Models Versus Full Reality
True Models

A fundamentd paradigm in FW663 is that there is no “true modd" that generates the
biologica data we observe (see, for example Bancroft and Han 1977). We believe that “truth” (full
redity) in the biologica sciences has essantidly infinite dimenson and hence full redity cannot be
revedled with only finite samples of data and a“modd" of the information in the data. 1t is generdly a
mistake to bdieve that there is asmple, “true modd™ in the biologica sciences and that, during data
andysis, this modd can be uncovered and its parameters estimated. Instead, biological systems are
complex with many smdl effects, interactions individud heterogeneity, and individud and
environmenta covariates (most being unknown to us); we can only hope to identify a modd tha
provides a good approximation to the data available. The words “true modd" represent an
oxymoron, except in the case of Monte Carlo studies whereby a modd is used to generate “data’
usng pseudo-random numbers (we will use the term “generating mode" for such computer-based
sudies).

Taub (1993) suggests that unproductive debate concerning true models can be avoided by
samply recognizing that amodd is not truth by definition. A modd isasmplification or gpproximation
of redity and, hence will not reflect dl of redity. Full truth (redity) is eusive (see de Leeuw 1988).
Box (1976) noted that “al modes are wrong, but some are useful.” While a model can never be
“truth,” amodd might be ranked from very useful, to useful, to somewhat ussful to, findly, essentidly
usdless. Modd sdection methods try to rank modes in the candidate set relative to each other;
whether any of the modds is actudly "good" depends primarily on the qudity of the science and a
priori thinking that went into the modeling. Proper modding and data andys's tells what inferences
the data support, not what full redity might be (White et a. 1982:14-15, Lindley 1986). Moddls,
used cautioudy, tdl us “what effects are supported by the (finite) data available” Increased sample
gze (information) and measures of relevant covariates alow us to chase full redlity, but never quite
cachit.

Tapering Effect Sizes

We bdieve tha there are tapering effect Szes in many biologica systems, that is there are
often severd large, important effects, followed by many smaler effects and, findly, followed by a
myriad of yet samdler effects. These effects may be sequentidly unveiled as sample Sze increases.
The main, dominant effects might be rdatively easy to identify and support, even using fairly poor
andyss methods, while the second order effects (eg., a chronic treastment effect or an interaction
term) might be more difficult to detect. The gill smaler effects can only be detected with very large
sample szes (cf. Karelva 1994 and related papers), while the smalest effects have little chance of
being detected, even with very large samples. Rare events, that have large effects, may be very
important but quite difficult to study. Approximating models must be related to the amount of data
and information available, samal data sets will appropriatey support only smple models with few
parameters, while more comprehensive data sets will support, if necessary, more complex models.

This tapering in “effect 9ze' and high dimensondity in biologicd systems might be quite
different from some physcd sysems where a sndl dimensoned modd with reatively few



parameters might accurately represent full truth or redlity. Biologigts should not believe that asmple,
“true modd" exids that generates the data observed, athough some biologica questions might be of
reaively low dimension and could be well gpproximated using a fairly smple modd. Theissue of a
range of tapering effects has been redized in epidemiology where Michag Thun notes . . . you can
tel a little thing from a big thing. What's very hard to do is to tell a little thing from nothing a al*
(Taubes 1995). Full redity will dways remain dusive.

Parsmony in Under standing

Often the investigator wants to smplify some representation of redity in order to achieve an
understanding of the dominant aspects of the sysem under study. If we were given a nonlinear
formula with 200 parameter values we might make correct predictions, but it would be difficult to
understand the main dynamics of the syssem without some further smplification or andyss. Thus,
one might tolerate some inexactness (an inflated error term) to facilitate a more smple and useful
understanding of the phenomenon. We will provide examples where some inferences are best made
using amode that is not the K-L best modd.
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