
INFORMATION THEORY AND LOG-LIKELIHOOD
MODELS A BASIS FOR MODEL SELECTION AND: 

INFERENCE

Full reality cannot be included in a model; thus we seek a good model to  theapproximate
effects or factors supported by the empirical data.  The selection of an appropriate approximating
model is critical to statistical inference from many types of empirical data.  Information theory (see
Guiasu 1977 and Cover and Thomas 1991) and, in particular the Kullback-Leibler (Kullback and
Liebler 1951) “distance," or “information" forms the deep theoretical basis for data-based model
selection.  Akaike (1973) found a simple relationship between expected Kullback-Leibler
information and Fisher's maximized log-likelihood function (see deLeeuw 1992 for a brief review).
This relationship leads to a simple, effective, and very general methodology for selecting a
parsimonious model for the analysis of empirical data.

Some Background
Well over a century ago measures were derived for assessing the “distance" between two

models or probability distributions.  Most relevant here is Boltzmann's (1877) concept of generalized
entropy in physics and thermodynamics (see Akaike 1985 for a brief review).  Shannon (1948)
employed entropy in his famous treatise on communication theory.  Kullback and Leibler (1951)
derived an information measure that happened to be the negative of Boltzmann's entropy:  now
referred to as the Kullback-Leibler (K-L) distance.  The motivation for Kullback and Leibler's work
was to provide a rigorous definition of “information" in relation to Fisher's “sufficient statistics."  The
K-L distance has also been called the K-L discrepancy, divergence, information and number – these
terms are synonyms, we tend to use  or  in the material to follow.distance information

The Kullback-Leibler distance can be conceptualized as a directed “distance" between two
models, say and  (Kullback 1959).  Strictly speaking this is a measure of “discrepancy"; it is not af g
simple distance because the measure from  to  is not the same as the measure from  to   –  it is af g g f
directed or oriented distance.  The K-L distance is perhaps the most fundamental of all information
measures in the sense of being derived from minimal assumptions and its additivity property.  The K-
L distance between models is a in science and information theory (see Akaikefundamental quantity 
1983) and is the logical basis for model selection as defined by Akaike.  In the heuristics given here,
we will assume the models in question are continuous probability distributions denoted as and .f g
Biologists are familiar with the normal, log-normal, gamma and other continuous distributions.  We
will, of course, not limit ourselves to these common, simple types.

It is useful to think of  as full reality and let it have (conceptually) an infinite number off
parameters.  This “crutch" of infinite dimensionality at least keeps the concept of reality even though it
is in some unattainable perspective.

Let  be the approximating model being compared to (measured against) .  We use  tog f x
denote the data being modeled and  to denote the parameters in the approximating model .  We) g
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use ( ) as an approximating model, whose parameters must be estimated from these data (in fact,g x
we will make this explicit using the notation ( ), read as “the approximating model  for data g x g x± )
given the parameters ).  If the parameters of the model  have been estimated, using ML or LS) g

methods, we will denote this by ( ).  Generally, in any real world problem, the model ( ) is^g x g x± ) ± )  

a function of sample data (often multivariate) and the number of parameters ( ) in  might often be of) g
high dimensionality.  Finally, we will want to consider a set of approximating models as candidates for
the representation of the data; this set of models is denoted { ( ),  = 1, ..., }.  g x i R3 ± ) It is critical
that this set of models be defined prior to probing examination of the data (i.e., no data
dredging).
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The Kullback-Leibler Distance or Information

The K-L distance between the models  and  is defined for continuous functions as thef g
(usually multi-dimensional) integral

    ( , ) = ( ) log ,I f g f x dx ' � �f x
g x

( )
( )±)

where log denotes the natural logarithm.  Kullback and Leibler (1951) developed this quantity from
“information theory," thus they used the notation ( );I f, g

             I f, g g f( ) is the “information" lost when  is used to approximate .

Of course, we seek an approximating model that loses as little information as possible; this is
equivalent to minimizing ( ), over .   is considered to be given (fixed) and only  varies over aI f, g g f g
space of models indexed by .  An equivalent interpretation of minimizing ( ) is finding an) I f, g
approximating model that is the “shortest distance" away from truth.  We will use both interpretations
as both seem useful.

The expression for the K-L distance in the case of discrete distributions such as the Poisson,
binomial or multinomial, is

             ( , ) log  .I f  g pœ! � �5

i=1
 i

pi

i1

Here, there are  possible outcomes of the underlying random variable; the true probability of the k ith

outcome is given by , while the constitute the approximating probability distribution (i.e.,pi k1 11 , , á  

the approximating model).  In the discrete case, we have 0 1, 0  <1 and  =  =� � �p pi i1 1! !3 3

1.  Hence, here  and  correspond to the and , respectively.f g p 1

The material above makes it obvious that both  and  (and their parameters) must be knownf g
to compute the K-L distance between these 2 models.  We see that this requirement is diminished as
I f g( , ) can be written equivalently as 

 ( , ) ( ) log( ( )) ( ) log( ( )) .I f g f x f x dx f x g x dx œ ' � ' ± )

Note, each of the two terms on the right of the above expression is a statistical expectation with
respect to  (truth).  Thus, the K-L distance (above) can be expressed as a difference between twof
expectations,

 ( ) E [log( ( ))] [log( ( ))],I f g f x E g x, œ f f� ± )
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each with respect to the true distribution .  This last expression provides easy insights into thef
derivation of AIC.  The important point is that the K-L distance ( ) is a measure of the directedI f g, 

“distance" between the probability models  and .f g

The first expectation E [log( ( ))] is a constant that depends only on the unknown truef f x
distribution and it is clearly not known (i.e., we do not know ( ) in actual data analysis).  Therefore,f x
treating this unknown term as a constant, only a measure of , directed distance is possiblerelative
(Bozdogan 1987, Kapur and Kesavan 1992: 155) in practice.  Clearly, if one computed the second
expectation, E [log( ( ))], one could estimate ( ), up to a constant (namely E [log( ( ))] ),f fg x I f g f x± ) , 

                       ( ) Constant E [log( ( ))],I f g g x, œ � f ± )

or
                       ( ) – Constant = – E [log( ( ))].I f g g x, f ± )

The term ( ) – Constant  is a , directed distance between the two models  and , ifŠ ‹I f g relative f g, 

one could compute or estimate E [log( ( ))].  Thus, E [log( ( ))] becomes the quantity off fg x g x± ±) )

interest.

In data analysis the model parameters must be estimated and there is usually substantial uncertainty in

this estimation. Models based on estimated parameters, hence on  not , represent a major)̂ )
distinction from the case where model parameters would be known. This distinction affects how we
must use K-L distance as a basis for model selection. The difference between having  (we do not))

and having  (we do) is quite important and basically causes us to change our model selection)̂
criterion to that of minimizing estimated K-L distance rather than minimizing known K-Lexpected 
distance (over the set of   models considered).Ra priori

Thus, we use the  of selecting a model based on minimizing the estimated Kullback-concept
Leibler distance

 ( , ) = ( ) log .I f g f x dx^
 ' � �f x

g x y

( )

( ( ))^
±)

Consequently, we can determine a method to select the model  that on average minimizes, over thegi
set of models , a very relevant expected K-L distance.g g1 , , á R

Akaike (1973) showed firstly that the maximized log-likelihood is biased upward as an
estimator of the model selection criterion. Second, he showed that under certain conditions (these
conditions are important, but quite technical), that this bias is approximately equal to , the number ofK
estimable parameters in the approximating model. Thus, an approximately unbiased estimator of the
relative, expected K-L information is
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 log ( )) ,^
(_ ) ± �y K

This result is equivalent to

 log ( )) Constant E [ ( , )]^ ^
(_ ) ± � �y K I f g^œ

)̂
 

or

 log ( )) estimated relative expected K-L distance.^� ± �(_ ) y K œ

Akaike's finding of a relation between the relative K-L distance and the maximized
log-likelihood has allowed major practical and theoretical advances in model selection and
the analysis of complex data sets (see Stone 1982, Bozdogan 1987, and deLeeuw 1992).

Akaike (1973) then defined “ " (AIC) by multiplying by 2an information criterion �
(“taking historical reasons into account") to get

AIC 2log( ( )) 2^œ � ± �_ ) y K .

This has became known as “ " or AIC.  Here it is important to noteAkaike's Information Criterion
that AIC has a strong theoretical underpinning, based on information theory and Kullback-Leibler
information within a realistic data analysis philosophy that no model is true, rather truth as  is farf
more complex than any model used. Akaike's inferential breakthrough was realizing that a predictive
expectation version of the log-likelihood could (as one approach) be used to estimate the relative
expected K-L distance between the approximating model and the true generating mechanism.  Thus,
rather than having a simple measure of the directed distance between two models (i.e., the K-L
distance), one has instead an  of the expected relative, directed distance between the fittedestimate
model and the unknown true mechanism (perhaps of infinite dimension) which actually generated the
observed data. Because the expectation of the logarithm of ( ) drops out as a constant, independentf x
of the data, AIC is defined without specific reference to a “true model" (Akaike 1985:13).

Thus, one should select the model that yields the smallest value of AIC because this model is
estimated to be “closest" to the unknown reality that generated the data, from among the candidate
models considered. This seems a very natural, simple concept; select the fitted approximating model
that is estimated, on average, to be closest to the unknown .f

Perhaps none of the models in the set are good, but AIC attempts to select the best
approximating model of those in the candidate set. Thus, every effort must be made to assure that the
set of models is well founded.
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AIC Differences
Because AIC is on an relative scale, we routinely recommend computing (and presenting in

publications) the  (rather than the actual AIC values),AIC differences

  AIC minAIC,?3 3œ �

  E [ ( , )] minE [ ( , )],œ �Þ
) )
^ ^I f g I f g^ ^

i i

over all candidate models in the set.  Such differences estimate the relative expected
K-L differences between  and ( ). These  values are easy to interpret and allow a quickf g x3 ± ) ?i

comparison and ranking of candidate models and are also useful in computing Akaike weights and
other quantities of interest.

The larger  is, the less plausible is the fitted model ( ) as being the K-L best model?i ig x ^± )
for samples such as the data one has. As a rough rule of thumb, models for which 2 have?i Ÿ
substantial support and should receive consideration in making inferences. Models having  of about?i

4 to 7 have considerably less support, while models with 10 have either essentially no support,?i �
and might be omitted from further consideration, or at least those models fail to explain some
substantial explainable variation in the data. If observations are not independent but are assumed to
be independent then these simple guidelines cannot be expected to hold.

Important Refinements to AIC

A Second Order AIC

Akaike derived an estimator of the K-L information quantity, however, AIC may perform
poorly if there are too many parameters in relation to the size of the sample (Sugiura 1978, Sakamoto
et al. 1986).   Sugiura (1978) derived a second order variant of AIC that he called c-AIC.  Hurvich
and Tsai (1989) further studied this small-sample (second order) bias adjustment which led to a
criterion that is called AIC ,c

                                  AIC  = –2log( ( )) + 2  ,^
- _ ) K� n

n K–� 1�

where the penalty term is multiplied by the correction factor ( 1).  This can be rewritten asn/ n–K–

AIC 2 log( ( )) + 2   ,^
- œ � �_ ) K 2 ( 1)

1
K K

n K
�

� �
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or, equivalently,

AIC AIC  ,c
K K

n Kœ �
2 ( 1)

1
�

� �

where  is sample size (also see Sugiura 1978).  AIC  merely has an additional bias correction term.n -

If is large with respect to , then the second order correction is negligible and AIC should performn K
well.  Generally, we advocate the use of AIC  when the ratio /  is small (say < 40).  In reaching a- n K
decision about the use of AIC vs. AIC , one must use the value of  for the highest dimensioned- K
model in the set of candidates.  If the ratio  is sufficiently large, then AIC and AIC  are similarn/K -

and will tend to select the same model.  One should use either AIC or AIC  consistently in a given-

analysis; rather than mixing the two criteria.  Unless the sample size is large with respect to the
number of estimated parameters, use of AIC  is recommended.-

Modification to AIC for Overdispersed Count Data

Count data have been known not to conform to simple variance assumptions based on
binomial or multinomial distributions.  If the sampling variance exceeds the theoretical (model based)
variance, the situation is called “overdispersion."  Our focus here is on a lack of independence in the
data leading to overdispersion or “extra-binomial variation."  Eberhardt (1978) provides a clear
review of these issues in the biological sciences.  For example, Canada geese ( )Branta spp.

frequently mate for life and the pair behaves almost as an individual, rather than as two independent
“trials."  The young of some species continue to live with the parents for a period of time, which can
also cause a lack of independence of individual responses.  Further reasons for overdispersion in
biological systems include species whose members exist in schools or flocks.  Members of such
populations can be expected to have positive correlations among individuals within the group; such
dependence causes overdispersion.  A different type of overdispersion stems from parameter
heterogeneity; that is individuals having unique parameters rather than the same parameter (such as
survival probability) applying to all individuals.

Cox and Snell (1989) discuss modeling of count data and note that the first useful
approximation is based on a single variance inflation factor ( ) which can be estimated from thec
goodness-of-fit chi-square statistic ( of the global model and its degrees of freedom,;# ) 

c df.^ œ ;#/

The variance inflation factor should be estimated from the global model.

Given , mpirical estimates of sampling variances ( ( )) and covariances ( ( , ))^ ^ ^c var cov^ e / /) ) )3 3 4

can be computed by multiplying the estimates of the heoretical (model-based) variances andt
covariances by (a technique that has long been used, see e.g., Finney 1971).  These empiricalĉ 



FW663 -- Lecture 5  10

measures of variation (i.e., ( )) must be treated as having the degrees of freedom used to^c var^ ^† e )3
compute for purposes of setting confidence limits (or testing hypotheses).  Generally, quasi-ĉ 

likelihood adjustments (i.e., use of  > 1) are made only if some reasonable lack of fit has been foundĉ
(for example if the observed significance level   0.15 or 0.25) and the degrees of freedom P Ÿ  
10, as rough guidelines.

Patterns in the goodness-of-fit statistics (Pearson  or G-statistics) might be an indication of;#

structural problems with the model.  Of course, the biology of the organism in question should
provide clues as to the existence of overdispersion; one should not rely only on statistical
considerations in this matter.

Principles of quasi-likelihood suggest simple modifications to AIC and AIC ; we denote-

these modifications as (Lebreton et al. 1992),

 QAIC 2 log( ( )) 2  ,^œ � Î’ “_ ) c K^  + 

and

 QAIC 2 log( ( )) 2   ,^
- œ � Î �’ “_ ) c K^  + 

2 ( 1)
1

K K
n K

�
� �

            = QAIC  .�
2 ( 1)

1
K K

n K
�

� �

Of course, when no overdispersion exists,  = 1, the formulae for QAIC and QAIC  reduce to AICc -

and AIC , respectively.-

Some History
Akaike (1973) considered AIC and its information theoretic foundations “  a naturalá

extension of the classical maximum likelihood principle."  Interestingly, Fisher (1936) anticipated such
an advance over 60 years ago when he wrote,

“  an even wider type of inductive argument may some day be developed, whichá
shall discuss methods of assigning from the data the functional form of the
population."

This comment was quite insightful; of course, we might expect this from R. A. Fisher!  Akaike was
perhaps kind to consider AIC an extension of classical ML theory; he might just as well have said
that classical likelihood theory was a special application of the more general information theory.  In
fact, Kullback believed in the importance of information theory as a unifying principle in statistics.
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Interpreting Differences Among AIC Values
Akaike's Information Criterion (AIC) and other information theoretic methods can be used to

rank the candidate models from best to worst.  Often data do not support only one model as clearly
best for data analysis.  Instead, suppose three models are essentially tied for best, while another,
larger, set of models is clearly not appropriate (either under- or over-fit).  Such virtual “ties" for the
best approximating model must be carefully considered and admitted.  Poskitt and Tremayne (1987)
discuss a “portfolio of models" that deserve final consideration.  Chatfield (1995b) notes that there
may be more than one model that is to be regarded as “useful."  The inability to ferret out a single
best model is not a defect of AIC or any other selection criterion, rather, it is an indication that the
data are simply inadequate to reach such a strong inference.  That is, the data are ambivalent
concerning some effect or parameterization or structure.

It is perfectly reasonable that several models would serve nearly equally well in approximating
a set of data.  Inference must admit that there are sometimes competing models and the data do not
support selecting only one.  Using the Principle of Parsimony, if several models fit the data equally
well, the one with the fewest parameters might be preferred; however, some consideration should be
given to the other (few) competing models that are essentially tied as the best approximating model.
Here the science of the matter should be fully considered.  The issue of competing models is
especially relevant in including model selection uncertainty into estimators of precision and model
averaging.

A well thought out global model (where applicable) is important and substantial prior
knowledge is required during the entire survey or experiment, including the clear statement of the
question to be addressed and the collection of the data.  This prior knowledge is then carefully input
into the development of the set of candidate models.  Without this background science, the entire
investigation should probably be considered only very preliminary.

Model Selection Uncertainty
One must keep in mind that there is often considerable uncertainty in the selection of a

particular model as the “best" approximating model.  The observed data are conceptualized as
random variables; their values would be different if another, independent set were available.  It is this
“sampling variability" that results in uncertain statistical inference from the particular data set being
analyzed.  While we would like to make inferences that would be robust to other (hypothetical) data
sets, our ability to do so is still quite limited, even with procedures such as AIC, with its cross
validation properties, and with independent and identically distributed sample data.  Various
computer intensive, resampling methods will further improve our assessment of the uncertainty of our
inferences, but it remains important to understand that proper model selection is accompanied by a
substantial amount of uncertainty.  Quantification of many of these issues is beyond the scope of the
material here (see Burnham and Anderson 1998 for advanced methods).
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AIC When Different Data Sets are to be Compared
Models can only be compared using AIC when they have been fitted to exactly the same set

of data (this applies also to likelihood ratio tests).  For example, if nonlinear regression model A is
fitted to a data set with  = 140 observations, one cannot validly compare it with Model B when 7n
outliers have been deleted, leaving only  = 133.  Furthermore, AIC cannot be used to comparen
models where the data are ungrouped in one case (Model U) and grouped (e.g., grouped into
histograms classes) in another (Model G).

Summary
The Principle of Parsimony provides a conceptual guide to model selection, while expected

K-L information provides an objective criterion, based on a deep theoretical justification.  AIC,
AIC  and QAIC  provide a practical method for model selection and associated data analysis and- -

are estimates of expected, relative K-L information.  AIC, AIC  and QAIC represent an extensions-

of classical likelihood theory, are applicable across a very wide range of scientific questions, and are
quite simple to use in practice.
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