
Lecture 8 -- Open Population Capture-Recapture Models
This is a rich class of models that are both quite similar to the band/tag recovery

models and also have some important differences.  Key references include Pollock et al.
(1990) for the Jolly-Seber model and Lebreton et al. (1992) for the Cormack-Jolly-Seber
model.  We will assume the reader has some familiarity with these source materials.  Many
will find Jolly (1965) very informative.  This paper was a landmark and contained several
insights that were not fully appreciated until 20 years latter.  Seber (1982) also has a nice
discussion of the basic, time-specific model.

Animals are captured on  occasions (say, years) and given a unique mark during ak
relatively short tagging period (say, week) each year.  Time periods could also be weeks,
months, or multiple year intervals.  After occassion 1, both marked and unmarked animals are
caught; tag numbers of the marked animals are recorded and the unmarked animals are
marked.  Animals are released back into the population; accidental deaths (losses on capture)
are allowed.  The Jolly-Seber model (after Jolly 1965 and Seber 1965) is fairly general and
serves as a starting point for open C-R modeling (see White et al (1982, chapter 8).  This
model allows year-specific estimates of apparent survival ( ), capture probability ( ),9 p
population size ( ), and the number of new individuals entering the population ( ).  WhileN B
population size can be estimated, it is often very difficult to avoid substantial bias in the
estimation of this parameter set because of individual heterogeneity and other issues.
Likewise, the  are subject to bias and often terrible precision.  Program  is the mostB POPAN74

capable software for the analysis of J-S data where there is interest in estimation of population
size and “births."

The Cormack-Jolly-Seber model is a restricted model (so named after Cormack's
model appeared in 1964) and allows only year-specific estimates of  and .  While less9 p
general, it has proven to be the more useful model for several reasons.  Program MARK
handles C-J-S data very well and that will be the emphasis here.  The material in Lebreton et
al. (1992) is current (except perhaps pages 80-84) and thus the notes provided here represent
only a brief overview.  Students are strongly encouraged to study Lebreton et al. and the
examples provided.  One important biological issue is that only apparent survival can be
estimated in the open C-R studies; that is 1–  represents both animals that died and animals9
that merely left the population (emigration).  In general,   This is often a significant9 Ÿ S.  
matter and often misunderstood.

Unlike the band recovery models where “sampling" tends to take place throughout the
range of the marked population, C-R sampling tends to be done by the investigators.  Thus,
animals are marked in a relatively small locality each year for several years.  The only way
recaptures are made is for these animals to come back to the same (relatively very small) area
where capturing is being conducted.  Thus, an animal that comes back to the same general
area may not be recapture as it is a mile or two away from the capture site.  This issue can be
very problematic with migratory birds or fish that move considerable distances during the
course of a year.  Still, there are often cases where there is biological interest in  and the fact9
that some animals merely “left" is not problematic to the interpretation of the data.  White et
al. (1982: 183) provide some useful figures on the “open" models.
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                    Assumptions of the Open C-R Models

1.  Tagged fish are representative of the population of fish to which inferences are to be made
(i.e., tagged fish are a random sample of the population of interest).

2.  Numbers of releases are known (the ).R3

3.  Tagging is accurate, no tag loss, no misread tags, no data entry errors.

4.  All releases are made within relatively brief time periods. (Relative to time intervals
between tagging periods.)

5.  The fate of individual fish and the fates of fish in differing cohorts are     independent.
(counter example:  banding of a mated pair of adult Canada geese; these might behave as one
unit, instead of two independent trials (flips)).

6.  Fish in an identifiable class or group have the same survival and reporting probability
(parameter homogeneity) for each time interval.

7.  Parameter estimates and sampling covariances are based on a good approximating model.
The basis for inference is the model, thus, results are conditional on the model used.

Known Constants:

R   i.  3 The number of animals released in year These released are typically made up of animals
newly captured, tagged and released, as well as animals already tagged and re-released into a
new cohort.

Random Variables:

m   j i34 The number of recaptures in year  from releases in year .  A matrix of first recaptures.

Parameters:

94  Conditional probability of apparent survival in year ,  the animal is alive at thej given
beginning of year .   relates to the interval between capture periods!j 94

p    j4 Conditional probability of being captured (or recaptured) in year ,  the animal wasgiven
alive at the beginning of year .j

We use  to denote the total number of estimable parameters in a model.K
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It is assumed that capture and recapture is done within a relatively short time period (say, 1-3
weeks if survival is to be estimated over an annual period.

In general, the occasions can be separated by days or weeks in the case of short-lived insects
or months or small mammals; or years or groups of years.  Here, we will often use the word
“year."

The parameter  the capture probability at occasion , can be an “encounter"p , j4

including physical capture or the resighting of marked individuals.  Let the number of animals
released at each occasion be  and the recapture data be summarized as an  array, .  TheR m m3 34

m array provides the biologist with a way to view the data and a compact form.  The data in
this array are conditional on last release.  Thus, only the first (re)capture following release is
summarized in the  array.  The  array is useful in estimation, but a finer summary of them m
data is needed for a full goodness-of-fit test (i.e., either the encounter history matrix or the full
m array).

Open population C-R data are summarized by a encounter history (EH) matrix.  A full
discussion of this is found in Burnham et al. (1987:28-29).  Here a  denotes capture (or1
recapture) and a  denotes not captured (or recaptured) at occasion .  For example, consider a0 j
C-R survey over 7 occasions.  A particular animal might have the following encounter history,

                                   {1001101}

meaning that it was initially captured (and given a uniquely numbered tag) on occasion 1, was
not caught on occasion 2, was recaptured and re-released on occasions 3, 4, and 5, not
captured on occasion 6, and recaptured on occasion 7.  To better see the relationship between
the encounter history and the parameters under model { , examine the following diagram.9> >: ×

1  0  0  1  1  0  1Ä Ä Ä Ä Ä Ä
           9 9 9 9 9 9" # $ % & '

            : : : : : :# $ % & ' (

Note that no capture probability is associated with the first release, because the animal is
inserted into the population at this time. The probability of observing this encounter history is
9 9 9 9 9 9" # # $ $ % % & & ' ' (Ð"  : Ñ Ð"  : Ñ : : Ð"  : Ñ : Þ

The following example shows an animal that is first uniquely marked on the 3rd occasion.

0  0  1  1  1  0  1Ä Ä Ä Ä Ä Ä
           9 9 9 9$ % & '

            : : : :% & ' (

No information on  and , or  and  is provided by this animal. The probability of9 9" # # $: :
observing this encounter history is 9 9 9 9$ % % & & ' ' (: : Ð"  : Ñ : Þ
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A more complicated probability results when the animal is not captured on the last
occasion(s).  Consider the encounter history 0011110 that results in the following probability:
9 9 9 9 9$ % % & & ' ' ( ': : : Ò Ð"  : Ñ  Ð"  ÑÓ Þ The last term in brackets is the probability that the
animal is alive and not captured, plus the probability that the animal died before occasion 7.  If
an animal is not observed for the last 2 occasions, giving an encounter history of 0011100, the
following probability results: {  9 9 9 9 9 9$ % % & & ' ' ( ' &: : Ð"  : ÑÒ Ð"  : Ñ  Ð"  ÑÓ  Ð"  Ñ×Þ
As you can see, these encounter history probabilities get quite complicated when animals are
not observed for several occasions at the end of a history.  Note that if the animal is not
released back into the population, the complexity disappears, because the animals is known to
not be available for encounters.

 The input data file to Program MARK or Program RELEASE could be structured so
that every animal is represented by a row in the encounter history matrix.  This is often done.

A convenient alternative is to count all the animals with the same encounter history
(say, {00101} and note that 17 animals had this exact encounter history.  Then, the input file
to Program MARK can show this as

00101  17;

to indicate to  that 17 animals share this EH, rather than having to enter 17 lines into theMARK
input file.  This method is handy when there are 2 or more groups (say, males and females or
treatment and control).  Then, one might enter

00101  17 22;

to denote that 17 males and 22 females had the exact EH {00101}.  The Cormack-Jolly-Seber
model allows for “losses on capture" whereby animals might be deliberately removed from the
study population or might accidentally die in the trap.  Thus, the number captured may differ
from the number re-released.  The number lost on capture is denoted with a minus sign, e.g.,

00101 -1 -3;

to indicate that 1 male and 3 females were not re-released after capture at occasion 5.

There is the concept of a EH matrix for band recovery data, but in that case the
histories are of a few simple types;

           {100 01} or {100  },† † † † † †

that is, marked animals are either reported (dead) once following initial banding and release,
or they are never reported following initial release.  This simplicity makes it compelling to
merely summarize the data in the  array.  The matter is more complicated with openm34

population C-R data.  Here, one can consider the EH matrix as the basic data and estimation
and some testing can be done with data in this format.  In addition, there are two ways to
summarize the C-R data:  the full  array and the reduced  array.  A full discussion ofm m34 34
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these concepts is given in Burnham et al. 1987:34-35).  The full  array allows efficientm
goodness-of-fit testing and estimation.  We will cover this issue at a latter time but mention
that program  is still quite useful is providing a summary in the form of a full orRELEASE
reduced  array, and providing detailed goodness-of-fit testing (its estimation capabilities arem
more limited).

A major difference between band recovery and open C-R models is in the expectations
of the data.  Consider first the expectation, under model { , } for the encounter history9 p
{1001101}.  Although there are 7 values entered in the encounter history,

9(1– ) (1– ) (1– )p p p p p p.9 9 9 9 9

The pattern can be more easily seen if we denote (1– ) as  and then use parentheses to markp q
pairs of  and ,9 q

( )( )( )( )( )( ).9 9 9 9 9 9q q p p q p

Under model { , } the expectation is9> p

( )( )( )( )( )( ).9 9 9 9 9 91 2 3 4 5 6q q p p q p

In C-R data it is essential to formally include the fact that animals alive at the beginning of
occasion  were captured ( ) or not (1– ).i p p

The full and reduced  arrays can be constructed (  does this) from the EH matrix butm MARK
one cannot construct the EH matrix from the reduced  array.  Modeling can be done in somem
cases from either an  array or the EH matrix, but modeling individual covariates must bem
based on the EH matrix.

The  array also can be expressed as expectations under various models.  For example,m34

  2 3 4 5
R  m  m  m  m" "# "$ "% "&

R   m  m# #$ #&m  #%

R    m  m$ $% $&

R     m  .% %&

The element  denotes the number of marked individuals initially released at time 2 thatm#%

were  recaptured (encountered) at time 4.  In fact, some of those released at time 2 mightfirst
have been initially banded at time 1 (part of ), caught at time 2 and thus appearing in V Ð 7 Ñ" "#

and re-released at time 2 (part of ).  Both of the encounter histories {11 1...} and {01 1...}V ! !#

would contribute to the element 7 Þ#%
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Thus, it is clear that a single individual appears in a row of the  array only oncem34

(thus, the multinomial might serve as a useful approximating model).  Of course, a final
column could have been shown to indicate the number of animals never recaptured from a
released cohort.  Expectations of the  array also have a major difference from them34

expectations of band recovery data.  For example, under model { , }9> >p

C-R data                           E( ) = (1– )m R p p#% # # $ %9 9$

Band recovery data              E( ) = (1– )  .m R S S S r#% # % %# $

The primary difference is that the probability of not being caught at time  (i.e., 1– )j p
must also be included in the expectations.  Another example will make this more clear;

                     E( ) = (1– ) (1– ) (1– ) (1– )  .m R p p p p p"' # # $ $ % % & & '" "9 9 9 9 9

This denotes that the animal survived years 1, 2, 3, 4, 5, and was first recaptured in year 6.
However, it is also necessary to clearly indicate that the individual was not caught in years 2,
3, 4, and 5.

Other differences include the indexing and a switch from survival ( ) to apparentS
survival ( ).  Program makes this somewhat transparent in modeling the data.  Thus,9 MARK 
the PIMs can be set up in a manner similar to that for recovery data.  Likewise, modeling
survival or capture probabilities as functions of covariate via link functions is similar.  Model
selection theory and other tools are the same as those for the open C-R models.

Generally, the input data from open C-R studies is a encounter history matrix (see
Lebreton et al. 1992, Table 2).   can build the  array from this matrix.  Lebreton et al.MARK m
(1992:71) gives other examples of expectations, mostly involving the encounter history matrix
for individuals.

Why Model?

The model links, in a formal manner, the data { }, assumptions, unknown parametersR , m3 34

(the and ) and allows rigor in making inductive inferences via likelihood and information94 4 p
theory.

                         Models are an essential component of science.

Problems occur if an estimate  > 1; this is a diagnostic indicating an over-parameterized9̂4

model.  The model assuming the apparent survival and recapture probabilities { } are9, p
constant and always have estimates in the {0, 1} range.
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Note, that estimated  is an apparent survival probability in most cases because 1–  includes9 9
both animals that left the population through emigration as well as those that died.   is a9
finite rate (not instantaneous).

Models for Open Population Capture-Recapture Data

Modeling open population capture-recapture data involves the multinomialreparameterizing 
likelihood and log-likelihood.  First, we look at the structure of the parameters that might be
hypothesized to underly recovery data that we observe.

Consider the following  array for the sphinx moth –m34

i     R     m3 34

   j=2 3 4 5

1  800  30 60 117 44

2  730   55 91 51

3  715    119 56

4  807     70

5  601

We assume the occasions are a day and the interval between occasions are weeks in this
example.  More often, the occasions are in annual increments.  Notice that 44 moths tagged at
the beginning of week 1 were  recaptured in week 5;  , shown in bold.  Their encounterfirst m"&

history would be {10001}.

The number released at time 2 ( ) was 730 moths; this is 700 newly captured moths plus 30R#

that were first recaptured at occasion 2 and re-released into cohort 2 (the ). In a similarR#

manner, 715 moths were released at occasion 3; 600 of these were newly captured moths and
115 were moths re-released from being released in cohorts 1 (60 moths) and 2 (55 moths).

Each row of the array (recapture matrix) is a multinomial distribution (under certain
assumptions).  Moths released in the first cohort and  recaptured in week (or occasion) 2,first
..., 5 or “never."  The subscripting differs from that used in modeling band recovery data.
Note, also, that once a moth is first recaptured, it is either “lost on capture" or re-released into
another cohort (it becomes part of another ).R3

We begin with the saturated model for the moth data.  The  has as manySaturated Model
parameters as there are cells.  Here the subscripts  and  denote week-specific parameters (thei j
j i), specific to each released cohort (the ).
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Number   Expected Number of First Recaptures Following Release
Released
  j=2  3  4  5
R   R R               R    " " " "$ " "%)"#  ) ) R" "&)

R     R   R   R# # #$ # #% # #&) ) )

R       R   R$ $ $% $ $&) )

R         R% % %&)

R&

Thus,  = 10 as there are 10 cells in the moth example.  The fit of the saturated model isK
perfect and serves as a basis for comparison of fit of other models; it is also needed
to define deviance of other models (i.e., models with fewer parameters).

Model { }  9> >, p Here the subscript  denotes week-specific survival and recapture probabilities.t

Number                       Expected Number of First Recaptures following Release
Released
 j=2  3   4    5
R  R p  R p p  R p p p  R p p p p" " " # " " # # $ " " # $ % " " $ % % &9 9 9 9 9 9(1- ) (1– ) (1- ) (1– ) (1– ) (1- )9 9 9 9# $ # # $

R    R p   R p p    R p p p# # # $ # # $ % # # $ % &9 9 9(1- ) (1– ) (1– )9 9 9$ $ %

R       R p     R p p$ $ $ % $ $ % % &9 9 9(1- )

R            R p% % % &9

R&
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Model { }  9>, p Note the  appears without a subscript, meaning this parameter is constant andp
survival probability is time-specific.

Number                       Expected Number of First Recaptures following Release
Released
 j=2  3   4    5
R   R p  R p p  R p p p R p p p p" " " " " # " " " " %9 9 9 9 9 9(1- ) (1– ) (1- ) (1– ) (1– ) (1- )9 9 9 9# $ # $

R      R p    R p p   R p p p# # # # # # #9 9 9(1- ) (1– ) (1– )9 9 9$ $ %

R       R p    R p p$ $ $ $ $ %9 9 9(1- )

R           R p% % %9

R&

Model { }  9, p> In this case, apparent survival is constant, but recapture probability is week-specific.

Number                       Expected Number of First Recaptures following Release
Released
 j=2  3   4    5
R   R p  R p p   R p p p   R p p p p" " # " # $ " # $ % " $ % &9 9 9 9 9 9  (1- ) (1– ) (1- ) (1– ) (1– ) (1- )9 9 9 9#

R     R p     R p p     R p p p# # $ # $ % # $ % &9 9 9(1- ) (1– ) (1– )9 9 9

R        R p     R p p$ $ % $ % &9 9 9(1- )

R            R p% % &9

R&
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Model { } 9, p Note, here neither parameter is subscripted, implying they are constants (no time
effects).

Number                       Expected Number of First Recaptures following Release
Released
 j=2  3   4    5
R   R p  R p p  R p p p  R p p p p" " " " "9 9 9 9 9 9(1- ) (1– ) (1- ) (1– ) (1– ) (1- )9 9 9 9

R      R p   R p p    R p p p# # # #9 9 9(1- ) (1– ) (1– )9 9 9

R        R p     R p p$ $ $9 9 9(1- )

R            R p% %9

R&

The moth data could have been shown with the number never recaptured:

i     R     m3 34

   j=2 3 4 5 never

1  800  30 60 117 44 549

2  730   55 91 51 533

3  715    119 56 540

4  807     70 737

5  601

The number never recaptured from the cohort released in week 2 is 533 and its
expectation under Model { } is:9> >, p

     + R (1- ) + (1– ) (1– )R  – R p  p p   R p p p  # # # $ $ % # # $ % &Š ‹9 9# # $ $ %9 9 9 9

or

     730 – (55 + 91 + 51) = 533.

The expected number never recaptured from the cohort released in week 2 varies by model;
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e.g., for Model { } it is9, p

     + (1- ) + (1– ) (1– )R  – R p  R p p  R p p p# # # #Š ‹9 9 99 9 9

and this could be computed given the parameters  and , but in general, it will not9 p
equal 533 except for model { , }.  Thus, there is goodness-of-fit information9> >p
in the “never recaptured" cell for models other than { , }.9> >p

Program  computes these values, however, one must be aware of this additional cellMARK
in the multinomial distribution.
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For modeling in a likelihood framework, we will need to convert expectations to probabilities.
These can be obtained by merely dividing the expected cell values by the number released.

Model { }9> >, p

Number                            Matrix of Cell Probabilities for   E( )m m /R34 34 3

Released

R  p  p p  p p p  p p p p" " # " # # $ " # $ % " $ % % &9 9 9 9 9 9(1- ) (1– ) (1- ) (1– ) (1– ) (1- )9 9 9 9# $ # # $

R   p   p p    p p p# # $ # $ % # $ % &9 9 9(1- ) (1– ) (1– )9 9 9$ $ %

R     p     p p$ $ % $ % % &9 9 9(1- )

R          p% % &9

R&

Model { }9, p

Number                      Matrix of Cell Probabilities for    E( )m m /R34 34 3

Tagged

R   p p p p p p p p p p" 9 9 9 9 9 9(1- ) (1– ) (1- ) (1– ) (1– ) (1- )9 9 9 9

R     p  p p  p p p# 9 9 9(1- ) (1– ) (1– )9 9 9

R       p    p p$ 9 9 9(1- )

R            p% 9

R&

We will switch back and forth between expected values and probabilities, so people need to
get familiar with both expressions.
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Consider the log ( )  for the first week of release of tagged sphinx moths.  This/_ 9, p R , m± " "4

is the log of the likelihood of the parameters (the constant survival probabilities  and ),9 p
given the data from the release of tagged moths in week 1 (the and )R   m" "4

Consider the original data set on sphinx moths and the first row of the matrix;m  34

i     R     m3 34

   j=2 3 4 5

1  800  30 60 117 44

2  730   55 91 51

3  715    119 56

4  807     70

5  601

The cell probabilities under Model are:{ }  9, p

Number                      Matrix of Cell Probabilities for    E( )m m /R34 34 3

Tagged

R   p p p p p p p p p p" 9 9 9 9 9 9(1- ) (1– ) (1- ) (1– ) (1– ) (1- )9 9 9 9

R     p  p p  p p p# 9 9 9(1- ) (1– ) (1– )9 9 9

R       p    p p$ 9 9 9(1- )

R            p% 9

R&

The the log-likelihood of the parameters  and ,  the data (the number released in week9 p given
1 and the number of first recaptures in week  j from those released in week 1).

 log ( )  = log + log (1- ) + log (1– ) (1- ) +/ " / / /_ 9 99 9 9 9 9, p R , m m p  m p p  m p p p  ± " "4 "# "$ "%Š Š Š‹ ‹ ‹
                                  log (1– ) (1– ) (1- )m p p p p"& /Š9 99 9 ‹
                                  MARK+ (a term for those never recaptured,  handles this)
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The log-likelihood function for the tag recoveries from releases in week 2 is similar,

 log ( )  = log + log (1– ) +/ # / /_ 99 9 9, p R , m m p  m p p  ± # #4 #$ #%Š Š‹ ‹
                                  log (1– ) (1– )   + “never"m p p p#& /Š9 9 9 ‹

The log-likelihood functions for the tag recoveries from releases in weeks 3 and 4 are

 log ( )  = + log + log (1- )/ $_ 99 9 9, p R , m m p  m p p± $ $4 $% $&Š Š‹ ‹

 log ( )  = log ./ %_ 99, p R , m m p  ± % %4 %& Š ‹

Example, the log-likelihood for releases in week 3:

 log ( 715, 119, 56)  = 119log + 56log (1- )/ $_ 99 9 9, p p  p p± Š Š‹ ‹
                                      + (715-119-56)log 1– + (1- )Š Š Š9p  p p  ‹ ‹ ‹9 9

This function assumes the “data" are given; indeed, the data here include the 715 moths
released at the beginning of week 3 and the number first recaptured in weeks 3 and 4.  Only
the 2 parameters (  and ) are unknown and the objects of interest.  The log-likelihood9 p
function here is a function only of  and  (note,  = 2).9 p K

Note the final term for those moths from the 715 released is shown explicitlynever recaptured
in the final expression (above, in bold).

The total log-likelihood for all the recapture data for the 5 weeks of release is merely the sum
of the individual log-likelihoods (assuming independence of released cohorts),

         log ( ) = log ( ) + log ( ) + . . . + log ( )./ / " / # / &_ _ _ _9, p R , m± 3 34

Thus,
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log ( ) =  log + log (1- ) + log (1– ) (1- ) +/ / / /_ 9 99 9 9 9 9, p R , m m p  m p p  m p p p  ± 3 34 "# "$ "%Š Š Š‹ ‹ ‹
                                  log (1– ) (1– ) (1- )m p p p p"& /Š9 99 9 ‹

+                              log + log (1– ) + log (1– ) (1– )m p  m p p  m p p p#$ #% #&/ / /Š Š Š9 9 9‹ ‹ ‹9 9 9

+                              log + log (1- )m p  m p p$% $&/ /Š Š9 ‹ ‹9 9

+                              log .m p  %& /Š9 ‹
+                              complex “never recovered" terms.

Note, each term involving parameters in the log-likelihood function is of the form

                          DATA * LOG(PROBABILITY).

The “ " are the  (number tagged in week ) and the (number of first recapturesDATA R i m  3 34

following release at occasion .i

The “ " of observing the data is some expression of the unknown, underlyingPROBABILITY
parameters model  p, given a particular  (the and the ).  These are often called “cell94 4

probabilities."

 The log likelihood function can also be constructed from the encounter histories
matrix, which is how  actually works.  Thus, the log of the probability of eachMARK
encounter history is multiplied by the number of animals with that history, i.e.,

 log ( encounter histories) =/_ 9, p ±

! Š ‹
over all encounter histories

 (Number of animals) * log Probability(Encounter History)   ./

As you would expect, the resulting likelihood is identical for the likelihood constructed from
the array, although proving this result to yourself will require considerable algebra.  An734

important implication of this result is that the underlying multinomial distribution from which



FW663 -- Lecture 8 16

the likelihood function is developed can be constructed based on encounter histories, i.e., each
animal is placed in a multinomial cell determined from its encounter history.

Little complications that are important (trust  ):MARK

1.  A multinomial cell must be included for individuals in each released cohort that are
“never" recaptured.

2.  The multinomial coefficient  is shorthand forŠy  n
3‹

                                ( )! ( )! ( )! ,n!/ y y yŠ ‹" # 5† † †

This term does not involve any of the unknown parameters and is ignored for many estimation
issues.   handles this issue.MARK

In the moth tagging data we have multinomial coefficients in the overall likelihood; each of
the form

                              where  = 1, ..., 4 and  = 2, ..., 5. R
m

3

34   , i j

For  = 1,i

                            ( )! ( )! ( )! ( )!R ! m m m R – m" "# "$ "& " "4‚Š !† † † ‹
or
                              800! 30! 60! 117! 44! (800–251)!  .‚Š ‹

You can see why it is convenient to ignore this term!  Program  does such thingsDERIVE
easily; we will get to it soon.

Some Questions:

1.  What if some recaptured individuals are deliberately removed on occasion ?j
What is the likely effect of the estimators ?93

2.  What if the sample size  was actually made up of  groups of brood mates.  What mightR m3

one worry about (in terms of the multinomial model)?
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3.  The total log-likelihood is a sum of the log-likelihoods for each of the released cohorts.
But this is based on the notion that the cohorts are independent.  Is this a good assumption?
Why?  Why not?  When might it fail?

Why is the literature on the Jolly-Seber model so hard to follow?  Why so much notation that
seems not to be covered in lectures?  Why is the log-likelihood function not more prominent?

The original work on this class of models focused on model { , } and emphasized9> >p
estimators that existed in “closed form."  That is, the calculus was used to take first partial
derivatives of the log-likelihood function, set these to zero, and solve the resulting set of
equations to get computable estimators “formulae." The parameter being estimated was on the
RHS and the data could be substituted for the notation on the LHS and a numerical value
produced.

There are problems with this approach:

1.  Lots of notation is needed, and this is a bother to students trying to cope with the mass of
symbols, subscripts, Greek characters, etc.

2.  The notation has changed over the years as close relationships were found with the band
recovery models.

3.  Many (most) models of real biological data do not have closed form estimators (they do not
exist).

4.  In some ways, the focus on the closed form estimators hides the important concept of a log-
likelihood and its parameterization, the notion of parameter values that maximize this
function, etc.

5.  While some estimators are “computable" and exist in “closed form" they are often tedious
and error-prone if done by hand (e.g., Jolly 1965).  All such calculations are done by computer
anyway, thus we are teaching FW663 with relatively little emphasis on closed form estimators
and all the associated notation required.  Our approach puts a premium on the numerical
maximization of the log-likelihood and the shape of this function.

6.  For use in estimating population size at each time  (i.e., ), this model is subject toj N4

substantial bias in many cases.  Bias arises from heterogeniety of individuals and behavioral
response to trapping and handling.  In addition, (small sample) bias may arise from small
sample size in either or .   Curiously,  trends to be relatively free of bias.^R   m3 34 9

Conceptually,  =  (where  is bias).  But  is defined as So, the estimator ^ ^N N b b N /N .  4 4 4 4† 9 94 +1
= and the bias term in the numerator and denominator tend to cancel out.  Thus,N b/N b 4 4"† †

the estimator  generally has substantially less bias that the estimator .9̂ N̂
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Some questions to ponder:

1.  What if there is some individual variation among individuals (“individual heterogeneity")?
What effect might this have on  or ?^ ^9 p

2.  What if the time period between captures were unequal?  What would this do to ?  That9̂
about ?-

9

3.  What would you expect about precision if the  were large (say 1,100) but the wereR p  3 3

very small (say 0.02)?

4.  What treatments might be done with experimentation with marked populations.

5.  People interested in estimation of population size might want to study the “robust design"
variation of the Jolly-Seber model.

6.  Given a data set, what model should be used for making inferences from the sample data to
the population of interest?  How is one to decide upon a model;  allows the researcherMARK
to build many models with ease – which one(s) should be used?

Key References

George Jolly's (1965) paper is still an insightful paper.  Lebreton et al. (1992) and Burnham et
al. (1987) and Pollock et al. (1990) provide background reading.  Also, see George Seber's
1982 book.  Cormack's (1964) papers and Seber's (1965) paper are more difficult to read.  See
White et al. (1982) for photos and background of these people.


