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Goodness-of-fit in Product Multinomial Models

At first glance, goodness-of-fit (GOF) testing seems easy in, for example, a set of band
recovery data.  One could use the standard Pearson GOF test, where each term is of the form,
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Then, sum up these quantities over rows ( ) and columns ( ) of a recovery matrix as,j i
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where O  is the observed number of birds recovered for year  from birds banded in year  and34 j i
E  are the corresponding estimated expected values.  Under reasonable conditions, the test^
34

statistic is asymptotically distributed as a  variable.T ;#

Consider the set of bird banding data from Brownie et al. (1985:2),

i     N                     m   3 34  (or O )34

                           j=1     2     3
1  1603          127    44    37
2  1595                 62    76
3  1157                       82

The observed data are merely the frequencies of bands reported (e.g., O  = 127, O  = 37,"" "$

O  = 82).  The expected values (E ) for each cell under a particular model are not known, but$$ 34

these can be easily E , after the MLEs for a particular model are computed.  It is^estimated, 34

important to note that the expectations vary by model.  For example, under model { , } of theS <
Seber dead recoveries data type of Program MARK, the estimated expected values are,

 E  =  = 1603 0.0621 = 99.6^ ^
"" N ^"Ð"  WÑ< †

 E  =  = 36.8, and^ ^
"$ N SS^^ ^" Ð"  WÑ<

 E  = = 71.9,^ ^
$$ N ^$Ð"  WÑ<

where  is the number banded in “year"  and  and  are the MLEs under model^N i Ŝ3 <
{ , }.S <
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Full expectations for two commonly-used models are shown below, for review.

Model { }S , > ><

Number                Expected Number of Tags Reported (dead)
Tagged
                =1                 2                     3j
N            N    N S     N S S" " " " " " # " " # $# $Ð"  W Ñ< Ð"  W Ñ< Ð"  W Ñ<                   
N                           N    N S# # # # # $# $               Ð"  W Ñ< Ð"  W Ñ<    
N                                                         N$ $ $ $Ð"  W Ñ<

Model { }S, <
Number               Expected Number of Tags Reported (dead)
Tagged
                  =1            2                 3j
N               N           N S           N SS" " " "Ð"  WÑ< Ð"  WÑ< Ð"  WÑ<
N                       N             N S# # #       Ð"  WÑ< Ð"  WÑ<
N                                               N$ $Ð"  WÑ<

These data could have been shown with the number :never recovered

i     N                              m3 34

                            j=1     2     3      never
1  1603          127    44    37      1395
2  1595                 62    76      1457
3  1157                       82      1075

In fully parameterized models, such as { }, there is no GOF information in the last cellS , > ><
“never recovered" but in other models, such as model { }, GOF information is contained inS, <
the final cells.  The number never recovered from banding in year 2 is 1457 and its
expectation under Model { } is:S , > ><

                        +  = 1457.N  – N   N S^ ^^ ^^
# # # # # # $ $Š Ð"  W Ñ< Ð"  W Ñ< ‹

The estimated expected number never recovered varies by model; e.g., for
Model { } the expectation for year 2 isS, <

                         +  = 1435.7^ ^N  – N  N Ŝ# # #Š ‹Ð"  WÑ< Ð"  WÑ<
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and is computed given the parameter estimates  = 0.6082 and  = 0.1585, under model { }.S S, r^ <̂

Thus, computation of the estimated expected values (E ) is relatively straightforward.  Now, a^
34

small example, using the bird banding data from Brownie et al. (1985):
The data --

i     N                     m   3 34  (or O )34

                        j=1     2     3     never
1  1603          127    44    37 1395     
2  1595                 62    76     1457
3  1157                       82     1075

The estimated expectations under model { }--S, r

i     N                            3 Ê34

                        j=1     2     3     never
1  1603         99.6   60.5  36.8 1406.1   
2  1595                99.1  60.2   1435.7
3  1157                      71.9   1085.1

The matrix of chi-squared contributions --

i     N                        3   (O - E)^

Ê

#

                           j=1     2     3     never
1  1603         7.57   4.49  0.00    0.09
2  1595               13.86  4.16    0.31
3  1157                      1.43    0.09

Each cell value is roughly a  variable with 1 df, thus, values > 3.84 might be viewed with;#

suspicion (i. e., some evidence of lack of fit in that cell).  Study of the matrix of chi-squared
values provides evidence of lack of fit in several of the cells.  Summing up the 9 values
above, we get the test statistic  = 31.01 with 4 df and  = 0.0000019.  One must concludeT P
a substantial lack of fit of these data to the assumptions of model { }.  Under the moreS, <
general model { } we get  = 1.80, with 1 df,  = 0.1793.  This model seems to fit OK,S , P> >< T
but there is only a single degree of freedom to assess fit.

IMPORTANT PRACTICAL PROBLEMS

Practical problems arise in assessing model fit in all forms of capture-recapture and
band recovery models.  The problem involves cells where the expectation is small (e.g., <
0.1).  Consider the banding data (above) in hypothetical year  = 9, where a single bird wasj
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observed.  Lets say, for example, that the estimated expectation for this cell is 0.1 (that is, Ê"*

= 0.1).  Then, the chi-squared value for this single cell is

                    =    = 8.1.  (O  – E )   (1 – 0.1)   ^

Ê 0.1
9 9

9

# #

This is “highly significant" but due to only the recovery of a single bird!  A general rule of
thumb for chi-squared issues is to be sure the expectations are > about 2.  This is a useful rule.
Lets look at one more example where a single bird was recovered, and let the corresponding
expected value be 0.03; then we have,

                    = = 31.36.(O – E)   (1 – 0.03)   
E 0.03

# #

    

Clearly, the test statistic in this case is hardly distributed as .  A data set might have a dozen;#

cells, all fitting nearly perfectly (i.e., O E ) except one, where the chi-squared^
34 34µ

contribution was 31.36.  The overall test statistic would strongly suggest a significant lack of
fit, however, this evidence would be based on the recovery of a single bird! The distribution of
the test will not provide interpretable information when expectations for some cells are small,
even when only a single animal is recovered.   Unfortunately, this is a case invery common
the analysis of capture-recapture and band recovery data.  There is, at present, no general
solution to this issue.  [Of course, small expectations are not an issue when no animals were
recovered for that cell.]

In the band recovery models, an pooling approach seems to be roughlyad hoc 
sufficient.  That is, starting from the right-most cells, pool over cell expectations to the left
until the sum is > 2.  Early software such as ESTIMATE and BROWNIE take this simple
approach and it has been quite useful.  Program RELEASE uses many 2x2 tables to assess
GOF in capture-recapture models; numbers in these tables was often a pooling over cells.  In
these cases, a program option allows the use of Fisher's exact test for 2x2 tables and this was
often useful.  Still, cells where expected values are small represent a general problem.

OTHER APPROACHES TO GOF ASSESSMENT

While Pearson's GOF test is simple, commonly-used, and appealing, a likelihood-
based alternative is useful and slightly superior.  This procedure is based on

                                G  = 2  O   log   ,#

3 4
34 /!!  O   

Ê
34

34
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where  is also approximately (i.e., asymptotically) chi-square distributed.  This is oftenG#

termed the G  test or statistic.  Program MARK makes extensive use of the G  statistic,# #

because this statistic is the same as the deviance defined below.  Both Pearson's and the G#

test are special cases of the power-divergence statistic (see Read and Cressie, 1988, Springer-
Verlag).

There are other general approaches to the GOF issue.  One class of tests was first
derived by Robson and Youngs (1971); see full discussion of this issue in Burnham et al.
(1987:64-77).  This type of test is often a 2xC contingency table and termed TEST2 in
Burnham et al. (1987).  It is a very useful test, applicable to both the band recovery models
and the capture-recapture models, and is also asymptotically  distributed.  Programs MARK;#

and RELEASE provide the user with this general GOF test and TEST3, which is useful only
in the capture-recapture models.  While TEST2 and TEST3 are very useful and somewhat
robust to pooling, there are still potential problems where cell expectations are small.

MORE ON SATURATED MODELS

Consider a model similar to model { } but where all the parameters are alsoS , f> >

specific to the cohort (i.e., year):

Number                            Matrix of Cell Probabilities for   E( )m m /N34 34 3

Tagged

   N                                        S       S S" "" "" "" "# "# "" "# "$ "$Ð"  W Ñ< Ð"  W Ñ< Ð"  W Ñ<

   N                                                        S# ## #$ #$  Ð"  W Ñ<22 22 Ð"  W Ñ<

   N                                                                  $ $$ $$Ð"  W Ñ<

The first subscript indexes the released cohort (all the parameters are cohort-specific), whereas
the second subscript indexes the year of recovery.  Here, 6 recovery probabilities and 3
survival probabilities appear in the model structure. None of the survival probabilities are
estimable; only the initial recovery rates (  for each cohort are estimable.  TheÒ "  W Ñ< Ó33 33

MLE for each cell is merely the number observed in that cell divided by the number banded
(i.e., / ).  This is a fully-saturated model where there are as many unknown parameters asm N34 3

there are cells.  It might just as well be expressed as

   N                                       " "" "# "$) ) )

   N                                   #        ) )#" #$

   N                                              $ )$$

This makes it more clear that  = 37/1603 = 0.0231 (using the data in the example above).)̂"$

Of course, knowing that  = 0.0231 is of no biological interest as it is a confounding of)̂"$
{ }.  Note, the saturated model always fits the data perfectly (by definitionS S"" "# "$ "$Ð"  W Ñ<
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and design).  The concept of a saturated model is useful in computing .  TheDeviance
deviance of model  is defined asj

                            Deviance = –2 log ( ( ))  – –2 log ( ( )) .^ ^
/ 4 / =+>_ ) _ )

If sample size is large (i.e., there are no cells with small expectations), then the deviance is
asymptotically  with df = # cells in saturated model – # of estimable parameters in model .;# j
Deviance is a type of GOF test, if sample size is large and is exactly the same value as theß
K K# #test defined above.  Note, also, that , and  are all asymptotically T, Deviance ;#

distributed, but might vary substantially with sample sizes often seen in practice.

PROGRAM MARK BOOTSTRAP APPROACH

 The goodness-of-fit of the global model can be evaluated in 3 ways: assuming that the
deviance for the model is chi-square distributed and computing a goodness-of-fit test from this
statistic, using Program RELEASE (for live recapture data only) to compute the goodness-of-
fit tests provided by that program, and using the parametric bootstrap procedure provided in
MARK.

 The first approach is generally not valid because the assumption of the deviance being
chi-square distributed is seldom met.  This approach only seems reasonable for very large
band recovery datasets, and this approach has never been reasonable for live recapture data
because of the large number of possible histories that an animal may encounter. Use of
Program RELEASE is reasonable, but usually lacks statistical power to detect lack of fit
because of the amount of pooling required to compute chi-square distributed test statistics. For
these reasons, the bootstrap procedure was implemented in MARK, available from the Results
Browser menu..

 With the bootstrap procedure, the estimates of the model being evaluated for goodness
of fit are used to generate data, i.e., a parametric bootstrap. The simulated data exactly meet
the assumptions of the model, i.e., no over-dispersion is included, animals are totally
independent, and no violations of model assumptions are included. Data are simulated based
on the number of animals released at each occasion. For each release, a simulated encounter
history is constructed. As an example, consider a live recapture data set with 3 occasions (2
survival intervals) and an animal first released at time 1. The animal starts off with an
encounter history of 100, because it was released on occasion 1. Does the animal survive the
interval from the release occasion until the next recapture occasion? The probability of
survival is , provided from the estimates obtained with the original data. A uniform random9"

number in the interval (0, 1) is generated, and compared to the estimate of  . If the random9"

number is less than or equal to  , the animal is considered to have survived the interval.  If9"

the random value is greater than  , the animal has died. Thus, the encounter history would9"

be complete, and would be 100. Suppose instead that the animal survives the first interval.
Then, is it recaptured on the second occasion? Again, a new random number is generated, and
compared to the capture probability  from the parameter estimates of the model being tested.:#
If the random value is less than , the animal is considered to be captured, and the encounter:#
history would become 110. If not captured, the encounter history would remain 100. Next,
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whether the animal survives the second survival interval is determined, again by comparing a
new random value with  . If the animal dies, the current encounter history is complete, and9#

would be either 100 or 110. If the animal lives, then a new random value is used to determine
if the animal is recaptured on occasion 3 with probability . If recaptured, the third occasion:$
in the encounter history is given a 1. If not recaptured, the third occasion is left with a zero
value.

 Once the encounter history is complete, it is saved for input to the numerical
estimation procedure. Once encounter histories have been generated for all the animals
released, the numerical estimation procedure is run to compute the deviance and its degrees of
freedom. These values along with  (= deviance / df) are saved to a simulation output file. The-̂
entire process is repeated for the number of simulations requested.

 When the requested number of simulations is completed, the user can access the
bootstrap simulations results database to evaluate the goodness of fit of the model that was
simulated. First, the deviances of the simulated data can be ranked (sorted into ascending
order), and the relative rank of the deviance from the original data determined. Suppose that
the deviance of the original model was 101.01, whereas the largest deviance from 1000
simulations was only 90.90. Then you can conclude that the probability of observing a value
as large as 101.01 was less than 1/1000.  As another example, suppose the 801th simulated
deviance in the sorted deviance file is 100.90, and the 802nd value was 101.50. Then, you
would conclude that your observed deviance was reasonably likely to be observed, with
probability of 198/1000 (because 198 of the simulated values exceeded the observed value).

 A similar procedure can be used to evaluate the observed c-hat by comparing its rank
to the simulated values of c-hat. Typically, conclusions using c-hat and deviance are about the
same, but different results may be obtained with sparse data sets where the degrees of freedom
associated with the deviance vary a lot across the simulations.

 The bootstrap simulations can also be used to estimate the over-dispersion parameter,
-. Two approaches are possible, based on the deviance directly, and on . For the approach-̂
based on deviance, the deviance estimate from the original data is divided by the mean of the
simulated deviances to compute c-hat for the data. The logic is that the mean of the simulated
deviances represents the expected value of the deviance under the null model of no violations
of assumptions (i.e., perfect fit of the model to the data). Thus,   = observed deviance divided-̂
by expected deviance provides a measure of the amount of over-dispersion in the original
data.

 The second approach to estimating  for the original data is to divide the observed-
value of    from the original data by the mean of the simulated values of   from the- -^ ^
bootstraps. Again, the mean of the simulated values provides an estimate of the expected value
of c-hat under the assumption of perfect fit of the model to the data.

 We're not sure of the benefits/disadvantages of the 2 procedures, and normally
recommend using observed deviance divided by the mean of the bootstrap deviances because
this approach does not rely on estimating the number of parameters, so is much faster.
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Bootstrap Options allows you to specify that you are only interested in the deviance, and not
-̂ , from the bootstrap simulations. Generally, results are about the same, but can be different
when the degrees of freedom of the deviance varies a lot across the bootstrap simulations
(caused by a small number of releases).

 One of the current limitations of the bootstrap goodness-of-fit procedure is that
individual covariates are not allowed.
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