
                                      (a nasty issue)Identifiability

There are PIMs that specify models to  that cannot be “identified."  That is, the data do notMARK
permit the estimation of some parameters.  This is an inherent lack of information that keeps some
parameters from being estimated.

The issue is like the estimation of the regression model

                                      E( ) =  + ( )y x" "! "

when the sample size  = 1 (only one sample of  and ).  Here, the model parameters cannot ben y x
identified because there is an infinite number of lines that can be drawn through a point.  Of course, if
one had a sample size of 2, then a unique like would be defined and the 2 parameters could be
estimated (or “identified").

In the fish tagging or bird band recovery models, identifiability of survival would not be an issue if fish
were tagged in only a single year AND reporting probability was a constant across years.  Consider
the bass data, for example,

                             2000        30   70  114   43   15      1728,

corresponding to the cell probabilities under model { );S, r

           (1- ) (1- ) (1- ) (1- ) (1- )R S r   S S r    SS S r    SSS S r    SSSS S r   ."

One can see that  can be estimated (not an MLE) asS

               = = (1- ) (1- )  =  .Ŝ m /m  SSS S r SS S r S"% "$ ‚
Note, the  in the numerator and denominator cancel, as do the terms (1– ) and 2 of the , leaving r S S Ŝ

= Numerically  = 43/114 = 0.377. So, under this simple model, the constant survival probability^ S.  S
can be estimated, if  is also constant across time.r

Under models where  is allowed to vary by year or age, then identifiability is lost, unless more thanr
one cohort is tagged and released.

A common headache in model { } is the lack of identifiability of the terms shown below in bold:S  r> >
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Number                                Matrix of Probabilities for   E( )m m /R34 34 3

Tagged

R  S r  S S r  S S S r  S S S S r  S S S S" " " " # # " # $ $ " # $ % % " # $ %(1- ) (1- ) (1- ) (1- ) (1- )S r& &

R                      S r  S S r  S S S r   S S S# # # # $ $ # $ % % # $ %    (1- )(1- ) (1- ) (1- ) S r& &
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R           & (1- )S r& &

In this case, only the product is identifiable, but not the separate terms.  Thus, this model(1- )S r& & 
has 4 survival probabilities, 4 reporting probabilities and one product term that can be identified
under model { }.  Total,  = 9 (not 10, as you might think/want).S  r K> >

This subject will haunt us continually and more insights will be provided (the concepts of sufficient and
minimal sufficient statistics and their dimensionality).  Program  has clever ways to help MARK
understand this issue, but is not perfect for complicated or ill-conditioned models.

More on Identifiability and Related Issues
Any model for tag recovery data is based on interpretable parameters, especially of the type

S r S f m R and  (or  and ) explicitly appearing in the model structure for E( ). However, just becauseij i±

a parameter appears in the model does not mean that parameter can in fact be estimated from data.
Most parameters in the model are estimable, but not all; it depends on the model.

The idea of parameters not being estimable is illustrated by trying to estimate  from oneS1
year of tag recoveries, :m11

 (1 ) .E( )
1 1

m
R

11
1

œ � S r

You cannot do it; you only have an estimate of the product, (1 )  and there is no way to� S r1 1
separately estimate  and/or .S r1 1

For all models we know (or can know) what parameters are estimable and hence we know
the number, , needed for QAIC  (or likelihood ratio tests).  (For some models this information isK -

embedded in the help file of ).  You do not need to know  to fit models.  tries toMARK K MARK
determine  by numerical methods, it does not always succeed.  So there are times when needs toK K 
be input to  to get QAIC  computed correctly.  You also need to beware of interpreting MARK -
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numerical results for non-estimable parameters as meaning anything. You can tell such cases by the
estimated standard error: it will be either huge, or paradoxically, trivially small (near zero).

There is another practical problem that arises in model fitting: point estimates that are on a

boundary (i.e., and 1, or 1).  This can lead to  computing the wrong  for the model.Ŝ r MARK Kœ œ
Also, when this occurs, it suggests the model is too general, hence not the best one to use.  When a
parameter estimate is “pegged" on a boundary its estimated standard error will generally be quite
wrong (too small), and this event (estimate on a boundary) can cause the estimated standard errors of
other estimates to be wrong.  You need to look at fitted models to be sure no such anomalies have
occurred and to see if  has  correct, so QAIC  is correct. The issue of the correct  is aMARK K K-

difficult one for us to provide advice about. However, anomalous point estimates and weird standard
errors are indicators of either basic parameter non estimability, or may just reflect sparse (poor) data
or a bad fitting model.
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An example of a problem with sparse data that produced an estimate on a boundary is the
below. First, the input data were

/* Release recovery data for RELEASES >= 711 MM (28
INCHES) long, data for Chesapeake Bay, from Cynthia
Goshorn via Dave Smith.  Years are 1987 to 1996  */
recovery matrix group=1;
 1    0    2    0    1    2    1    0    0    0;
      6    8    7   14    6    1    3    0    0;
           9   17   17    6    4    3    5    2;
               23   16   11    5    2    4    0;
                    47   24   20    4    9    3;
                         44   28   18   16    7;
                              58   44   40   11;
                                   52   42   22;
                                        61   29;
                                             92;
29 129 221 304 396 438 628 545 529 862;

The first year of releases and that cohort of recoveries are too small to be worth including in
the analysis.  However, dropping that year does not solve the problems with analysis of these data
under model { (t), (t)}. Output under this model follows.S r
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                                 model={ (t), (t)}S r
                                    95% Confidence Interval
  I     S(I)        Standard Error    Lower       Upper
 ----- ---------     ----------    -----------  -----------
  1    0.6882106       0.2549591       0.1769578   0.9577357
 2    0.9597202    0.0162191       0.9128110   0.9818921Ã
 3    0.9477962    0.0117022       0.9194888   0.9665133Ã
 4    0.5873970       0.0721886       0.4426089   0.7184953
 5    0.5735394       0.0754826       0.4234658   0.7111909
 6    0.6190184       0.0745679       0.4664646   0.7512166
 7    0.6884013       0.0816988       0.5115350   0.8233431
 8    0.7018095       0.0960572       0.4890719   0.8526551
 9    0.4699632       0.0792827       0.3221038   0.6232899
10    0.0000000       0.0000000       0.0000000   0.0000000

        r(I)
11    0.1105959       0.1346352       0.0084308   0.6452122
12    1.0000000    0.5302730E-05   0.9999896   1.0000104Ã
13    1.0000000    0.4885705E-05   0.9999904   1.0000096Ã
14    0.1755289       0.0378107       0.1131433   0.2621452
15    0.2866250       0.0637381       0.1790485   0.4253479
16    0.2762157       0.0667091       0.1655747   0.4232850
17    0.3217343       0.0938853       0.1695157   0.5243401
18    0.3133693       0.1132253       0.1399389   0.5614302
19    0.2263497       0.0466889       0.1478443   0.3303798
20    0.1067285       0.0105167       0.0877991   0.1291613

“  " Ã indicates problem estimates

What went wrong?  Insight can be gained by looking at a parameterization from Brownie et al.
(1985) where
                                       = (1– )/  .f S r4 44

Under this model parameterization, the unrestricted MLEs of S  and S  are 12 3 �
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                           model={S(t), f(t)}
                                     95% Confidence Interval
 I    S(I)       Standard Error       Lower        Upper
 --- ----------- --------------  --------------  ------------
--
 1    0.5931043       0.2271318       0.1872679   0.9021626
 2    1.0797344    0.1820650       0.7228870   1.4365818Ã
 3    1.1707343    0.1903254       0.7976965   1.5437720Ã
 4    0.5099335       0.0772790       0.3620754   0.6560738
 5    0.5735387       0.0754824       0.4234656   0.7111900
 6    0.6270057       0.0755834       0.4715178   0.7600288
 7    0.6796323       0.0807166       0.5063700   0.8143737
 8    0.7018086       0.0960566       0.4890726   0.8526536
 9    0.4699636       0.0792828       0.3221041   0.6232904

         f(I)
10    0.0344828       0.0338830       0.0048356   0.2079196
11    0.0410397       0.0164941       0.0184737   0.0886799
12    0.0501508       0.0117315       0.0315548   0.0788141
13    0.0628728       0.0104667       0.0452223   0.0867861
14    0.1222342       0.0137126       0.0977977   0.1517497
15    0.1052331       0.0119675       0.0839769   0.1310996
16    0.0989749       0.0099066       0.0811819   0.1201578
17    0.0934437       0.0099059       0.0757538   0.1147516
18    0.1199738       0.0125178       0.0975225   0.1467532
19    0.1067285       0.0105167       0.0877991   0.1291613

This makes it clear that two estimates are out of range and this creates problems.  We prefer to treat
such cases as a diagnostic that a model with too many parameters have been used for the analysis of
the data.


