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Reading Assignment:
   Lebreton et al. (1992) Ecological Monograph

Two good references on likelihood methods:
Azzalini, A.  1996.  Statistical inference based on the likelihood.  Chapman and Hall.

Royall, R. M.  1997.  Statistical evidence: a likelihood paradigm.  Chapman and Hall.

Relationship of PIMs, Design Matrix, and Estimates

 The PIM matrices define the number of parameters that can be estimated.  The number
of parameters determines the number of rows in the design matrix.  For an identity design
matrix, the number of rows and the number of columns is identical, so that there is a one to
one correspondence between the columns of the design matrix, and the estimates.  However,
the design matrix allows additional constraints to be placed on the parameters specified in the
PIMs.  Hence, the number of columns in the design matrix specifies the number of actual
parameters that are estimated, which are the 's.  The link function converts the 's of the" "
desing matrix into the real parameter estimates.

 The relationship looks something like this.

PIM  Design Matrix  Link Function Real Parameter EstimatesÖ Ö Ö

                 Modeling Survival or Reporting Probabilities

We begin by considering model If one has banding and recovery data over, say, 15 { , }.  S r>

years (or occasions) and has 15 MLEs of the conditional survival probabilities, questions arise
as to what caused them to vary or, at least, what factors might have been associated with this
variation.  The investigator remembers that 1984 was a very bad winter and that 1992 and
1993 seemed very ideal.  Thus, prior to data analysis one might hypothesize one or more
covariates as been associated with conditional survival (or reporting) probabilities.

The first approach might be to plot the MLEs ( ) against the covariate (say,  =Ŝ P4

precipitation defined in some biologically meaningful way).  Then, if not thinking very
clearly, one might consider a least squares regression of the  against .  Therefore, theS P^

4 4

model

                                          =  + ( )  S P4 ! " 4" " %„
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This is poor procedure as it violates most of the assumptions about “regression."  For example,
the  (the residuals) are not independent, not normal (except asymptotically), and do not have%4
constant variance.  Dependence is established by the sampling variance-covariance matrix of
the model parameters.  The errors are binomial/multinomial; not particularly normal.  The
sampling variances are hardly constant.  Thus, least squares “regression" will not provide
estimates of the intercept ( ) and slope ( ) parameters because important assumptions have" "! "

been violated. , the predicted survival probability for an extreme value ofIn addition
precipitation might be >1!  This is not desirable.

The solution to these issues is to embed the submodel

                                             + ( )  " " %! " 4P „

in the log-likelihood function.  That is, substitute the expression  + ( ) everywhere in the" "! " P"

log-likelihood function where  is found.  Then, substitute  + ( ) everywhere in the log-S P" ! " #" "
likelihood function were  is found, etc., etc.S#

When this process has been completed, the log-likelihood has no conditional survival
parameters left and only the parameters  and  remain (plus the reporting probability, )." "! " r
Thus,  = 3 (instead of 16).K

Thus, numerical methods can be used to get the MLEs , , and ; These are the values that^ ^" "! " r̂
maximize the log-likelihood function.  Of course, their associated variance-covariance matrix
can be gotten.  The parameter estimate  provides information about the positive or negative"̂"

slope between and  in terms of the assumed linear relationship.  Looking at theS  P4 4

confidence interval around  provides some rough indication of the evidence for a"̂"

relationship between these variables (or parameters).   QAIC  will sort out the support for this-

model in relation to others in the set to be considered.

Most interesting is the fact that the estimates  and  and the assumed linear structure can^ ^" "! "

be used to derive estimates of the annual, conditional survival parameters (the ).S4

Furthermore, these estimates will have a smaller sampling variance that those under the model
{ , }!  What?  Two reasons: (1) additional  has been provided in the form of theS r information>

covariate , and (2) a submodel has been imposed (assumed).  Such estimates of survivalP4

probabilities are termed .  The basic model parameters are merely , derived parameters " "! "

and  where  = 3.  The 15 estimates of survival probability are  from these.r K derived

There are two reasons for using such a submodel:  (1) statistical reasons and the Principle of
Parsimony and (2) biologists want to explore associations between estimated parameters and
external covariates.  Still, such an approach does not keep the derived survival probabilities
Ÿ  1.  The solution to this issue is to employ a nonlinear .link function
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                                 Link Functions and Covariates

There are several choices of link functions that provide increased biological realism over a
linear model and constrain the estimated model probabilities to the interval [0,1].  The
workhorse for this class of models is the logistic (sub) model.

Logistic:

              =      =     S4
1 1

1+e 1+exp(-[ + ( )])–[  + ( )]" "! " 4L
! " 4" " H

This submodel recognizes that the survival parameter is a probability, hence bounded between
0 and 1.  Some other choices for link functions are summarized below:

Function Link
 
Logistic:
             =      log /(1- )   =  + ( )S S S H4 / 4 4 ! " 4

1
1+exp(-[ + ( )])" "! " 4H Š ‹ " "

Log:
             = exp({ + ( )}) log ( ) =  + ( )S H S H4 ! " 4 / ! "" " " "4 4

Log-log: 
             = exp[-exp({ + ( )})] log –log ( )  =   + ( )S H S H4 ! " 4 / / ! "" " " "Š ‹4 4

Complementary log-log:
             = 1 – exp[-exp({ + ( )})] log –log (1- )  =  + ( )S H S H4 ! " 4 / / 4 ! "" " " "Š ‹ 4

Sin:
             = [sin({ + ( )}) + 1]/2 arcsin(2 -1) =  + ( )S H S H4 ! " 4 4 ! "" " " " 4

Identity:
             =   + ( )   =  + ( )S  H S H4 4 4" " " "! " 4 ! "
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Either or  can be modeled using a “link function."  This is particularly useful whenS r
analyzing multiple groups.  Note, the introductory material (above) dealt what we will now
call the “identity link" in that no transformation is made.  This has several disadvantages.

We begin by considering a logistic (sub)model of survival probabilities as a function of
precipitation ;P

                                =   .S4
1

1+e–[  + ( )]" "! " 4P

Conceptually, this expression is substituted in the log-likelihood for all values of .  In termsS4

of modeling, it is most convenient to consider the logistic transform = the link function,

                          logit( ) = log   =  + ( ).S P/ ! "Š ‹S
S1- " "

This is the linear model which people seem to be familiar.  This approach can be extended.
For example, perhaps one hypothesizes that conditional survival probabilities are associated
with precipitation but varies by gender (G);  then,

                     logit( ) = log   =  + ( ) + ( ) ,S P G/ ! " #Š ‹S
S1- " " "

where, now  is a continuous covariate while  is an instrumental (or dummy) variable takingP G
values of 1 or males and 0 or females (or vice versa, if one wants).  This submodel allows a
linear relationship between logit( ) and  with males and females being parallel; the malesS P
being higher by an amount  (or lower if this estimated parameter is negative).  Already,"̂#

considerable flexibility can be achieved in modeling survival (or reporting) probabilities.

Consider the further extensions,

          logit( ) = log   =  + ( ) + ( ) + ( ) + ( ),S P G W G*W/ ! " # $ %Š ‹S
S1- " " " " "
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where,  =       precipitation (continuous)p
  =       gender (1 = male, 0 = female)  (2 “groups")G
  =      winter weather (0 = above average, 1 = below average) (2 “groups")W
  = interaction term between gender and winter weather.G*W

Note, the variables  and  are discrete (0 or 1) variables while  is a continuous covariate.G W P
In this case, one might want to consider the model without the interaction term.

Similar modeling can be done with the other link functions and allows great flexibility in
modeling.

Consider 2 groups, males and females:

Males                                  m34
2000           30    70   114    43    15

2000                 80    97    55    19

2000                      169    46    10

2000                             72    24

2000                                   34

Females                                m34

2200           28    66   111    38    11

2200                 71    91    50    12

2200                      149    41     9

2200                             69    20

2200                                   31

A number of models could be considered for the parsimonious analysis of these data
using link functions.  Other examples could include tag recovery data for 3 areas, or k
age classes, or combinations of age, gender, and area.

Models for formal treatment vs. control experiments represent a particluarly important
class of models.  Here some of the animals are given a treatment, with the other
animals serving as a control.  Of course, the assignment of animals to the two groups
must be randomized.  The AFS Monograph #5 by Burnham et al. (1987) treats these
cases.
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Link functions and a continuous covariate can be used to model long term trends in
survival probabilities.  Here the logistic link model is

               log /(1- )   =  + ( )/ 4 4 ! " 4Š ‹S S T" "

where  is year, 1, 2, 3, ..., 15 in the plot shown below.  The trend is linear on logit ( ),T S
and nearly linear (over a narrow range) on S.

Also shown are the estimates from the year-specific model.
Question:  Which of these two models is better?
Why?  in what sense “better"?

Often there is a hypothesized “parallelism" in survival of the sexes, across time.  This
is easy to model,

               log /(1- )   =  + ( + ( ) + ( ) . . ./ 4 4 ! " # " $ #Š ‹S S G) t t" " " "

where  is a dummy variable (say, 0=male and 1=female) and the  is a set of dummyG t3
variables to index year.  (Design matrix)
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Model is { }, to indicate that gender is an additive component to the year-specificS r1+>, 
variation in survival across years.  On the logit scale, the estimates are parrallel for the
2 sexes.
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Modeling the reporting (sampling) probabilities as  (i.e., year-specific) requires manyr>
parameters.  If there are 11 years of recovery data, one would need to estimate about
11 parameters for just the recovery probabilities,

                                r ,  r , r , . . . r ." # $ ""

This is poor practice if some data on tagging effort is available.  e. g., number of
tagging days, number of person hours, number of nets used, etc.  If such data on effort
( ) is available, one can model the recovery probabilities as a function of effort asE

                       logit( ) = log (1- )  =  + ( ).r r/ r E/ ! "Š ‹ " "

Thus, only 2 parameters are required, instead of 11.

Question:  is this approach better, given a particular set of data?  Which model should
be used for inference?
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Assume a data set, 4 release occasions and 4 recovery years; data might bet œ

                (i)                 (i,j)R m
2448     112   65    90   68
2545           81   142   96
1205                 63   55
1511                      92

For model { }, the (real) parameters areS , r> >

 ,  ,  ,  ,S S S S1 2 3 4
 and
 ,  ,  ,  r r r r1 2 3 4

(with only the product (1 )  estimable). S r4 4

MARK design matrix fits all models via a linking these “real" parameters to regression-type
“beta" parameters. For example, with a 1-1 link function between these two types of
parameters, if we wanted a reduced parameter model with , ,  , S S S S r r r r1 2 3 4 1 2 3 4œ œ œ œ
we could specific this model via the design matrix approach using equations

S  1 1œ œ" 1 0 0 0†  †  †  †" " " "1 2 3 4
S  2 1œ œ" 1 0 0 0†  †  †  †" " " "1 2 3 4
S  3 2œ œ" 0 1 0 0†  †  †  †" " " "1 2 3 4
S  4 2œ œ" 0 1 0 0†  †  †  †" " " "1 2 3 4
r  1 3œ œ" 0 0 1 0†  †  †  †" " " "1 2 3 4
r  2 4œ œ" 0 0 0 1†  †  †  †" " " "1 2 3 4
r  3 4œ œ" 0 0 0 1†  †  †  †" " " "1 2 3 4
r  4 4œ œ" 0 0 0 1†  †  †  †" " " "1 2 3 4

This set of equations provides a model wherein the 8 apparent  and  parameters are in factS r
produced by only 4 ( ) parametersœ K

An easier to “read" symbolic representation of this model-form as imposed on the otherwise
time-specific  and  parameters isS r

                             " " " "1 2 3 4
 1     0      0     0S  1 œ
 1     0      0     0S  2 œ
 0     1      0     0S  3 œ
 0     1      0     0S  4 œ
 0     0      1     0r  1 œ
 0     0      0     1r  2 œ
 0     0      0     1r  3 œ
 0     0      0     1r  4 œ



FW663 -- Lecture 6 10

The 8 (rows) by 4 (columns) matrix of known constants, ones and zeros here, is the design
matrix S t r tfor the reduced model starting from the full { ( ), ( )} model. In matrix notation:
parameter vector X . The number of columns of the design matrix corresponds exactly toœ


"

the number of  parameters.  As a matrix in this example, the design matrix is simple"

  1     0      0     0
 1     0      0     0
 0     1      0     0
 0     1      0     0
 X   0     0      1     0œ
 0     0      0     1
 0     0      0     1
  0     0      0     1

So, to specify a reduced (i.e., simpler) model to  based on a given easily-specifiedMARK
general model (in terms of PIMs), it suffices to “tell"  the desired design matrix, i.e., theMARK
known coefficients in some generalized linear relationship between each real parameter, S or
r, and the beta parameters. For example, if a logit link is used then implicitly we are using
relationships like

 log 1 0 0 0 S
S
1

11 1 2 3 4 1 œ †  †  †  † ´" " " " "

or

 log 0 0 0 1 r
r

3
31 1 2 3 4 4 œ †  †  †  † ´" " " " "

Hence, in the likelihood everywhere  appears we would replace it byS1

 S1
1

1œ
e †  †  †  †(1 0 0 0 )1 2 3 4" " " "

or

 r3
1

1œ
e †  †  †  †(0 0 0 1 )1 2 3 4" " " "

The link function and the design matrix can (and are) specified independently. You can
have the same design matrix with any link function in .MARK
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In the above example the “effects" on the  and  are qualitative  (like an ANOVA).S r
We can have more regression-like models if we have more typical covariates, such as harvest
pressure, or environmental variables that might affect survival, or sampling effort that might
affect reporting or capture rates. For example, let x  be an annual index of harvest pressure,i
such as  x 3.5,   x 4.2,   x 7.1,   x 6.5.  Now we can use the regression-like1 2 3 4œ œ œ œ
model

 log x S
S
i

i1 1 i 2 œ  †" "

Keeping the same model for the  as above, the design matrix isri

                                            " " " "1 2 3 4

 1     3.5    0     0S  1 œ
 1     4.2    0     0S  2 œ
 1     7.6    0     0S  3 œ
 1     6.5    0     0S  4 œ
 0     0       1     0r  1 œ
 0     0       0     1r  2 œ
 0     0       0     1r  3 œ
 0     0       0     1r  4 œ

If we had a covariate  linearly related to as  asy ri i

 log y r
r

i
i1 3 i 4 œ  †" "

we could use a model, via the design matrix, below:

  1     x      0     01
 1     x      0     02
 1     x      0     03
 1     x      0     04
   0     0       1    y1
 0     0       1    y2
 0     0       1    y3
  0     0       1    y4
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The first reduced model above ( 4, qualitative effects) can be specified to  usingK  MARKœ
PIMs. The PIMs for  and  would look like (respectively)S r

1  1  2  2               3  4  4  4
   1  2  2                  4  4  4
      2  2                     4  4
         2                        4

There are now 4 real parameters and  would use, by default, an identity design matrix.MARK
But there would be a design matrix there is always a design matrix.

We could take for this example data the default PIMs below

1  2  3  4               5  6  7  8
   2  3  4                  6  7  8
      3  4                     7  8
         4                        8

Then we specify to  the 8 by 4 design matrix for the reduced “ANOVA" like modelMARK
(i.e., , etc.). However, here the regression like model must be specified by starting withS S1 2œ
the general model and then creating the underlying design matrix for  to use.MARK

For covariate-based models you must use the design matrix option to specify the model.

There is another type of time varying “covariate" model: smooth trends or patterns in the
temporal sequence of survival (or reporting rate) parameters. You might think the annual
survival rates are trending down (or up) in a linear fashion. The model to use is then

 log i S
S
i

i1 1 2 œ  †" "

(or an identity link). (This is a { (T)} model). For this trend model and for unrestricted  theS ri
design matrix is

  1   1    0   0   0   0
 1   2    0   0   0   0
 1   3    0   0   0   0
 1   4    0   0   0   0
   0   0    1   0   0   0
 0   0    0   1   0   0
 0   0    0   0   1   0
  0   0    0   0   0   1
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If we also want to have a model with a linear trend on the , henceri

 log i r
r

i

1 3 4 i
œ  †" "

the design matrix must be

  1   1    0   0
 1   2    0   0
 1   3    0   0
 1   4    0   0
   0   0    1   1
 0   0    1   2
 0   0    1   3
  0   0    1   4

This is model { (T), (T)}.S r

There is another type of covariate we can include in our models of survival and
reporting rates: individual covariates, such as weight on release, or some continuous index of
fitness. (The above examples are temporally varying covariates that effect all animals
equally). Individual covariates included in the data are input with individual encounter
histories, such as

1   2   3   4
LD LD LD LD     size  sex  site
10 00 01 00  1   30    1    1
00 11 00 00  1   18    0    2
00 10 00 01  1   23    1    1
00 00 10 00  1   15    0    2

If we now fit a model with full time effects and one individual covariate applied to both  andS
r S S S S r r r r there would still be the 8 “real" parameters ( ,  ,  ,  ,  ,  ,  ,  ) implicitly in the1 2 3 4 1 2 3 4
likelihoods (i.e., models). However, the full specification of the model takes 10 actual “beta"
parameters:  to . The design matrix as specified to  looks like" "1 10 MARK



FW663 -- Lecture 6 14

                               " " " " " " " " " "1 2 3 4 5 6 7 8 9 10
S  1 1    0     0     0    0    0    0    0     size    0
S  2 0    1     0     0    0    0    0    0     size    0
S  3 0    0     1     0    0    0    0    0     size    0
S  4 0    0     0     1    0    0    0    0     size    0
r  1 0    0     0     0    1    0    0    0     0      size
r  2 0    0     0     0    0    1    0    0     0      size
r  3 0    0     0     0    0    0    1    0     0      size
r  4 0    0     0     0    0    0    0    1     0      size

This is only one possible ordering of the design matrix columns. There is no intrinsically
required ordering.

You do not build a row in the design matrix for every animal.  Instead, with models
that include individual covariates  is told it is such a model type.  Also  is toldMARK MARK
the names of the covariates that are with the individual encounter histories. So MARK knows
to build the likelihoods history-by-history. Ignoring sex and site as factors in the model here,
for the first animal the likelihood contribution is

 (1 )_animal(1) 1 2 3 3œ S S S r

with (for logit link) relationships

  log 30 S
S
1

11 1 9 œ  †" "

  log 30 S
S
2

21 2 9 œ  †" "

  log 30 S
S
3

31 3 9 œ  †" "

 log 30 r
r

3
31 7 10 œ  †" "

The real strength of certain types of parsimonious models that have to be expressed in design
matrix form arise when there are multiple data sets or what is essentially the same thing,
multiple factors possible effecting survival and reporting rate parameters.  Hence a context of
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                  Multiple Factors and/or Data Sets

time
age

  gender
area (capture sites)         group effectsÃ
control/treatment
sampling effort
environmental factors
regulations

We will now focus on the interplay of time and group factors in building models. There are
models such as

{ (g*t), r(g*t)} a separate {S(t), r(t)} model for each groupS ´
{ (t), r(g)}S
{ (g), r(t)}S
{ (g+t), r(g+t)}S
{ (g+t), r(g)}S
{ (t), r(t)}S
{ (g), r(T)}S
{ (g+T), r(g+T)}S
{ (g+T), r(t)}S
{ (T), r(T)}S
{ (g), r(g)}S
{ (.), r(.)}S
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We focus on the additive effects models, such as { (g+t), r(g t)}, which is definable toS 
MARK by its design matrix. We must now have at least two groups; I will assume two groups
and first focus on the part of the design matrix for survival rate.

S  m1 1    1  0  0    1     0  0
S  m2 1    0  1  0    1     0  0
S  m3 1    0  0  1    1     0  0
S  m4 1    0  0  0    1     0  0
S  f1 1    1  0  0    0     0  0
S  f2 1    0  1  0    0     0  0
S  f3 1    0  0  1    0     0  0
S  f4 1    0  0  0    0     0  0
r  m1 0    0  0  0    0     1  1
r  m2 0    0  0  0    0     1  1
r  m3 0    0  0  0    0     1  1
r  m4 0    0  0  0    0     1  1
r  f1 0    0  0  0    0     1  0
r  f2 0    0  0  0    0     1  0
r  f3 0    0  0  0    0     1  0
r  f4 0    0  0  0    0     1  0

The above design matrix is for model { (g t), r(g)}, for two groups (female and male at oneS 
tagging site for four years).

This model has 7 intrinsic parameters (the ) even though it has (nominally) 16 realK œ "
parameters. The most general model here would have 14 estimable parameters. If theK œ
reduce model is suitable we should prefer it better represents the information in the data and
because it will provide more precise estimates of the survival and reporting rate parameters.

These additive effects models can be a lot more parsimonious than the effects-
saturated model ({ (g*t), (g*t)}). Consider the comparison in terms of  for 8 and 4:S r K t gœ œ

model { (g*t), (g*t)}   then 60S r K œ
model { (g+t), (g+t)} then 21S r K œ
model { (g+t), (g)} then 15S r K œ
model { (g+T), (g)} then  9S  r K œ
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Consider the design matrix for model { (g+T), (g)} for 3 groups and 5 times. TheS r
model for the survival rates is like an analysis of covariance where there is one common slope
but each group has its own intercept.  The design matrix can be given as

S(1,1) 1  0  0  1   0  0  0
S(1,2) 1  0  0  2   0  0  0
S(1,3) 1  0  0  3   0  0  0
S(1,4) 1  0  0  4   0  0  0
S(1,5) 1  0  0  5   0  0  0
S(2,1) 0  1  0  1   0  0  0
S(2,2) 0  1  0  2   0  0  0
S(2,3) 0  1  0  3   0  0  0
S(2,4) 0  1  0  4   0  0  0
S(2,5) 0  1  0  5   0  0  0
S(3,1) 0  0  1  1   0  0  0
S(3,2) 0  0  1  2   0  0  0
S(3,3) 0  0  1  3   0  0  0
S(3,4) 0  0  1  4   0  0  0
S(3,5) 0  0  1  5   0  0  0
r(1,1) 0  0  0  0   1  0  0
r(1,2) 0  0  0  0   1  0  0
r(1,3) 0  0  0  0   1  0  0
r(1,4) 0  0  0  0   1  0  0
r(1,5) 0  0  0  0   1  0  0
r(1,1) 0  0  0  0   0  1  0
r(1,2) 0  0  0  0   0  1  0
r(1,3) 0  0  0  0   0  1  0
r(1,4) 0  0  0  0   0  1  0
r(1,5) 0  0  0  0   0  1  0
r(1,1) 0  0  0  0   0  0  1
r(1,2) 0  0  0  0   0  0  1
r(1,3) 0  0  0  0   0  0  1
r(1,4) 0  0  0  0   0  0  1
r(1,5) 0  0  0  0   0  0  1

There is an easier way to built this model for .  Let the PIMs for  be indexed by defaultMARK S
as below

1 2 3 4 5     6 7 8 9 10    11 12 13 14 15
  2 3 4 5       7 8 9 10       12 13 14 15
    3 4 5         8 9 10          13 14 15
      4 5           9 10             14 15
        5             10                15

Then initialize the three PIMs for r each to a constant:
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16 16 16 16 16   17 17 17 17 17   18 18 18 18 18
   16 16 16 16      17 17 17 17      18 18 18 18
      16 16 16         17 17 17         18 18 18
         16 16            17 17            18 18
            16               17               18

Now  “knows" there are only three reporting rates and the design matrix MARK for the same
model S r { (g+T), (g)} is as below:

S(1,1) 1  0  0  1   0  0  0
S(1,2) 1  0  0  2   0  0  0
S(1,3) 1  0  0  3   0  0  0
S(1,4) 1  0  0  4   0  0  0
S(1,5) 1  0  0  5   0  0  0
S(2,1) 0  1  0  1   0  0  0
S(2,2) 0  1  0  2   0  0  0
S(2,3) 0  1  0  3   0  0  0
S(2,4) 0  1  0  4   0  0  0
S(2,5) 0  1  0  5   0  0  0
S(3,1) 0  0  1  1   0  0  0
S(3,2) 0  0  1  2   0  0  0
S(3,3) 0  0  1  3   0  0  0
S(3,4) 0  0  1  4   0  0  0
S(3,5) 0  0  1  5   0  0  0
r(1) 0  0  0  0   1  0  0
r(2) 0  0  0  0   0  1  0
r(3) 0  0  0  0   0  0  1

For many reduced parameter group and time models there is no unique way to represent the
design matrix to , even though the fitted model is unique (i.e., the 's and 's you get^ ^MARK S r
will be unique for the data).
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Now, a few summary statements:
1.   always bases the fitted model on a design matrix.MARK
2.  The default is an identity design matrix given the parameters established by the PIMs.
3.  Otherwise, you first set up the PIMs, then further constrain, or define, the model by using a
design matrix.
4.  Models fit by  are unique as regards the set of identifiable  and , but theMARK S r
underlying design matrix need not be unique (this makes it hard to teach principles of
constructing design matrices).
5.  Additive effects models (say g t effects) are basically setting interactions (g t) to zero; ‚
this is often the basis of a good  with limited data (ala parsimony) (a full effects model ismodel
group effects time effects all interactions a g*t model)  ´

Graphical examples of various models:
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Model {theta(g*t)}

Variation in theta by time and by group
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Variation in theta by time and by group
Additive model with no interactions
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No variation in theta by time or groups
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Variation in theta by groups
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Time trend in theta by groups
Additive model with interactions
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Time trend in theta by groups
Additive model with no interactions
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Time trend in theta


