lecture9
Overdispersion or Extra Binomial Variation

Count data often do not conform to smple variance assumptions implied in usng the binomid or
multinomia didribution. In the binomia modd it is assumed that each individud has the same
underlying probability of a “tal" (homogenety assumption) and that outcomes are independent
(independence assumption). Under this set of assumptions,

var(y) = np(1-p) and var(f) = 202

These modds of count data carry an assumed variance (and covariance) structure. If these idedl
assumptions are violated to some degree, the MLES are typicaly consistent (some smdl sample bias
might be present), but the estimated sampling variances and covariances are underestimated (i.e,
the actud variability in the estimates will exceed the estimated sampling variance). If the empirica
sampling variance > the theoretica variance, the Stuation is called “overdisperson” or “extra-binomia
vaiation." Thisreflectsalack of independence or heterogeneity among individuas.

There are gpproaches to coping with this real world issue (see Burnham et a. 1987:243-246;
the theory for this is due to Wedderburn 1974; adso see Anderson et d. 1994 dedling with the effect
of overdisperson in model selection in open capture-recapture models).

Extrabinomid variation might be expected when brood mates or mae-femde pairs are
banded. If these behave as a unit, then independence is likely to be violated. In the example of a
paired mae and femde bird, their fates (outcomes) may be linked; thus rather than a sample of 2, in
some sense they behave as asample of 1. Then, in the estimator of sampling variance [p(1-)]/n,
the sample Sze in the denominator is too large, thus the etimate is too smal (the sampling varianceis
underestimated).

Wedderburn suggests some sophisticated procedures for actudly modeling the residuas to
obtain improved estimates of the variance-covariance matrix. However, a Smple gpproach is often
very effective and easy to implement. Here, one starts with the goodness-of-fit (GOF) test datistic
for the globa mode (after any needed pooling of cellsto avoid expected values that are small) and its
degrees of freedom (again after any required pooling). Then, a variance inflation factor is
computed Smply as

€ = x2/df .

The estimate of a variance inflation factor should come from the global mode (the most
highly parameterized model in the set of candidate models). In the case of the band recovery models,
the deviance or the Pearson GOF test gtatistic could be used. In the case of the open population
capture-recapture modes, the egtimation of ¢ should come from the summation of TEST2 and
TEST3 (see Burnham et d. 1987)



In the case of independence and homogeneity ¢ = 1. In cases of some dependence or
heterogeneity, ¢ > 1. We recommend 2 considerations before using the variance inflation factor: (1)
knowledge of the biology leading to a suspicion of overdispersion, and (2) avaue of € that is, say,
1.3 or greater (perhaps congder the “significance” of the GOF test if the p-vauewas < 0.2). If the
degrees of freedom are smdl, (say less than about 5) then a smaler p-value should probably be used
(say 0.05 or even 0.01).

If, based on these 2 criteria (abiologica basis and an estimated variance inflation factor > 1),
overdisperson is though to be present, then both the estimated sampling variances and covariances
N
should be “inflated” by muitiplying them by €. Thus, the sampling variance would be'¢ - var(d) (then
N
the se(#) would be multiplied by the square root of ). One can see that if the estimated variance
inflation factor is near 1, the effect on the estimated standard errors is quite smal. In cases where
overdigoerson is more marked, then the inflation of the variances and covariances becomes

important. One might often expect 1 < ¢ < 4. A ample example of the variance inflation factor
for the open C-R modelsis given by Burnham et d. (1987:252-254).

If overdigoersion has been identified from using GOF test and its degrees of freedom from
the globa modd, then model selection must be based on QAIC or QAIC, as

QAIC = — [2|og(£(9))/6] + 2K,

QAIC. = — [2lo(c(H)/ €] +2k + 3G,

_ 2K(K+1)
=QAIC + =7 .

When no overdispersion exigts, ¢ = 1, the formulae for QAIC and QAIC,. reduceto AIC and AIC,,
respectively (see Lebreton et d. 1992 for originaly suggesting this approach; further details are given
in Anderson et d. 1994). Program MARK assumes c of 1; if overdigperson is a consderation, then
the value of € should beinput into MARK (under ADJUSTMENTS).

Of course, ¢ might be > 1 because the globd mode is structurally inadequate and no
overdisperson, in fact, is present. In this case, careful biological consderations should often dlow
the invedtigator to conclude that the GOF test is detecting lack of mode fit — not overdispersion.
However, if one does not understand that the inadequate model structure is being detected by the
GOF test and proceeds to inflate the estimated sampling variances and covariances, at least this might
lead to a conservative approach to inference.

As atechnica comment, Wedderburn (1974) provides theory to judtify the usuad MLESs as
(assymptoticaly) optima point estimators of the modd parameters, even when there is overdipserion
in the data.



