstrap does not require parameters nor a model and can address some statistical
issues (e.g., precision).

Confidence Intervals
Confidence intervals can be computed in the usual way, using either a parametric or

nonparametric bootstrap,

                                         cv 2se(cv) .^„

This gives a 95% interval of (0.0641, 0.1007) for the rat data.  However, the sampling distribution
may be non-normal and a more robust interval might be required.  Again, the bootstrap is a simple
approach.  In this case one sorts the B=1000 estimates of the cv in ascending order and selects the
values that cut off the lower and upper 2.5 percentiles!  Thus, the resulting interval might be
asymmetric.

In the rat cv, the bootstrap 95% confidence interval is (0.0627, 0.0981).  This interval is
about the same width as the traditional approach, but shifted a bit toward 0.  Incidentally, the mean of
the 1000 bootstrap samples was 0.0802 (compared to the sample mean of 0.0824).

B = 1000 is usually adequate for the estimation of the sampling variance or standard
deviation; however, good estimates of confidence intervals often require B = 5000 or more.
Program DISTANCE has an option for nonparametric bootstrapping line and point transect data.

The bootstrap has been used to set confidence intervals on the median and mean life span.  It
is conceptually simple and finding very wide spread use in applied statistics.  Biologists planning a
career in research or teaching should be familiar with the bootstrap (and the delta method).  There is
a very large literature on the bootstrap; see Efron and Tibshirani (1993) for a so-called introduction
to the subject and a large list of references.  In fact, many valid applications of the bootstrap are
tricky (even multiple linear regression), so some care is required in more complex settings!

Efron, B, and Tibshirani, R. J.  (1993).   Monographs onAn introduction to the bootstrap.
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