The Delta Method

Often one has one or more MLEs $(\hat{\theta_i})$ and their estimated, conditional sampling variance-covariance matrix. However, there is interest in some function of these estimates. The question is, "what is the variance of this new quality?" Clearly, the θ_i are random variables, thus the new quantity is a random variable and has some sampling variance as a measure of its precision. Consider the mean life span for adult animals after they have been tagged. An estimator of mean life span, $\bar{\ell}$, is

$$\bar{\ell} = \frac{-1}{\log_e(\hat{S})} .$$

Assume that the MLE \hat{S} and its conditional sampling variance are available. So, what is $var(\bar{\ell})$? This question can be addressed by what is loosely called the delta method.

Transformations of One Variable

For the case where there is a simple, nonlinear transformation (as above), the procedure is simple (if one recalls the calculus or knows how to use programs such as *DERIVE* or *MAPLE*). That is,

$$\hat{\mathbf{v}}\operatorname{ar}(\bar{\ell}) = \left(\frac{\partial \bar{\ell}}{\partial \hat{S}}\right)^2 \cdot \hat{\mathbf{v}}\operatorname{ar}(\hat{S}).$$

The sampling variance of $\bar{\ell}$ is just the squared partial derivative of $\bar{\ell}$ with respect to \hat{S} times the sampling variance of \hat{S} .

Lets check this out in a case where we know the answer. Assume we have an estimate of density \hat{D} and its conditional sampling variance, $\hat{\text{Var}}(\hat{D})$. We want to multiply this by some constant c to make it comparable with other values from the literature. Thus, we want $\hat{D}_s = c\hat{D}$ and $\text{Var}(\hat{D}_s)$. From simple statistics, we know that

$$\operatorname{var}(\hat{D}_s) = c^2 \cdot \operatorname{var}(\hat{D}).$$

The delta method gives

$$\operatorname{var}(\hat{D}_s) = \left(\frac{\partial \hat{D}_s}{\partial \hat{D}}\right)^2 \cdot \operatorname{var}(\hat{D})$$
$$= c^2 \cdot \operatorname{var}(\hat{D}).$$

Another example is a known number of fish N and an average weight $(\hat{\mu}_w)$ and its variance. If you want biomass, then $\hat{B} = N \cdot \hat{\mu}_w$ and the variance of \hat{B} is $N^2 \cdot \hat{\nabla} \operatorname{ar}(\hat{\mu}_w)$.

Some other results:

$$\hat{\nabla} \operatorname{ar}(\hat{\theta}/c) = (1/c)^2 \cdot \hat{\nabla} \operatorname{ar}(\hat{\theta}),$$

where c is a constant.

The variance of a sum is the sum of the variances of the elements are independent. Thus,

$$\hat{\nabla} \operatorname{ar}(\sum \hat{\theta}_i) = \sum \hat{\nabla} \operatorname{ar}(\hat{\theta}_i).$$

From this, can you determine the variance of a mean?

If the terms are dependent, then

$$\hat{\mathbf{v}}\operatorname{ar}(\sum \hat{\boldsymbol{\theta}}_i) = \sum \hat{\mathbf{v}}\operatorname{ar}(\hat{\boldsymbol{\theta}}_i) + \sum_{i \neq j} \hat{\mathbf{c}}\operatorname{ov}(\hat{\boldsymbol{\theta}}_i \hat{\boldsymbol{\theta}}_j).$$

If this looks messy, it is merely the sum of all the elements in the sampling variance-covariance matrix.

Note, the variance of a difference is just,

$$\hat{\nabla} \operatorname{ar}(\hat{\theta}_i - \hat{\theta}_j) = \hat{\nabla} \operatorname{ar}(\hat{\theta}_i) + \hat{\nabla} \operatorname{ar}(\hat{\theta}_j) - 2\hat{\operatorname{cov}}(\hat{\theta}_i \hat{\theta}_j).$$

What if the estimates were independent?

The delta method works well, particularly if the coefficients of variation are "small." It is a very handy tool, but not computer intensive, like the bootstrap.

Another example, one has an MLE $\hat{\gamma}$ and $\hat{\nabla}$ ar($\hat{\gamma}$), but makes the transformation,

$$\hat{\psi} = e^{\hat{\gamma}^2} = \exp(\hat{\gamma}^2).$$

Then,

$$\hat{\mathbf{v}}\operatorname{ar}(\hat{\psi}) = \left(\frac{\partial \hat{\psi}}{\partial \hat{\gamma}}\right)^2 \cdot \hat{\mathbf{v}}\operatorname{ar}(\hat{\gamma}).$$

Or, one could write this as

$$\hat{\mathbf{v}}\operatorname{ar}(\hat{\psi}) = \left(\frac{\partial \hat{\psi}}{\partial \hat{\gamma}}\right) \cdot \hat{\mathbf{v}}\operatorname{ar}(\hat{\gamma}) \cdot \left(\frac{\partial \hat{\psi}}{\partial \hat{\gamma}}\right),$$

and this will be useful for extensions (below). It turns out that the partial of ψ wrt γ is $2\gamma \cdot \exp(\gamma^2)$, thus

$$\widehat{\mathrm{Var}}(\widehat{\psi}) = \left(2\gamma \cdot \exp(\gamma^2)\right) \cdot \widehat{\mathrm{Var}}(\widehat{\gamma}) \cdot \left(2\gamma \cdot \exp(\gamma^2)\right).$$

This appears slightly nasty, but is certainly computable by hand, if need be. Check these results with program *DERIVE*. Try some transformation between the instantaneous rate $\hat{r} = -\log_e(\hat{S})$, where the MLE \hat{S} is known, as is its variance. What is the variance of the estimated instantaneous rate?

Here is a more challenging example (still with only one parameter estimate $\hat{\theta}$). Based on a fairly large data set, you compute the MLE of the parameter θ and its conditional sampling variance: $\hat{\theta}$ and $\hat{\nabla}$ ar($\hat{\theta}$). In ecotoxicology one might want a new quantity λ defined as

$$\hat{\lambda} = \log_e \left(\frac{\hat{\theta}^4}{(3\hat{\theta} - 4)^2} \right).$$

This estimator of λ involves only one random variable $(\hat{\theta})$, thus the variance is approximately,

$$\hat{\mathbf{v}}\operatorname{ar}(\hat{\lambda}) = \left(\frac{\partial \hat{\lambda}}{\partial \hat{\theta}_i}\right) \cdot \hat{\mathbf{v}}\operatorname{ar}(\hat{\theta}) \cdot \left(\frac{\partial \hat{\lambda}}{\partial \hat{\theta}_i}\right) .$$

Proceed by writing $\hat{\lambda}$ as

$$\hat{\lambda} = \log_e(\hat{\theta}^4) - \log_e(3\hat{\theta} - 4)^2$$
$$= 4\log_e(\hat{\theta}) - 2\log_e(3\hat{\theta} - 4),$$

then the derivative wrt $\hat{\theta}$ is

$$\frac{4}{\hat{\theta}} - \frac{2\cdot 3}{3\hat{\theta}-4}$$
.

Finally,

$$\hat{\mathbf{v}}\operatorname{ar}(\hat{\lambda}) = \left(\frac{4}{\hat{\theta}} - \frac{2\cdot 3}{3\hat{\theta} - 4}\right) \hat{\mathbf{v}}\operatorname{ar}(\hat{\theta}) \left(\frac{4}{\hat{\theta}} - \frac{2\cdot 3}{3\hat{\theta} - 4}\right).$$

Transformations of Several Variables

This is the interesting case where the delta method is very useful in estimating approximate sampling variances of functions of random variables. Now, assume you compute $\mathcal Y$ as some linear or nonlinear function of $\hat\theta_1$, $\hat\theta_2$, $\hat\theta_3$, and $\hat\theta_4$. You have the 4 MLEs and their 4x4 estimated variance-covariance matrix $\hat \Sigma$. The general form for the variance of $\mathcal Y$ is

$$\hat{\mathbf{v}}\operatorname{ar}(\hat{\mathcal{Y}}) = \left(\frac{\partial \hat{\mathcal{Y}}}{\partial \hat{\theta}_i}\right) \cdot \hat{\mathbf{v}} \cdot \left(\frac{\partial \hat{\mathcal{Y}}}{\partial \hat{\theta}_i}\right)^T,$$

where the first term on the RHS is the row vector with the partials of \mathcal{Y} wrt $\hat{\theta}_1$, $\hat{\theta}_2$, $\hat{\theta}_3$, and $\hat{\theta}_4$, respectively and the final term on the RHS is a column vector of the partials of \mathcal{Y} wrt $\hat{\theta}_1$, $\hat{\theta}_2$, $\hat{\theta}_3$, and $\hat{\theta}_4$, respectively. The row vector contains

$$\left(\frac{\partial \hat{\mathcal{Y}}}{\partial \hat{\theta}_1}\right), \left(\frac{\partial \hat{\mathcal{Y}}}{\partial \hat{\theta}_2}\right), \left(\frac{\partial \hat{\mathcal{Y}}}{\partial \hat{\theta}_3}\right), \left(\frac{\partial \hat{\mathcal{Y}}}{\partial \hat{\theta}_4}\right),$$

while the column vector contains

$$\left(\frac{\partial \hat{\mathcal{Y}}}{\partial \hat{\theta_I}}\right)$$

$$\left(rac{\partial \hat{\mathcal{Y}}}{\partial \hat{ heta_2}}
ight)$$

$$\left(\frac{\partial \hat{\mathcal{Y}}}{\partial \hat{\theta_3}}\right)$$

$$\left(\frac{\partial \hat{\mathcal{Y}}}{\partial \hat{\theta_4}}\right) \ .$$

Of course, the variance-covariance matrix is 4x4 so the matrix equation can be computed. The general result to remember is

$$\widehat{\mathbf{v}}\mathrm{ar}(\widehat{\mathbf{y}}) = \left(\frac{\partial \widehat{\mathbf{y}}}{\partial \widehat{\theta}_i}\right) \cdot \sum \cdot \left(\frac{\partial \widehat{\mathbf{y}}}{\partial \widehat{\theta}_i}\right)^T.$$

Estimation of "Reporting Rate"

In some cases animals are tagged or banded to estimate a "reporting rate" – the proportion of banded animals reported, given that they were killed and retrieved by a hunter or angler. Thus, N_c animals are tagged with normal (Control) tags and, of these, R_c are recovered the first year following release. The recovery rate of control animals is merely R_c/N_c and we denote this as f_c .

Another group of animals, of size N_r , are tagged with REWARD tags; these tags indicate that \$50 will be given to people reporting these special tags. It is assumed that all such tags will be reported, thus these serve as a basis for comparison and the estimation of a reporting rate. The recovery rate for the reward tagged animals is merely R_r/N_r , where R_r is the number of recoveries of reward-tagged animals the first year following release. We denote this recovery rate as f_r .

The estimator of the reporting rate is a ratio of the recovery rates and we denote this a ψ . Thus, $\hat{\psi} = \hat{f}_c/\hat{f}_r$. Both recovery rates are binomials, thus

$$\operatorname{\hat{v}ar}(\hat{f}_c) = \hat{f}_c(1 - \hat{f}_c)/N_c$$
 and $\operatorname{\hat{v}ar}(\hat{f}_r) = \hat{f}_r(1 - \hat{f}_r)/N_r$.

The samples are independent, thus $cov(f_c, f_r) \equiv 0$ and the sampling variance-covariance is diagonal.

First, we need the derivatives of ψ wrt f_c and f_r :

$$\frac{\partial \hat{\psi}}{\partial \hat{f}_c} = \frac{1}{f_r}$$
 $\frac{\partial \hat{\psi}}{\partial \hat{f}_r} = -\frac{f_c}{f_r^2}$,

then,

$$\hat{\mathbf{V}}\operatorname{ar}(\hat{\psi}) = \begin{bmatrix} \frac{1}{\hat{f}_r}, & -\frac{\hat{f}_c}{\hat{f}_r^2} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{V}}\operatorname{ar}(\hat{f}_c) & 0\\ 0 & \hat{\mathbf{V}}\operatorname{ar}(\hat{f}_r) \end{bmatrix} \frac{1}{f_r} - \frac{f_c}{f_r^2}$$

This matrix equation can be simplified,

$$\hat{\mathbf{V}}\operatorname{ar}(\hat{\psi}) = \frac{1}{(\hat{f}_r)^2} \cdot \hat{\mathbf{V}}\operatorname{ar}(\hat{f}_c) + \frac{(\hat{f}_c)^2}{(\hat{f}_r)^4} \cdot \hat{\mathbf{V}}\operatorname{ar}(\hat{f}_r).$$

If you want a numerical example, try $N_c = 1,000$, $R_c = 80$ and $N_r = 500$, $R_r = 60$. What is $\hat{\psi}$ and its sampling variance. When the covariances are 0, the use of the delta method is easier.

A More Complicated Example

Seber (1973:254) developed a tagging model to allow MLEs of survival S and a sampling rate (λ) , both assumed constant over years and ages and sexes. To be consistent with models developed by Brownie et al. (1985), we wish to transform λ into another version of the sampling probability, $f = (1-S)\lambda$. [The notation in this example and the previous example are unrelated.]

You have \hat{S} , $\hat{\nabla}$ ar(\hat{S}), $\hat{\lambda}$, and $\hat{\nabla}$ ar($\hat{\lambda}$). To find $\hat{\nabla}$ ar(\hat{f}), we use the delta method. The variance-covariance matrix is

Transformations: $S \rightarrow S$ and $(1-S)\lambda \rightarrow f$. The partial derivatives are,

$$\frac{\partial \hat{S}}{\partial \hat{S}} = 1 \qquad \qquad \frac{\partial \hat{S}}{\partial \hat{\lambda}} = 0,$$

$$\frac{\partial f}{\partial S} = -\lambda = -f/(1-S)$$
 $\frac{\partial f}{\partial \lambda} = 1-S.$

Finally, the sampling variance-covariance matrix of S and f is

$$\begin{bmatrix} 1 & 0 \\ -f/(1-S) & (1-S) \end{bmatrix} \quad \hat{\sum} \quad \begin{bmatrix} 1 & -f/(1-S) \\ 0 & (1-S) \end{bmatrix}.$$

Thus,

$$\hat{\operatorname{cov}}(\hat{S}, \hat{f}) = -\hat{f}/(1-\hat{S}) \cdot \hat{\operatorname{var}}(\hat{S}) + (1-S) \cdot \hat{\operatorname{cov}}(\hat{S}, \hat{\lambda})$$

and

$$\hat{\nabla}\operatorname{ar}(\hat{f}) = (\hat{f}/(1-\hat{S}))^2 \cdot \hat{\nabla}\operatorname{ar}(\hat{S}) - 2\hat{f} \cdot \hat{\operatorname{cov}}(\hat{S}, \hat{\lambda}) + (1-\hat{S})^2 \cdot \hat{\nabla}\operatorname{ar}(\hat{\lambda}).$$