INFORMATION THEORY AND LOG-LIKELIHOOD
MODELS: A BASIS FOR MODEL SELECTION AND
INFERENCE

Full redity cannot be included in a modd; thus we seek a good model to approximate the
effects or factors supported by the empirical datae The sdection of an appropriate approximating
mode is critical to gatigtica inference from many types of empirica data. Information theory (see
Guiasu 1977 and Cover and Thomas 1991) and, in particular the Kullback-Leibler (Kullback and
Liebler 1951) “distance” or “information” forms the deep theoretica basis for data-based mode
sdection.  Akake (1973) found a smple reationship between expected Kullback-Leibler
information and Fisher's maximized log-likelihood function (see del.eeuw 1992 for a brief review).
This relationship leads to a dample, effective, and very generd methodology for sdecting a
parsmonious modd for the analysis of empirica data.

Some Background

Wil over a century ago measures were derived for assessng the “distance” between two
models or probability distributions. Most relevant here is Boltzmann's (1877) concept of generdized
entropy in physics and thermodynamics (see Akake 1985 for a brief review). Shannon (1948)
employed entropy in his famous treatise on communication theory. Kullback and Leibler (1951)
derived an information measure that happened to be the negative of Boltzmann's entropy: now
referred to as the Kullback-Leibler (K-L) distance. The motivation for Kullback and Leibler's work
was to provide a rigorous definition of “information” in reaion to Fisher's “aufficent datisics™ The
K-L distance has aso been called the K-L discrepancy, divergence, information and number — these
terms are synonyms, we tend to use distance or information in the materid to follow.

The Kullback-Lebler distance can be conceptudized as a directed “distance” between two
models, say f and g (Kullback 1959). Strictly spesking this is a measure of “discrepancy”; itisnot a
smple distance because the measure from f to g is not the same asthe measurefromgtof — itisa
directed or oriented distance. The K-L distance is perhaps the most fundamentd of al information
measures in the sense of being derived from minima assumptions and its additivity property. The K-
L distance between modelsis afundamental quantity in science and information theory (see Akaike
1983) and isthe logica basis for modd selection as defined by Akaike. In the heurigtics given here,
we will assume the models in question are continuous probability distributions denoted as f and g.
Biologigs are familiar with the normd, log-norma, gamma and other continuous didributions. We
will, of course, not limit oursaves to these common, smple types.

It is useful to think of f as full redity and let it have (conceptudly) an infinite number of
parameters. This “crutch” of infinite dimensonality at least keeps the concept of redlity even though it
isin some unattainable perspective.

Let g be the gpproximating mode being compared to (measured againgt) f. We use x to
denote the data being modeled and 6 to denote the parameters in the approximating model g. We
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use g(x) as an gpproximating modd, whose parameters must be estimated from these data (in fact,
we will meke this explicit usng the notation g(x | 6), read as “the gpproximating model g for data x
given the parameters 0). If the parameters of the model g have been estimated, usng ML or LS

methods, we will denote this by g(X | 3). Generdly, in any red world problem, the modd g(x | 6) is
afunction of sample data (often multivariate) and the number of parameters (#) in g might often be of
high dimensondity. Findly, we will want to consder a set of gpproximeating models as candidates for
the representation of the data; this set of models is denoted {g;(x | 8),i= 1, ..., R}. Itiscritical
that this set of models be defined prior to probing examination of the data (i.e, no data
dredging).
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The Kullback-Leibler Distance or Information

The K-L distance between the models f and g is defined for continuous functions as the
(usudly multi-dimensiond) integrd

I(f, g) = [f(x)log (%) dx,

where log denotes the naturd logarithm. Kullback and Leibler (1951) developed this quantity from
“information theory," thus they used the notation I (f, g);

I(f, ) isthe"information" lost when g isused to approximatef.

Of course, we seek an approximating model that loses as little information as possible; this is
eguivdent to minimizing I(f, g), over g. f is consdered to be given (fixed) and only g varies over a
gpace of modes indexed by 6. An eguivdent interpretation of minimizing I(f, ¢ is finding an
approximating modd that is the “shortest distance” away from truth. We will use both interpretations
as both seem useful.

The expression for the K-L distance in the case of discrete distributions such as the Poisson,
binomia or multinomid, is

k P
I(f, 9) = >_pilog (;)

i=1

Here, there are k possible outcomes of the underlying random varigble; the true probability of thei™
outcome is given by p;, whiletherq , ... , mx condtitute the gpproximating probability distribution (i.e.,
the approximating moddl). In the discrete case, wehaveO < pi < 1,0 < m <landd p; => m; =
1. Hence, here f and g correspond to the pand 7, respectively.

The materiad above makes it obvious that both f and g (and their parameters) must be known
to compute the K-L distance between these 2 models. We see that this requirement is diminished as
I(f, g) can be written equivalently as

I(f,9) = [T(x) log(f()) dx — [T(x)log(a(x | &))dx.

Note, each of the two terms on the right of the above expression is a datistica expectaion with
respect to f (truth). Thus, the K-L distance (above) can be expressed as a difference between two
expectations,

I(f. @) = E¢[log(f )] — E[log(g(x | H))],
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each with respect to the true digtribution f. This last expresson provides easy indghts into the
derivation of AIC. The important point is that the K-L distance I(f, g) is a measure of the directed
“distance’ between the probability modelsf and g.

The first expectation E;[log(f(x))] is a condtant that depends only on the unknown true
digtribution and it is clearly not known (i.e., we do not know f(x) in actud dataandyss). Therefore,
tregting this unknown term as a congant, only a measure of relative, directed distance is possible
(Bozdogan 1987, Kapur and Kesavan 1992: 155) in practice. Clearly, if one computed the second
expectation, E¢[log( g(x | 6))], one could estimate I(f, g), up to a constant (namely E; [log(f (x))] ),

I(f, @) = Constant — E¢[log(g(x | 0))],
or
I(f, ) — Constant = — E¢[log(g(x | £))].

The term (I(f, 0) — Constant) isarelative, directed distance between the two models f and g, if

one could compute or estimate Es[log(g(x | 6))]. Thus, Es[log(g(x | #))] becomes the quantity of
interest.

In data andysis the modd parameters must be estimated and there is usudly subgtantia uncertainty in

this estimation. Models based on estimated parameters, hence on @ not €, represent a maor
digtinction from the case where modd parameters would be known. This digtinction affects how we
must use K-L distance as a basis for model sdlection. The difference between having 6 (we do not)

and having @ (we do) is quite important and basicaly causes us to change our modd sdection
criterion to that of minimizing expected estimated K-L distance rather than minimizing known K-L
distance (over the set of Ra priori models consdered).

Thus, we use the concept of selecting a mode based on minimizing the estimated Kullback-
Leibler distance

1(f, 0) =/f(x) log (L ) dx

axoy))

Consequently, we can determine a method to sdlect the modd g that on average minimizes, over the
set of moddsgs, ... ,gr, avery relevant expected K-L distance.

Akake (1973) showed firgly that the maximized log-likelihood is biased upward as an
esimator of the mode selection criterion. Second, he showed that under certain conditions (these
conditions are important, but quite technica), that this biasis gpproximately equa to K, the number of
esimable parameters in the gpproximating modd. Thus, an approximately unbiased estimator of the
relative, expected K-L information is
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logie(® | ) — K,

Thisreault is equivdent to

log2(0 | ) — K = Constant — 5 [1(f, g
or
— logc(8 | y)) + K = estimated relative expected K-L distance.

Akaike's finding of a relation between the relative K-L distance and the maximized
log-likelihood has allowed major practical and theoretical advances in model selection and
the analysis of complex data sets (see Stone 1982, Bozdogan 1987, and del_eeuw 1992).

Akake (1973) then defined “an information criterion” (AIC) by multiplying by — 2
(“taking higtorical reasons into account”) to get

AlIC= — 2Iog(c(/6\’ |y) + 2K.

This has became known as “Akaike's Information Criterion” or AIC. Hereit isimportant to note
that AIC has a strong theoreticd underpinning, based on information theory and Kullback-Lebler
information within a redigtic data analyss philosophy that no modd is true, rather truth as f is far
more complex than any modd used. Akaike's inferentia breakthrough was redizing that a predictive
expectation verson of the log-likeihood could (as one gpproach) be used to estimate the relative
expected K-L distance between the approximating mode and the true generating mechanism. Thus,
rather than having a smple measure of the directed distance between two models (i.e, the K-L
distance), one has instead an estimate of the expected relative, directed distance between the fitted
mode and the unknown true mechanism (perhaps of infinite dimension) which actudly generated the
observed data. Because the expectation of the logarithm of f(x) drops out as a constant, independent
of the data, AIC is defined without specific reference to a“true modd” (Akaike 1985:13).

Thus, one should select the modd that yields the smalest value of AlC because this modd is
estimated to be “closest” to the unknown redity that generated the data, from among the candidate
models considered. This seems a very natura, Smple concept; select the fitted gpproximating model
that is estimated, on average, to be closest to the unknown f.

Perhaps none of the models in the set are good, but AIC atempts to sdect the best
approximating mode of those in the candidate set. Thus, every effort must be made to assure that the
set of modesiswell founded.
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AIC Differences

Because AIC is on an relative scae, we routindy recommend computing (and presenting in
publications) the Al C differ ences (rather than the actud AlC vaues),

A; =AIC; — minAIC,

N

= E[l(f, 6] — mrg[i(t 9],

over dl candidate modelsin the set. Such differences estimate the rel ative expected

K-L differences between f and g;(x | ). These A; vaues are easy to interpret and dlow a quick
comparison and ranking of candidate models and are dso useful in computing Akalke weights and
other quantities of interest.

The larger A; is, the less plausible is the fitted modd gi(x | @) as being the K-L best model
for samples such as the data one has. As a rough rule of thumb, models for which Aj < 2 have
subgtantia support and should receive condderation in making inferences. Modes having A; of about
4 to 7 have consderably less support, while models with A; > 10 have ether essentidly no support,
and might be omitted from further consderaion, or a least those modds fal to explan some
substantia explainable variation in the data. If observations are not independent but are assumed to
be independent then these smple guidelines cannot be expected to hold.

Important Refinements to AIC

A Second Order AIC

Akake derived an esimator of the K-L information quantity, however, AIC may perform
poorly if there are too many parameters in relaion to the size of the sample (Sugiura 1978, Sakamoto
et d. 1986). Sugiura (1978) derived a second order variant of AIC that he called c-AlC. Hurvich
and Tsa (1989) further studied this small-sample (second order) bias adjustment which led to a
criterion thet is caled AlCc

AIC. = —2log(£(8)) + 2K <n+<_1> ,

where the pendty term is multiplied by the correction factor n/(n—K—1). This can be rewritten as

AIC. = — 2log(c(d) + 2K + 2D,
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or, equivdently,

AIC; = AlC + 2KK+D

where n is sample size (also see Sugiura 1978). AIC,. merdly has an additiond bias correction term.
If n islarge with respect to K, then the second order correction is negligible and AlC should perform
well. Generaly, we advocate the use of AIC. when the ratio n/K issmall (say < 40). Inreachinga
decision about the use of AIC vs. AIC., one must use the vdue of K for the highest dimensoned
modd in the set of candidates. If the ratio /K is sufficiently large, then AIC and AIC,. are Smilar
and will tend to select the same modd. One should use either AIC or AIC,. consgently in a given
andyss, rather than mixing the two criteria. Unless the sample size is lar ge with respect to the
number of estimated parameters, use of AlC. isrecommended.

Modificationto AlC for Overdispersed Count Data

Count data have been known not to conform to smple variance assumptions based on
binomia or multinomid digtributions. If the sampling variance exceeds the theoretical (model based)
variance, the situation is caled “overdigperson.” Our focus here is on alack of independence in the
data leading to overdisperson or “extra-binomid variation." Eberhardt (1978) provides a clear
review of these issues in the biologicd sciences. For example, Canada geese (Branta spp.)
frequently mate for life and the pair behaves dmost as an individua, rather than as two independent
“trids." The young of some species continue to live with the parents for a period of time, which can
aso cause a lack of independence of individua responses. Further reasons for overdisperson in
biologicd systems include species whose members exist in schools or flocks. Members of such
populations can be expected to have postive correations amnong individuas within the group; such
dependence causes overdisperson. A different type of overdisperson stems from parameter
heterogeneity; that is individuas having unique parameters rather than the same parameter (such as
surviva probability) applying to al individuas.

Cox and Snell (1989) discuss modeling of count data and note that the first useful
goproximation is based on a single variance inflation factor (c) which can be edimated from the
goodness-of-fit chi-square statistic (x?) of the globa moddl and its degrees of freedom,

The variance inflation factor should be estimated from the globa model.

Given ¢, empiricd estimates of sampling variances (vare(gi)) and covariances (cove (@i, 3 7))
can be computed by multiplying the estimates of thetheoreticd (modd-based) variances and
covariances by € (a technique that has long been used, see eg., Finney 1971). These empirical
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measures of variation (i.e, C- Oare(g?l-)) must be treated as having the degrees of freedom used to
compute ¢ for purposes of sditing confidence limits (or testing hypotheses).  Generdly, quasi-
likelihood adjustments (i.e,, use of € > 1) are made only if some reasonable lack of fit has been found
(for example if the observed dgnificance levd P < 0.15 or 0.25) and the degrees of freedom >

10, as rough guiddines.

Patterns in the goodness-of-fit statistics (Pearson y2 or G-statistics) might be an indication of
dructurd problems with the modd. Of course, the biology of the organism in question should
provide clues as to the exigence of overdisperson; one should not rely only on ddtidtica
condderationsin this matter.

Principles of quad-likelihood suggest smple modifications to AIC and AIC.; we denote
these modifications as (Lebreton et a. 1992),

QAIC = — [2|og(£(9))/e] +2K

QAIC, = — [2loge(d)/ ¢ +2K + 24,

_ 2K(K+1)
=QAIC + o1 -

Of course, when no overdisperson exigts, ¢ = 1, the formulae for QAIC and QAIC,. reduceto AIC
and AIC,., respectively.

Some History

Akake (1973) consdered AIC and its information theoretic foundations “... a natura
extenson of the classcd maximum likdlihood principle” Interestingly, Fisher (1936) anticipated such
an advance over 60 years ago when he wrote,

“... an even wider type of inductive argument may some day be developed, which
shall discuss methods of assigning from the data the functional form of the
population.”

This comment was quite ingghtful; of course, we might expect this from R. A. Fisher! Akake was
perhaps kind to consder AIC an extenson of classca ML theory; he might just as well have sad
that classica likelihood theory was a specia application of the more generd information theory. In
fact, Kullback believed in the importance of information theory as a unifying principle in datistics.
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Interpreting Differences Among AIC Values

Akaike's Information Criterion (AIC) and other information theoretic methods can be used to
rank the candidate models from best to worst. Often data do not support only one model as clearly
best for data analyss. Instead, suppose three models are essentidly tied for best, while another,
larger, set of modds is clearly not appropriate (either under- or overfit). Such virtud “ties’ for the
best gpproximating model must be carefully considered and admitted. Poskitt and Tremayne (1987)
discuss a “portfolio of models' that deserve find consderation. Chatfield (1995b) notes that there
may be more than one mode that is to be regarded as “useful.” The indbility to ferret out a sSngle
best model is not a defect of AIC or any other sdection criterion, rather, it is an indication that the
data are smply inadequate to reach such a drong inference. That is, the data are ambivaent
concerning some effect or parameterization or structure.

It is perfectly reasonable that severd models would serve nearly equaly wdl in approximating
aset of data. Inference must admit that there are sometimes competing models and the data do not
support sdecting only one.  Using the Principle of Parsmony, if severd modes fit the data equaly
well, the one with the fewest parameters might be preferred; however, some consderation should be
given to the other (few) competing models that are essentidly tied as the best gpproximating modd.
Here the science of the matter should be fully conddered. The issue of competing models is
epecidly rdevant in including modd sdlection uncertainty into estimators of precison and mode
averaging.

A wdl thought out globd modd (where gpplicable) is important and substantia prior
knowledge is required during the entire survey or experiment, including the clear satement of the
question to be addressed and the collection of the deta. This prior knowledge is then carefully input
into the development of the set of candidate models. Without this background science, the entire
investigation should probably be considered only very preliminary.

Model Selection Uncertainty

One must keep in mind that there is often consderable uncertainty in the sdection of a
particular model as the “best" gpproximating model. The observed data are conceptudized as
random varigbles; their vaues would be different if another, independent set were avallable. It isthis
“sampling variability” that results in uncertain datitica inference from the particular data set being
andyzed. While we would like to make inferences that would be robust to other (hypothetical) data
sets, our ability to do so is 4ill quite limited, even with procedures such as AIC, with its cross
vaidation properties, and with independent and identicaly digributed sample data  Various
computer intensive, resampling methods will further improve our assessment of the uncertainty of our
inferences, but it remains important to understand that proper modd selection is accompanied by a
subgtantial amount of uncertainty. Quantification of many of these issues is beyond the scope of the
materia here (see Burnham and Anderson 1998 for advanced methods).
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AIC When Different Data Sets are to be Compared

Models can only be compared using AlC when they have been fitted to exactly the same st
of data (this applies a0 to likdihood ratio tests). For example, if nonlinear regresson modd A is
fitted to a data set with n = 140 observations, one cannot vaidly compare it with Modd B when 7
outliers have been ddeted, leaving only n = 133. Furthermore, AIC cannot be used to compare
models where the data are ungrouped in one case (Modd U) and grouped (eg., grouped into
histograms classes) in another (Modd G).

Summary

The Principle of Parsmony provides a conceptua guide to model sdection, while expected
K-L information provides an objective criterion, based on a deep theoreticd judtification. AIC,
AIC. and QAIC, provide a practicd method for model sdection and associated data andysis and
are estimates of expected, rlative K-L information. AIC, AIC. and QAIC represent an extensions
of classicd likelihood theory, are gpplicable across a very wide range of scientific questions, and are
quite Smpleto usein practice.
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