|dentifiability (anasty issue)
There are PIMs that specify modes to MARK that cannot be “identified.” That is, the data do not
permit the estimation of some parameters. This is an inherent lack of information that keeps some
parameters from being estimated.
Theissueislike the estimation of the regresson model

E(y) = 5o + B1(x)
when the sample sze n = 1 (only one sample of y and x). Here, the modd parameters cannot be
identified because there is an infinite number of lines that can be drawn through a point. Of course, if
one had a sample sze of 2, then a unique like would be defined and the 2 parameters could be
estimated (or “identified").
In the fish tagging or bird band recovery models, identifiability of surviva would not be an issueif fish
were tagged in only a single year AND reporting probability was a constant across years. Consider
the bass data, for example,

2000 30 70 114 43 15 1728,

corresponding to the cdll probabilities under modd {S r);

R (@-9r J1-9r SH1-9r SSY1-9r SSSY1-9r .

One can seethat S can be estimated (not an MLE) as
N
S=myy/my; = SSS(l—S)r/SS(l—Sr =s.

Note, the r in the numerator and denominator cancel, as do the terms (1-S) and 2 of the S, leaving §

=S Numericdly 'é =43/114 = 0.377. So, under this ssmple model, the constant surviva probability
can be estimated, if r is also congtant acrosstime.

Under models where r is dlowed to vary by year or age, then identifiability is lost, unless more than
one cohort is tagged and released.

A common headachein modd {S r;} isthe lack of identifiability of the terms shown below in bold:
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Number Matrix of Probabilitiesfor m;; E(m;;/R;)
Tagged

R (1-S)n S-Sz S-S S$3(1-S))ry S1$85(1-S5)rs

Ry (I-S)ro SI-S)r3  S$(1-Syry $$S(1-Ss)rs
R3 I-S)rs $3(1-Sy)ry $81(1-S5)rs
Ry (1-S)ry S1(1-S5)rs

Rs (I-Ss)rs

In this case, only the product (1-Ss)r5 is identifiable, but not the separate terms.  Thus, this model
has 4 surviva probabilities, 4 reporting probabilities and one product term that can be identified
under modd {S r:}. Totd, K =9 (not 10, as you might think/want).

This subject will haunt us continually and more insights will be provided (the concepts of sufficient and
minima sufficient datigics and their dimensondity). Progran MARK has clever ways to hep
understand thisissue, but is not perfect for complicated or ill-conditioned models.

More on Identifiability and Related Issues

Any model for tag recovery data is based on interpretable parameters, especidly of the type
Sand r (or Sandf) explicitly appearing in the model structure for E(mjj | R). However, just because
a parameter gppears in the modd does not mean that parameter can in fact be estimated from data.
Most parametersin the modd are estimable, but not dll; it depends on the mode!.

The idea of parameters not being estimable is illugtrated by trying to etimate $; from one
year of tag recoveries, myq:

R = (1 - s
You cannot do it; you only have an estimate of the product, (1 — $;)rq and there is no way to
separately estimate Sy and/or rq.

For al models we know (or can know) what parameters are estimable and hence we know
the number, K, needed for QAIC,. (or likelihood ratio tests). (For some models this informétion is
embedded in the help file of MARK). You do not need to know K to fit modds. MARK tries to
determine K by numerica methods, it does not always succeed. So there are times when K needs to
be input to MARK to get QAIC,. computed correctly. You aso need to beware of interpreting
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numerica results for non-estimable parameters as meaning anything. You can tell such cases by the
edimated standard error: it will be either huge, or paradoxicdly, trividly smal (near zero).

There is another practical problem that arises in modd fitting: point estimates that are on a

boundary (i.e., and g =1, orr =1). Thiscan lead to MARK computing the wrong K for the mode!.
Also, when this occurs, it suggests the modd is too generd, hence not the best oneto use. When a
parameter estimate is “pegged” on a boundary its estimated standard error will generdly be quite
wrong (too smal), and this event (estimate on a boundary) can cause the estimated standard errors of
other estimates to be wrong. You need to look at fitted models to be sure no such anomalies have
occurred and to see if MARK has K correct, so QAIC,. is correct. The issue of the correct K is a
difficult one for us to provide advice about. However, anomaous point estimates and weird standard
erors are indicators of either basic parameter non estimability, or may just reflect sparse (poor) data
or a bad fitting model.
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An example of a problem with sparse data that produced an estimate on a boundary is the
below. Firgt, the input data were

/* Release recovery data for RELEASES >= 711 MM (28
| NCHES) long, data for Chesapeake Bay, from Cynthia
Goshorn via Dave Smth. Years are 1987 to 1996 */
recovery matrix group=1;

1 0 2 0 1 2 1 0 0 0;
6 8 7 14 6 1 3 0 0;

9 17 17 6 4 3 5 2;

23 16 11 5 2 4 0;

47 24 20 4 9 3;

44 28 18 16 7;

58 44 40 11;
52 42 22,
61 29;

29 129 221 304 396 438 628 545 529 862;

The firg year of releases and that cohort of recoveries are too smdl to be worth including in
the anadlyss. However, dropping that year does not solve the problems with analyss of these data
under modd {S(t), r(t)}. Output under thismode! follows.
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What went wrong? Insght can be gained by looking a a parameterization from Brownie e d.

cNoNoNoloNoNol i Neo
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model={S(t), r(t)}

6882106 0. 2549591
. 9597202 0.0162191
. 9477962 0.0117022
. 5873970 0.0721886
. 5735394 0. 0754826
. 6190184 0. 0745679
. 6884013 0.0816988
. 7018095 0. 0960572
. 4699632 0. 0792827
. 0000000 0. 0000000
r(l)

. 1105959 0. 1346352
. 0000000 « 0. 5302730E- 05
. 0000000 « 0. 4885705E- 05
. 1755289 0. 0378107
. 2866250 0.0637381
. 2762157 0. 0667091
. 3217343 0. 0938853
. 3133693 0.1132253
. 2263497 0. 0466889
. 1067285 0. 0105167
indicates problem estimates

(1985) where

St andard Error

fj = (1—S]~)/rj .

95% Confi dence | nterval

Lower

. 1769578

cfoloRo oo RoRoAnRe

O000000©00

9128110
9194888

. 4426089
. 4234658
. 4664646
. 5115350
. 4890719
. 3221038
. 0000000

. 0084308

9999896
9999904

. 1131433
. 1790485
. 1655747
. 1695157
. 1399389
. 1478443
. 0877991

Upper

. 9577357

Under thismode parameterization, the unrestricted MLESof S, and Sz are > 1

0O0O000O0O0O0O0O0

oOoooocooobkRPPkFO

9818921

. 9665133
. 7184953
. 7111909
. 7512166
. 8233431
. 8526551
. 6232899
. 0000000

. 6452122

0000104
0000096

. 2621452
. 4253479
. 4232850
. 5243401
. 5614302
. 3303798
. 1291613
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I S(I) St andard Error Lower Upper
1 0. 5931043 0.2271318 0.1872679 0.9021626
2 1.0797344 0. 1820650 0. 7228870 1.4365818
3 1.1707343 0. 1903254 0. 7976965 1.5437720
4 0. 5099335 0.0772790 0. 3620754 0. 6560738
5 0. 5735387 0.0754824 0. 4234656 0.7111900
6 0. 6270057 0. 0755834 0.4715178 0. 7600288
7 0.6796323 0. 0807166 0. 5063700 0.8143737
8 0.7018086 0. 0960566 0. 4890726 0. 8526536
9 0. 4699636 0.0792828 0. 3221041 0. 6232904
f(l)
10 0. 0344828 0. 0338830 0. 0048356 0.2079196
11 0. 0410397 0.0164941 0.0184737 0. 0886799
12 0. 0501508 0.0117315 0. 0315548 0.0788141
13 0.0628728 0. 0104667 0. 0452223 0. 0867861
14 0. 1222342 0.0137126 0.0977977 0. 1517497
15 0. 1052331 0.0119675 0. 0839769 0.1310996
16 0. 0989749 0. 0099066 0.0811819 0.1201578
17 0. 0934437 0. 0099059 0.0757538 0.1147516
18 0.1199738 0.0125178 0. 0975225 0. 1467532
19 0.1067285 0. 0105167 0.0877991 0.1291613

model={S(t), f(t)}

95% Confi dence I nterval

This makes it clear that two estimates are out of range and this creates problems. We prefer to tresat
such cases as a diagnodgtic that a model with too many parameters have been used for the analys's of
the data.



