
 lecture7

Suggestions:
 Keep working to understand the concept of a design matrix
 Study the figures and model naming conventions of various models in lecture6; this
    will help understand what the (sub)model is achieving (a picture is worth a 1000
        words-type of thing).
 Start to review old mid-term exams to understand the type of questions to expect
 Keep reading and re-reading materials; as your understanding of the subjects
     increases, you can better understand points that were unclear on first reading.

                 Some Rules for Making Design Matrices

The purpose of the design matrix is to allow models that further constrain parameter sets.  These
constraints provide additional flexibility in modeling and allows researchers to build models that
cannot be derived using the simple PIMs in .  For example, the “+" models (no interactionMARK
terms) allow a parallelism in time-specific parameters and this is often very useful in parsimonious
modeling.  The ability to model parameters as nonlinear functions of covariates is also very important
(e.g., modeling survival probability as a logistic function of precipitation).

The whole issue of model selection takes on increased importance as biologists are able to build
complicated models (and submodels) of band recovery data and open capture-recapture data (e.g.,
what link function might be best?  Are various interaction terms supported by the data?  Is a single
model clearly the best? Or are several models somewhat tied for “best"?).

Some simple “rules" that might be helpful:

Use an intercept; a column of 1s in the first column.

If you have  categories (say, 4 study sites), create -1 columns (then 3 columns).  Let the firstk k
row of the  categories start with a 1, followed by 0s, and let the last row of the  categories be ak k
row of 0s.

Realize that the columns of the design matrix correspond to the  and that the rows correspond to"3
the “real" parameters (i.e.,  and ).S r4 4

The overall design matrix can be thought of as a large matrix, separated into 4 “quadrants."  The
top left quadrant is for coding the survival probabilities, while the bottom right quadrant is for
coding the recovery/reporting probabilities.  The top right and bottom left quadrants are typically
all 0s.  [Occasionally one might want to model the  as a function of the  (or, the ); then theseS r f4 4 4

quadrants can be useful.]



                         Back-transformation and Link Functions

The link function (e.g., logit( )) allows one to consider the modeling in a linear fashion.  We are allS
familiar with model building in linear regression; the link function provides this same convenience.
Then, one must back-transform to get the derived parameters on the scale of [0, 1], as they are
probabilities.

The fundamental model parameters are the  and their sampling variance-covariance matrix.  These"3
are the MLEs and gotten by maximizing the log-likelihood function, etc.  The back-transformation to
get the “real" parameters  and  is one to one; thus these parameters are also MLEs and theirS r4 4

sampling variance-covariance can also be estimated (this procedure represents an advanced topic
and we will study a little about it when we cover the so-called “delta method").  So, the estimators of
the real parameters are normal, minimum variance and unbiased – all good asymptotically 
properties, if samples are large.

The “standard" link function is the logit-link, representing the logistic as a submodel.  This is very
useful and our typical choice.

Numerically, the sine function is often superior (note, it is the default option in ).  This model isMARK
periodic; increasing and decreasing (symmetric) models are “sliced" from parts of the sine wave.  In
many cases, maximization can best be done using this model, particularly if the MLE lies on or very
near a boundary (usually 1).

The log-log and complementary log-log functions are sometimes used because they are slightly
asymmetric.

The log function can be used, but does not constrain the estimates to be within [0, 1].

Note, use of link functions always lets one consider the modeling in a fashion (i.e., linear 

                                  + (c ) + (c ) +  + (c )," " " "! " " # # 5 5† † †

where the c  are observed covariates (either continuous or discrete or categorical).  Interactions3

(c *c ) and transformations (log (c )) can be included in the linear (sub)model.  Such covariates are3 4 5/

assumed to be known (i.e., without error, just as in “regression" analysis, one assumed the  areX4

known without error).



                             Interpreting -QAIC  Values? -

The various information theoretic methods (AIC, AIC  and QAIC ) can be used to rank the- -

candidate models from best to worst.  Often data do not support only one model as clearly best for
data analysis.  Instead, suppose three models are essentially tied for best, while another, larger, set of
models is clearly not appropriate (either under- or over-fit).  Such virtual “ties" for the best
approximating model must be carefully considered and admitted.  Poskitt and Tremayne (1987)
discuss a “portfolio of models" that deserve final consideration.  Chatfield (1995b) notes that there
may be more than one model that is to be regarded as “useful."  The inability to ferret out a single
best model is not a defect of AIC or any other selection criterion, rather, it is an indication that the
data are simply inadequate to reach such a strong inference.  That is, the data are ambivalent
concerning some effect or parameterization or structure.

It is perfectly reasonable that several models would serve nearly equally well in approximating
a set of data.  Inference must admit that there are sometimes competing models and the data do not
support selecting only one.  Using the Principle of Parsimony, if several models fit the data equally
well, the one with the fewest parameters might be preferred; however, some consideration should be
given to the other (few) competing models that are essentially tied as the best approximating model.
Here the science of the matter should be fully considered.  The issue of competing models is
especially relevant in including model selection uncertainty into estimators of precision and model
averaging.  We will only touch on some of these more advanced issues but the reader should
understand that formal inference must sometime be based on more than just the (single) “best" model.

We routinely recommend computing (and presenting in publications) the  (ratherAIC differences
than the actual AIC values),
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over all candidate models in the set (  provides these values).  Such differences estimate theMARK
relative expected K-L differences between full truth  and the set of  approximating models (f R g x3 ± )
).  These differences apply to AIC, AIC , or QAIC .  These  values are easy to interpret and- - ?i

allow a quick comparison and ranking of candidate models and are also useful in computing Akaike
weights (see below).



The larger  is, the less plausible is the  approximating model as being the K-L best?i i>2

model for the data.  The following rough rules of thumb are useful:

For models where

?i Ÿ 2 have substantial support and should receive consideration in making
          inferences,

?i of about 4 to 7 have considerably less support,

?i � 10 have either essentially no support, and might be omitted from further
         consideration (or at least those models fail to explain some substantial
         explainable variation in the data).

If observations are not independent but are assumed to be independent, or if the sample size is very
small, then these simple guidelines cannot be expected to hold.

                    The Likelihood of a Model, Given the Data

We can extend the usual concept of the likelihood of the parameters, given both the data and model,
i.e.,
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to , hence a concept of the likelihood of the model, given the data
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where  means “proportional to."  Further, it is useful to normalize the ( ) to be a set ofº _ M xi ±�
positive “ " , adding to 1:Akaike weights wi
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This idea of , and hence these model weights, has beenthe likelihood of the model given the data
suggested for many years by Akaike (e.g., Akaike 1978b, 1979, 1980, 1981b and 1983b; also see
Bozdogan 1987 and Kishino 1991) and has been researched some by Buckland et al. (1997).
These weights are called Akaike weights apply also when using AIC , QAIC, and QAIC and evenc c  (

TIC, not yet discussed).  The likelihood of each model, given the data and the Akaike weights are
not yet programmed in .MARK

The bigger a  is, the smaller the , and the less plausible is model  as being the actual K-L best?i iw i
model for  based on the design and sample size used.  For example, consider =7 models, defined f R a
priori. The 7  are (in order)?i values

                            0,  1.2,  1.9,  3.5,  4.1,  5.8,  and  7.3,

the of the models are proportional to the values,relative likelihoods 

                       1,  0.55,  0.39,  0.17,  0.13,  0.05,  and  0.03

if these are normalized to , we have,Akaike weights, wi

                     0.43,  0.24,  0.17,  0.08,  0.06,  0.02,  and  0.01.

In this example, the evidence suggests that the selected best model is not convincingly best (i.e., 0.43
vs. 0.24).  The best model is only about twice as likely as the next best model.  This weak support
for the best model suggests we should expect to see a lot of variation in the selected best model from
sample to sample if we could, in this situation, draw multiple independent samples.

In general, likelihood theory provides a quantitative measure of data-based weight of evidence about
parameter values, given a model and data (see e..g, Royall 1997).  This concept extends to evidence
about the relative likelihood of models, given an  set of models and the data. a priori

                      Model Selection Uncertainty

Clearly, there is uncertainty in what model is selected as “best" as a basis for inference.  Given several
sets of data, independently generated from the same process, we would expect some variation in the



selected best model using information theoretic criteria (or any other method, for that matter).  This
variance component should be reflected in estimates of precision of the estimated model parameters.

Consider a multiple, linear regression situation.  If one had 100 data sets, each with  -variables andk x
each of sample size , on a particular system, then one expects the Least Square estimates of then
regression (slope) parameters to vary from data set to data set.  This variation is measured by the
standard error of the estimated regression parameters (the ).  This is a measure of precision (across"3
other data sets, even though such other data sets are not available).  This is a conceptual issue –
measuring the precision (repeatability) as if other data sets existed on the same process.

The selection of a best model is similar in that the best model would likely vary from data set to data
set, if many such data sets were to exist.  Thus, the measure of precision about an estimated
parameter should, ideally, include the usual standard error, given a model, plus the variation
associated with the repeatability of selecting a particular model.

We will not provide details on the incorporation of model selection uncertainty into estimates of
precision of parameter estimators, but people should be aware that this is an important issue in the
analysis of empirical data.  Further details (more than you might think you want to know!) are given in
Burnham and Anderson (1998).


