
Individual Heterogeneity in Models of Population Size Under Closure

A Conceptual Overview

Individual heterogeneity is the bane of population size estimation.  This brief document
attempts to state the problem and outline several conceptual solutions that are now available in
program MARK.

The Problem

Clearly animals of a given species vary in their capturability; some are easily caught while
others are caught only rarely.  These differences are caused by or associated with a host of
factors, including differing movements due to the age or sex of the animal, whether the female
has young, distance from the animal to the nearest trap, etc.  Heterogeneity is omnipresent in
animal populations.

Virtually all estimators of population size ( ) have a canonical form:N

                              = N ,^ n
p

where  is a count (related to the number caught in some group at some point in time) and  isn p
the probability of capture related to the count.  If one were to take a strict  sample (i.e.,random
avoiding any heterogeneity), one would the estimator to perform well.  In the case ofexpect 
heterogeneity, animals caught tend to be the most catchable, thus the estimate of  is “toop
high" (overestimated).  Thus, the estimates of population size ( ) are too low because  is in^N p
the denominator.  This is a general result: if one uses a model that equal capturability,assumes 
the estimates of population size will be too low (underestimated) if, in fact, there is
heterogeneity in capture probabilities.  This bias is often substantial.  Deriving models to
allow for heterogeneity has been very difficult.

Note that estimators of survival probabilities are little affected by heterogeneity.  Define
survival ( ) and its estimator,S

                           = S .^ N̂
N̂
>"

>

Notice if the estimates of population size have approximately the same bias (say, about 20%),
then because this bias occurs in both the numerator and denominator, they  to cancel out.tend
This is not to imply that the bias exactly cancels, only that they tend to cancel and thus, the
bias in  is substantially less than the bias in .  Models to estimate survival probabilities can^ ^S N
often be based on the homogeneity assumption (i.e.,  = ) and the MLE  is quite robust to^p p S3

heterogeneity.



Several attempts have been made to deal effectively with heterogeneity to produce estimators
of population size that perform well.  The original thrust of this work was to model the
heterogeneity in (where  denotes animal ) as a beta distribution.  Here, rather than dealp  i i3

with all the individual  (there are  of these), one merely estimates  and , the parametersp N3 ! "
in the beta distribution.  Several people followed this path independently after Ken Burnham
looked at this in the late 1960s.  The result of this neat approach was that the likelihood
function for  was essentially flat and this provided estimates that had very poor properties.N
Other approaches had to be developed.  Three of these approaches are outlined in the material
below.

Burnham's Jackknife

Burnham realized that the capture frequencies ( ) were minimal sufficient statistics regardlessf4
of the form of the distribution of capture probabilities.  Thus, why not derive an estimator of N
that is a function of the capture frequencies?  [The capture frequencies are the number of
animals that were captured exactly  times.]  John Tukey's jackknife was popular at the timej
and this simple, but general, method provides a way to lessen the bias in an estimator.  Thus,
one could start with the naive estimator

                          N M^  = >"

and employ the jackknife method to correct for the bias (or at least some of it).  It turns out
that there are a family of estimators, each one attempting to correct for more of the bias.  As
one might expect, there is a bias vs. variance trade-off here and one must decide which order
of the jackknife to use for the analysis of a particular data set.  As an example, the first-order
jackknife is

                          N M f^  =  +  ,>" Š ‹t–
t
1 † "

where  is the number of trapping occasions.  Note, the final term attempts to correct the biast
in  by adding some value to it.  Other estimators in this family are given in Otis et al.M>"

(1978:109).  This clever framework works very well and still performs in the same league as
newer approaches.  Its main drawback is that is that it is outside the likelihood framework,
thus many such advantages (e.g., model selection and model averaging) are unavailable.

Huggins' Conditional Likelihood

Richard Huggins (1991) provided an interesting approach whereby he tried to account for the
heterogeneity by observable covariates such as age, sex, weight, trapping history, rainfall, etc.
Clearly, not all heterogeneity could be accounted for as some important variables cannot be
measured.  However, the notion here is that the effect of heterogeneity could be substantially
lessened.  Thus, instead of looking at the distribution of the  to get an estimator of , hep N3

proposed the capture probabilities asmodeling 



                       logit( ) =  + ,p x35 9 4 45" "!
where  are the measured covariates for individual .  This general approach is interesting,x k4

but what is to be done with the animals that were not captured (and, therefore, no covariates
are available)?  This cul-de-sac was avoided by the use of conditional likelihood theory.  Here,
you condition on only the animals captured, but this eliminates the parameter  from theN
likelihood!  Opps.  Huggins uses a form of the Horvitz-Thompson estimator, but where the
capture probabilities are estimated,

                  = N̂   ,  .^ ^ ^ ^!
5 = 1
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Note that  is just the estimated probability that an animal is captured 1 or more times, i.e., 1:‡^
minus the probability it was never captured.  This approach has been shown to be generally
useful, given the relevant covariates are measured.  In addition, it provides insights into why
animals are captured and this is often of interest to biologists.  The main drawback in this
method is that is makes assumptions that captured and uncaptured animals are the same;
however, if capture probabilities are high (the goal of  C-R studies) then this assumption isall
of less importance.

Pledger's Mixed Models

Shirley Pledger (2000) has built on the work of Agresti (1994) and Norris and Pollock (1955,
1996a) dealing with mixture models.  This work on mixtures is very important in that all 8 of
the basic models in Otis et al. (1978) are placed in a likelihood framework, while allowing for
heterogeneity.  The mathematics here can get overwhelming, but the concept is somewhat
intuitive if you work at it.  Start with the notion that it is the variance in the distribution of the
p3 that is important (not necessarily the shape of the distribution).  This interesting result has
been known since the mid-1980s.

Now, consider the notion that animals are in only 2 groups; some proportion ( ) of the total1
number of animals have low capture probabilities ( ) and the rest (1– ) have high capturepP 1
probabilities ( ).  Capture probability is then a  of the 2 groups.  Then, under Modelp mixtureL

M  for example, model the usual capture probability parameter ( ) as9 p

                        = + (1– ) .p p  p1 1P L

Thus, in the likelihood for Model , one replaces  with + (1– ) .  Now theM p p  p9 L1 1P

likelihood has  = 4 parameters:  ( ), so one gets the MLEs for  p , p ,  and K N, p , p , N.^_ 1P L 1 P L



This scheme can be extended to the other models in Otis et al. (1978) and to more than two
groups (often 2 groups is all that the data can support).  Pledger's models are all in a likelihood
framework, thus allowing AIC model selection, model averaging, profile likelihoods, etc., etc.
Very clever and illustrates the advantages of likelihood theory.
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