lecture?

Suggedtions.

K eep working to understand the concept of a design matrix

Study the figures and modd naming conventions of various modelsin lectures; this
will help understand what the (sub)modd is achieving (a picture is worth a 1000
words-type of thing).

Start to review old mid-term exams to understand the type of questions to expect

Keep reading and re-reading materids, as your understianding of the subjects

increases, you can better understand points that were unclear on firgt reading.

Some Rules for Making Design Matrices

The purpose of the design matrix is to alow models that further condtrain parameter sets. These
condraints provide additiona flexibility in modding and adlows researchers to build models that
cannot be derived udng the smple PIMs in MARK. For example, the “+" modds (no interaction
terms) dlow a pardldism in time-specific parameters and this is often very useful in parsmonious
modding. The ability to modd parameters as nonlinear functions of covariatesis dso very important
(e.g., modding surviva probability as alogigtic function of precipitation).

The whole issue of model sdection takes on increased importance as biologists are able to build
complicated models (and submodels) of band recovery data and open capture-recapture data (e.g.,
what link function might be best? Are various interaction terms supported by the data? Is a sngle
modd clearly the best? Or are several models somewhat tied for “best"?).

Some ample“rules’ that might be helpful:
Use an intercept; a column of 1sin the first column.

If you have k categories (say, 4 study Stes), create k-1 columns (then 3 columns). Let the firgt
row of the k categories start with a 1, followed by Os, and let the last row of the k categories be a
row of Os.

Redlize that the columns of the desgn matrix correspond to the 5; and that the rows correspond to
the “red" parameters (i.e,, S; andr ).

The overdl design matrix can be thought of as a large matrix, separated into 4 “quadrants.” The
top left quadrant is for coding the surviva probabilities, while the bottom right quadrant is for
coding the recovery/reporting probabilities. The top right and bottom left quadrants are typicaly
dl Os. [Occasiondly one might want to model the S; as afunction of ther ; (or, thef;); then these
quadrants can be useful.]



Back-transformation and Link Functions

The link function (eg., logit(S)) alows one to consder the modeling in a linear fashion. We are dl
familiar with modd building in linear regression; the link function provides this same convenience.
Then, one must back-transform to get the derived parameters on the scale of [0, 1], as they are
probabilities.

The fundamental modd parameters are the 5; and their sampling variance-covariance matrix. These
are the MLEs and gotten by maximizing the log-likelihood function, etc. The back-transformation to
get the “red" parameters S; and r; is one to one; thus these parameters are dso MLEs and their
sampling variance-covariance can adso be estimated (this procedure represents an advanced topic
and we will study a little about it when we cover the so-cdled “deta method”). So, the estimators of
the red parameters are asymptotically norma, minimum variance and unbiased — al good
properties, if samplesarelarge.

The “gandard” link function is the logit-link, representing the logidic as a submodd. This is very
useful and our typical choice.

Numericdly, the sne function is often superior (note, it is the default option in MARK). Thismodd is
periodic; increasing and decreasing (Symmetric) models are “diced” from parts of the sne wave. In
many cases, maximization can best be done using this modd, particularly if the MLE lies on or very
near aboundary (usudly 1).

The log-log and complementary log-log functions are sometimes used because they are dightly
asymmetric.

Thelog function can be used, but does not congtrain the estimates to be within [0, 1].
Note, use of link functions always lets one consder the modding in alinear fashion (i.e,

Bo + B1(c) + Ba(c2) + - - - + Br(cy),

where the ¢; are observed covariates (either continuous or discrete or categoricd). Interactions
(¢;*c;) and transformations (loge(Cy;)) can be included in the linear (sub)model. Such covarictes are

assumed to be known (i.e,, without error, just as in “regresson” anaysis, one assumed the X; are
known without error).



Interpreting A-QAIC. Values

The various information theoretic methods (AIC, AIC. and QAIC.) can be used to rank the
candidate models from best to worst. Often data do not support only one model as clearly best for
dataandyss. Instead, suppose three models are essentialy tied for best, while another, larger, set of
models is clearly not gppropriate (either under- or over-fit). Such virtud “ties' for the best
gpproximating modd must be carefully consdered and admitted. Poskitt and Tremayne (1987)
discuss a “portfolio of models' that deserve find consderation. Chatfield (1995b) notes that there
may be more than one mode that is to be regarded as “useful.” The indbility to ferret out a sSngle
best model is not a defect of AIC or any other sdection criterion, rather, it is an indication that the
data are smply inadequate to reach such a drong inference. That is, the data are ambivaent
concerning some effect or parameterization or structure.

It is perfectly reasonable that severd modds would serve nearly equaly wdl in approximating
aset of data. Inference must admit that there are sometimes competing models and the data do not
support sdecting only one.  Using the Principle of Parsmony, if severd modes fit the data equaly
well, the one with the fewest parameters might be preferred; however, some consderation should be
given to the other (few) competing models that are essentidly tied as the best gpproximating modd.
Here the science of the matter should be fully conddered. The issue of competing models is
epecidly rdevant in including modd sdlection uncertainty into estimators of precison and mode
averaging. We will only touch on some of these more advanced issues but the reader should
understand that formal inference must sometime be based on more than just the (Sngle) “best” modd.

We routindy recommend computing (and presenting in publications) the AlC differences (rather
than the actud AIC vaues),

A; =AIC; — minAIC,

N

=E[1(1, 0] - mirEyfi(t, 91,

over dl candidate models in the st (MARK provides these vaues). Such differences estimate the
relative expected K-L differences between full truth f and the set of R approximating modelsg;(x | 6
). These differences apply to AIC, AIC., or QAIC.. These A; values are easy to interpret and
dlow a quick comparison and ranking of candidate models and are dso useful in computing Akaike
weights (see below).



The larger A is, the less plausible is the it? approximating model as being the K-L best
model for thedata. The following rough rules of thumb are useful:

For modd s where

Aj < 2 have subgtantia support and should receive consideration in making
inferences,

A; of about 4 to 7 have considerably less support,
A; > 10 have ether essentialy no support, and might be omitted from further
condderation (or & least those moddsfail to explain some substantial

explainable variation in the data).

If observations are not independent but are assumed to be independent, or if the sample Sze is very
small, then these smple guidelines cannot be expected to hold.

The Likelihood of a Model, Given the Data

We can extend the usua concept of the likelihood of the parameters, given both the data and mode,
i.e,

Lo |x, M),
to a concept of the likelihood of the mode, given the data, hence

LM |x ) oc exp(—ia))

where o« means “proportiond to." Further, it is ussful to normdize the L(M; | X ) to be a set of
positive “Akaike weights” w; , adding to 1

exp(—3Ai)

W = = .
Ee(p(_%Ar )
r=1



This idea of the likelihood of the mode given the data, and hence these model weights, has been
suggested for many years by Akaike (e.g., Akaike 1978b, 1979, 1980, 1981b and 1983b; aso see
Bozdogan 1987 and Kishino 1991) and has been researched some by Buckland et d. (1997).
These weights are cdled Akalke weights apply aso when using AIC:, QAIC, and QAIC, (and even
TIC, not yet discussed). The likelihood of each model, given the data and the Akaike weights are
not yet programmed in MARK.

The bigger a A is, the smdler the w;, and the less plausible is modd i as being the actud K-L best
model for f based on the design and sample size used. For example, consder R=7 modds, defined a
priori. The 7 A; values are (in order)

0, 1.2, 1.9, 35, 4.1, 5.8, and 7.3,
therelative likelihoods of the models are proportiond to the values,
1, 0.55, 0.39, 0.17, 0.13, 0.05, and 0.03
if these are normdized to Akaike weights, w; , we have,
0.43, 0.24, 0.17, 0.08, 0.06, 0.02, and 0.01.

In this example, the evidence suggests that the selected best modd is not convincingly best (i.e., 0.43
vs. 0.24). The best modd is only about twice as likely as the next best modd. This weak support
for the best modd suggests we should expect to see alot of variation in the sdlected best modd from
sample to sample if we could, in this Stuation, draw multiple independent samples.

In generd, likdihood theory provides a quantitative measure of data-based weight of evidence about
parameter vaues, given amodd and data (see e..g, Royadl 1997). This concept extends to evidence
about the relative likelihood of models, given ana priori set of models and the data.

Model Selection Uncertainty

Clearly, there is uncertainty in what model is selected as “best” asabassfor inference. Given severd
sets of data, independently generated from the same process, we would expect some variation in the



selected best modd using information theoretic criteria (or any other method, for that matter). This
variance component should be reflected in estimates of precision of the estimated modd parameters.

Congder amultiple, linear regression stuation. If one had 100 data sets, each with k x-variables and
each of sample gze n, on a particular system, then one expects the Least Square estimates of the
regresson (dope) parameters to vary from data set to data set.  This variation is measured by the
standard error of the estimated regression parameters (the 3;). Thisisameasure of precison (across
other data sets, even though such other data sets are not available). This is a conceptud issue —
measuring the precision (repeatability) asif other data sets existed on the same process.

The sdection of abest mode is amilar in that the best modd would likely vary from data set to data
s, if many such data sats were to exist. Thus, the measure of precision about an estimated
parameter should, idedly, include the usud standard error, given a modd, plus the variation
associated with the repeatabiility of selecting a particular modd.

We will not provide details on the incorporation of mode sdection uncertainty into estimates of
precison of parameter estimators, but people should be aware that this is an important issue in the
andyssof empirical data. Further details (more than you might think you want to know!) are given in
Burnham and Anderson (1998).



