
                    Models Where the Fate of Every Individual is Known

     This class of models is important because they provide a theory for estimation of survival
probability and other parameters from radio-tagged animals.  The focus of known fate models
is the estimation of survival probability , the probability of surviving an interval betweenS
sampling occasions.  These are models where it can be assumed that the sampling probabilities
are 1.  That is, the status (dead or alive) of all tagged animal is known at each sampling
occasion.  For this reason, precision is typically quite high, even in cases where sample size is
often fairly small.  The only disadvantages might be the cost of radios and possible effects of
the radio on the animal or its behavior.  The model is a product of simple binomial likelihoods.
Data on egg morality in nests and studies of sessile organisms, such as mollusks, have also
been modeled as known fate data.

The Kaplan-Meier Method

     The Kaplan-Meier (1958) method has been used commonly in the past and we will mention
it as a starting point.  This estimator is based on observed data at a series of occasions, where
animals are marked and released only at occasion 1.  The K-M estimator of the survival
function is
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where  is the number of animals alive and at risk at occasion ,  is the number known deadn i d3 3
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number known alive at occasion  minus those individuals known dead or censored during thei
interval.  It is rare that a survival study will observe the occasion of death of every individual
in the study.  Animals are “lost" (i.e., censored) due to radio failure or other reasons.  The
treatment of such censored animals is often important, but often somewhat subjective.  These
K-M estimates produce a survival function (see White and Garrott 1990); the cumulative
survival up to time .  This is a step function and is useful in comparing, for example, thet
survival functions for males vs. females.

     If there are no animals that are censored, then the survival function (empirical survival
function or ESF) is merely,
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This is the same as the intuitive estimator where not censoring is occurring;
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The K-M method is an estimate of this survival function in the presence of censoring.
Expressions for the variance of these estimates can be found in White and Garrott (1990).

     A simple example of this method can be illustrated using the data from Conroy et al.
(1989) on 48 radio-tagged black ducks.  The data are

                           Survived to Occasion
Week                    1    2    3    4    5    6    7    8
Number alive at start  48   47   45   39   34   28   25   24
Number dying            1    2    2    5    4    3    1    0
Number alive at end    47   45   39   34   28   25   24   24
Number censored         0    0    4    0    2    0    0    0

Here, the number alive at the start of an interval are to be alive at the start of samplingknown 
occasion ).  This is equivalent to being alive at the start of interval .  For example, 47 animalsj j
are known to be alive at the beginning of occasion 2.  A further example is that 34 ducks
survived to the start of occasion 5.  Thus, the MLEs are

S  ^
" = 47/48 = 0.979

Ŝ# = 45/47 = 0.957

Ŝ$ = 39/41 = 0.951  (note, only 41 because 4 were censored)

Ŝ% = 34/39 = 0.872

Ŝ& = 28/32 = 0.875  (note, only 32 because 2 were censored)

Ŝ' = 25/28 = 0.893

Ŝ( = 24/25 = 0.960

Ŝ) = 24/24 = 1.000.

Here one estimates 8 parameters (call this model ( )); one could seek a more parsimoniousS t
model in several ways.  First, perhaps all the parameters were nearly constant; thus a model
with a single survival probability might suffice (i.e., (.))  If something was known about theS
intervals (similar to the flood years for the European dipper data) one could model these with
one parameter and denote the other periods with a second survival parameter.  Finally, one



might consider fitting some smooth function across the occasions and, thus, have perhaps only
one intercept and one slope parameters (instead of 8 parameters).  Still other possibilities exist
for both parsimonious modeling and probable heterogeneity of survival probability across
animals.  These extensions are not possible with the K-M method and K-L-based model
selection is not possible.

Pollock's Staggered Entry Design

The Kaplan-Meier method assumes that all animals are released at occasion 1 and they are
followed during the study until they die or are censored.  Often new animals are released at
each occasion period (say, weekly); we say this entry is “staggered" (Pollock et al. 1989).
Assume, as before, that animals are fitted with radios and that these do not affect the animal's
survival probability.  This staggered entry fits easily into the
K-M framework by merely redefining the  to include the number of new animals released atn3

occasion .  Therefore, conceptually, the addition of new animals into the marked populationi
causes no difficulties in data analysis.

The Binomial Model

We focus on the so-called binomial model as this allows standard likelihood inference and is
therefore similar to other models in program MARK.  There are 3 possible scenarios under the
known fate model.  Each tagged animal either:

 1.  survives to end of study (detected at each sampling occasion after its release  theÄ
        fate is known on every occasion).

 2.  dies sometime during the study (its carcass is found on the first sampling occasion
        after its death  the fate is known).Ä

 3.  survives up to the point at which time it is censored.

Note, for purposes of estimating survival probabilities, there is no difference between an
animal seen alive and then removed from the population at occasion  vs. an animal alive atk
occasion  and then censored due to radio failure or whatever.k

The binomial model assumes the capture histories are mutually exclusive and exhaustive, that
animals are independent, and all animals have the same underlying parameters during interval
j (homogeneity across individuals).

Known fate data can be modeled by a product of binomials.  Let us modify the black duck
data slightly,  = 48,  = 44, and  = 41; the first likelihood isn n n" # $
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Clearly, one could find the MLE, , for this expression (e.g.,  = 44/48 = 0.917).  Of course,Ŝ Ŝ" "

the other binomial terms are multiplicative, assuming independence.  The survival during the
second interval is based on  = 44 and  = 41,n n# $
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The likelihood function for the entire set of black duck data (modified to better make some
technical points below) is the product of these individual likelihoods.  The log-likelihood is
the sum of terms such as
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This expression is in “standard form" and should now be familiar.

Encounter Histories

Parameterization of encounter histories is critical.  Each entry is paired, where the first
position is a 1 if the animal is known to be alive at occasion ; that is, at the start of thej
interval.  A 0 in this first position indicates the animal was not yet tagged at the start of the
interval .j

The second position in the pair is 0 if the animal survived to the end of the interval.  It is a 1 if
it died sometime during the interval.  As the fate of every animal is assumed known at every
occasion, the sampling probabilities ( ) and reporting probabilities ( ) are 1.  The examplesp r
below will help clarify the coding,

History         Probability      Number Observed

10 10 10 10                 S S S S" # $ % 17
Tagged at occasion 1 and survived until the end of the study

10 10 11 00     21S S S" #(1– )         $

Tagged at occasion 1 and died during the third interval

10 11 00 00     24S S"(1– )             #

Tagged at occasion 1 and died during the second interval



11 00 00 00     43 (1– )               S"

Tagged at occasion 1 and died during the first interval

10 00 00 11          (1–S )            13S  " %

Tagged at occasion 1, censored during intervals 2 and 3, and died during the
   fourth interval.

10 00 00 00          9S                        "

Tagged at occasion 1, known to be alive at the end of the first interval, but not
released at occasion 2 and thus was censored after the first interval.

Estimation of survival probabilities is based on a release (1) at the start of an interval and
survival to the end of the interval (0), mortality probabilities are based on a release (1) and
death (1) during the interval; if the animal then was censored, it does not provide information
about  or 1– ).S S3 3

Some “rules" for encounter history coding:
A.  The two-digit pairs each pertain to an interval (the period of time between occasions).
B.  There are only 3 possible entries for each interval:
 10  =  an animal survived the interval, given it was alive at the start of the
             interval
 11 =  an animal died during the interval, given it was alive at the start of the
             interval
 00 =  an animal was censored for this interval
C.  In order to know the fate of an animal during an interval, one must have encountered it
BOTH at the beginning AND the end of the interval.

Censoring

Censoring appears “innocent" but it is often not.  If a substantial proportion of the animals do
not have exactly known fates, it might be better to consider models that allow the sampling
parameters to be < 1.  In practice, one almost inevitably loose track of some animals.  Reasons
for uncertainty about an animal's fate include radio transmitters that fail (this may or may not
be independent of mortality) or animals that leave the study area.  In such cases, the encounter
histories must be coded correctly to allow these animals to be censored.  Censoring often
require some judgment.

When an animal is not detected at the end of an interval (i.e., immediately before occasion )j
or at the beginning of the next interval (i.e., immediately after occasion +1), then its fate isj
unknown and must be entered as a 00 in the encounter history matrix.  Generally, this results
in 2 pairs with a 00 history; this is caused by the fact that interval  is a 00 because the endingj
fate was not known and the fact that the beginning fate for the next interval ( +1) was notj
known.  Censored intervals almost always occur in runs of two or more (e. g., 00 00 or 00 00
00).  See the example above where the history was 10 00 00 11.



In this example, the animal was censored but re-encountered at the beginning of interval 4
(alive) and it died during that interval.  It might seem intuitive to infer that the animal was
alive and, thus, fill in the 2 censored intervals with 10 10 – this is incorrect and results in bias.

Censoring is assumed to be independent of the fate of the animal; this is an important
assumption.  If, for example, radio failure is due to mortality, bias will result in estimators of
Ŝ.  Of course, censoring reduces sample size, so there is a trade-off here.  If many animals
must be censored, then the possible dependence of fates and censoring must be a concern.

Binomial Likelihood Functions Allowing Each Animal To Have Its Own Survival
Parameter

Before we move into models for individual covariates, some quick review of the binomial
likelihood might be helpful.  Consider the usual  flips of a coin where,n

: œ probability the coin lands heads;
; œ  : œ1 probability the coin lands tails.

Let  = 16 flips (trials).  We often write the likelihood in a compact form asn
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where number of heads.  If we observe  = 5, theny yœ
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Alternatively, we could write the likelihood for each individual outcome and take the product
of these terms as the likelihood function.  One alternative is to merely write the likelihood as
(using the convention that  = (1 ),q  :

                        ( 16, 5)  _ p pppp qqqqqqqqqqq.± œ : †

Alternatively, we could write this as,
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Finally, we could define an indicator variable to denote head or tail; let 1 if heads, 0 ify œ
tails.    Then the likelihood can be written for the flip asi  >2

      { , y , , y } (1 )  ._Š ‹ #p n, y± á œ  :1 2 16
1

16

=1i
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Note, the subscript  is for coin flips;  = 1, 2, ..., 16 flips).i  individual i

In these last three forms, each outcome (head or tail) has a probability term in the likelihood.
The likelihood is the product of these individual probabilities.  These formulations are useful
in understanding the modeling of individual covariates.

INDIVIDUAL COVARIATES

Many of the data types allow modeling parameters as functions of covariates that are unique
to each individual .  The band recovery models and the Cormack-Jolly-Seber models allowi
individual covariates.  We introduce this important subject here in the context of the know fate
models.

A number of people have suggested modeling of the individual animals, allowing covariates
that vary by individual (e.g., White and Garrott 1990, Smith et al. 1994).  This approach is
very useful in the biological sciences.  Here, each animal ( ) has a unique survival probabilityi
in the likelihood.  In the black duck example (slightly modified),  = 48 and  = 44 and then n" #

binomial likelihood for the survival probability during the first week (i.e., ) can be writtenS"

as
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This can be re-expressed (omitting the multinomial coefficient) as
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where the subscript  is over all the tagged ducks (48 ducks in the study).  Thus, the first termi
in the likelihood is the product of the survival probability over 44 (= ) ducks that survival,n#

while the second term in the product of of the mortality probabilities (1– ) for the 4 ducks thatS
died during the first week (4 = –  = 44–48).  So, a final expression of this likelihood isn n# "



                                 ( )  (1– ),_ S n , n S   S" " 3 3± œ# #44 48
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Here, the likelihood is expressed as if all the animals that survived had the first 44 tag
numbers, whereas the 4 animals that died had the final tag numbers.  This is just to allow
simple expressions to represent the data.  Program MARK handles the fact that animals die or
survive independently of the tag numbers and keeps track of which covariate is associated
with which individual (from the encounter history matrix).
Thus, this is not an issue the investigator must worry about; other than having the correct
information in the encounter history matrix.

Now we consider  the survival probability of these individuals as a nonlinearmodeling
function of some covariate that varies for each individual animal .  The natural (but arbitrary)i
choice is the logit relationship

                                   = S3
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with link function
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where  is the value of the covariate for the  individual.  Of course, other functions couldX i3
>2

be used (log, log-log, complementary log-log, etc.).  More than one covariate can also be
measured and used with this general approach.  If we substitute the logit submodel and its
individual covariate into the likelihood above, the expression  messy, but is conceptuallylooks
familiar,
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Thus, the MLEs for  and  (the intercept and slope, respectively) are the focus of the" "! "

estimation.  The individual survival parameters in the likelihood have been replaced with the
"4 ).  Of course, additional binomial terms could be multiplied for the parameters S , S , ..., S# $

in the black duck example to obtain an overall expression for the likelihood function.

There are two notions to think clearly about:

    (1)  the survival probabilities are replaced by a logit (sub)model of the individual
          covariate .  Conceptually, every animal  has its own survival probability andX i3

          this may be related to the covariate .X3

    (2)  during the analysis, the covariate of the  animal must correspond to thei>2
          survival probability of that animal.  Program  handles this detail.MARK
          Note, in the last expression of the likelihood (above) we assume it is the
          48  duck that died and this corresponds to the 48  covariate, .>2 >2

%)X

Inference follows usual likelihood methods: K-L information can be estimated using AIC,
AIC , or QAIC , models can be ranked using the , Akaike weights and evidence ratios can- - 3?
measure strength of evidence for various covariate models.  Further inference can be based on
the  and se( ), etc.^ ^^" "

An Example of the Application

Assume a biologist has found 88 active nests of the red-cockaded woodpecker in which nest
initiation occurred on the same day.  She selects a single nestling from each of the 88 nests
and measures 3 covariates on each of these 88 nestlings.  The covariates measured are the
number of ectoparasites found, the number of hatchlings in the nest, and the weight at
hatching.  The “first" occasion is actually on day 3 following hatching.  Each bird is tagged
uniquely with a colored leg band to allow it to be identified and its fate determined visually by
daily inspection of the nest.  Birds are followed for 12 days (while they are still in the nest;



they typically start to leave the nest after 15 days) and their fate is determined daily.  Thus, the
data follow the known fate scenario, even though animals are not fitted with radios.
Overdispersion should not be a factor as only one bird in each nest is the subject of the study.
Sample size is 88 (no staggered entry) and there are 12 occasions (days 3, 4, ..., 15).

If the data were modeled without an occasion effect (i.e., model { , rather than model { },S S(.) >

one might potentially include the model with all three covariates for each individual
woodpecker ( ), asi

                 log /(1- )   =  + ( ) + ( ) + ( ) ,/ 3 3 ! " # $Š ‹S S E H W" " " "3 3 3

where,
  is the number of ectoparasites on day 3 (= occasion 1)E3

  is the number of nest mates on day 3H3

  is the weight of the nesting on day 3.W3

Of course, other models would be considered in making inferences from these data,a priori 
this is just an example.  One might ask if any of the individual covariates are important.  If so,
which covariate is more important?  Should 1 or 2 or all 3 covariates be included in a good
model for these data?

The estimation would focus on the  parameters, but the would be interesting."  interpretation 
For example, one might look at the mean of the  given that all the covariates were held atS3

their average values.  Then this mean might be compared with means for low vs. high values
of weight and the number of nest mates.  One could compute the values of  for a range ofS
ecoparasites, while holding the other covariates at their mean values.  Other possibilities exist
and could be explored for the selected model.

The estimates of the survival probabilities (by individual) can be plotted in Excel or any other
convenient software package.  That is, given the logit (or whatever link function is chosen),
the individual covariates and the , one can plot the derived ,"̂4 3S
program MARK does not provide such plots (but you can export the beta estimates to Excel
and do the plots yourself).  Instead,  (either the derived survival for the first animal in theŜ"

encounter history matrix, or for the mean of the individual covariate, or else a value you
specify) is provided as a check.

Now, one can see that individual covariates can be used in the band recovery models and the
open capture-recapture models.  Too few biologists are taking full advantage of the
information contained in individual covariates.

Note, there are problems if the covariate changes through time in the band recovery and open
C-R models.  For example, if weight changes throughout the study period, one only has
weights for those animals recaptured at various occasions.  Thus, when animals are not
captured (e.g., the “never recaptured" animals) then the value of their covariate at that time is



not known!  This issue is not a problem with the known fate models if animals are actually
handled (as opposed to merely being resighted).


