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Summary. For capture-recapture studies the Jolly-Seber model theory for time-specific
effects is well developed and established, as is the corresponding time-specific ring recovery
model, M; (Brownie et al. 1985). Many capture-recapture studies on birds will generate both
live recaptures and rings reported from birds shot, or found dead, throughout the year. The
purpose of this paper is to give the basic generalization of the Jolly-Seber and ring recovery
model M, for the simultaneous analysis of these recapture and recovery data. Under the
generalized model, as under each model separately, the statistical distribution of the relevant
data can be taken as a set of appropriately structured, independent, multinomial
distributions but with response categories for two classes of events: (a) the first recapture
after a known release of a live bird, and (b) ring recovery from a dead bird after a known
release. These events can be considered a type of post-release stratification of the data.
Moreover, these two types of events “interfere” (or compete) with each other, and it is that
feature of the problem that causes the modeling difficulties here. Conditional on the known
releases, these events are mutually exclusive and exhaustive (when considered together with
the event, release and neither the bird nor its ring is ever encountered again). This paper
gives the expanded multinomial representation of the correct statistical model for the
combined data and gives alternative forms of the multinomial cell probabilities under two
assumptions about emigration from the study area. Representation of some of these cell
probabilities in the joint model is more complex than in either separate model. Finally, the
abundance estimation part of the Jolly-Seber model derives from modeling the probability
distribution of first captures; that model component is unaffected by the possibility of using
recoveries as well as recaptures from the releases of ringed birds.

1. Introduction

Statistical theory for the analysis of data from bird ringing studies has been
quite thoroughly developed for two seemingly distinct classes of studies:
capture-recapture and ring recovery. In the former type of study, birds are
repeatedly recaptured alive and then re-released, thus multiple encounters can
occur after the initial ringing of a bird. The latter type of study typically
applies to harvested or hunted species, such as game birds wherein re-
~encounters with rings come from dead birds, hence after ringing there is at
most one re-encounter possible. However, in bird ringing studies we can expect
both live recaptures (and re-releases) and reports of rings from dead birds. The
purpose of this paper is to present basic statistical theory for the time-specific
effects case when there are both live recaptures and dead recoveries resulting
from a ringing study.

I assume the reader is familiar with the basic capture-recapture and ring-
recovery statistical analysis literature. This literature includes such seminal
publications as Cormack (1964), Jolly (1965) and Seber (1965, 1970). In
particular, the reader should to be familiar with the more recent
comprehensive publications of Brownie et al. (1985), Burnham et al. (1987),
Pollock et al. (1990) and Lebreton et al. (1992). Of the models considered in
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these papers, I am only directly concerned here with the Cormack-Jolly-Seber
capture-recapture model, the corresponding ring recovery model M,, and their
extension to joint recapture-recovery analysis.

The joint analysis of live recapture and ring-recovery data has not been
much considered in the ringing analysis literature (cf, Clobert and Lebreton,
1991). When both types of data exist from one study, it has been common to
just do the two separate analyses, see e.g., Anderson and Sterling (1974) and
compare the results. Alternatives have been to force the live recapture data to
“fit” into the dead recoveries framework (Mardekian and McDonald, 1981), or
conversely, force the dead recoveries data component into the live capture-
recapture framework (Buckland, 1980). Only recently have truly unified
analysis methods been used for these type of “post-stratified” data (Szymczak
and Rexstad, 1991; see also Schwarz et al., 1988) and the theory herein given
for this analysis has not previously appeared.

- One difficulty in producing a combined theory is the choice of notation.
Theory for ring recovery and capture-recapture data have been developed
separately. This has lead to the two theories using very different notation and
indexing over capture-release occasions. A large part of this difference stems
from an historic emphasis in capture-recapture on estimation of population size
rather than survival rate. The only parameter in common for recovery and
recapture data is survival rate; thus a joint theory must focus on survival rate.
With respect to survival rate, there is a basic statistical theory for time-
specific release-resampling models that applies to both ring-recoveries and
capture-recapture. This common theory is presented in Burnham et al. (1987),
Lebreton et al. (1992) and given in detail in Burnham (1991). Burnham (1988)
presents a very thorough theory development including a general notation for
release-resampling that I will use here. Essentially, I choose to use capture-
recapture type notation and multinomial modeling as the basis for a joint
theory. :

I will use here terminology and ideas of bird ringing studies with ringing
done annually; the theory given here is, of course, more general and time
intervals between capture occasions need not be equal. Ring recovery models
have generally been developed in terms of known releases (R;) at the start of
(study) year i with subsequent recoveries (mjy, the d denotes “dead”) during
years j=1i, i+1, ..., t as being multinomially distributed events. By putting
capture-recapture data in this same modeling framework (Burnham, 1991) we
represent either type of data in a common framework. :

Under the joint analysis we have releases, R;, and first recaptures, my;;, of
live (denoted by the subscript ) birds at times j=i+1, ..., t, and ring
recoveries, m;;4, from dead birds during yearly time periods i to i+1, i+1 to
142, .., t—1to t. Recaptures at year j are re-released as part of the R; birds
then known to be released (except losses on capture are allowed). Instead of
only one type of re-sampling event under the separate theories, we have two
types of events: if it is encountered again, the bird may be either alive (the
m;;; Jor dead (the my;,). This can be thought of as post stratification of the
encounter data, in the sense that at the time of release we cannot know which
type of subsequent encounter will occur. (The subscripts ! and d encoded the
post stratification factor, hence are after the ij subscripts). In each cohort of
releases (the R;) the subsequent encounter events are mutually exclusive. If we
assume independent fates of individuals then the basic data have a
multinomial distribution, independent over each of the released cohorts.

Completion of model specification now focuses on the functional form of the
cell probabilities in the multiple-multinomial probability model for the
recapture-recovery data. This paper gives a probability form that correctly
generalizes Cormack-Jolly-Seber and Model M,. The types of rate parameters
in this model are survival probability, S, site fidelity, F, live capture
probability, p, and ring recovery probability, f (the classical Jolly-Seber model
assumes any emigration from the study area is permanent, hence only the
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product ¢ =SF is then estimable). The multinomial cell probabilities for the
joint model are expressed as functions of these four types of parameters.
However, some of the cell functional forms are more complex than for
corresponding events in either marginal model. This is because the two types
of resampling events (live or dead) compete (interfere) with one another for
removal of a bird from its last release cohort. In particular, if a ring is known
to have been recovered, then that bird is known to be unavailable for future
live recapture.

- In what follows I first summarize the basic theory for the Cormack-Jolly-
Seber model and banding model M, in a common notation (Section 2). Then
Section 3 gives a theory of joint recapture-recovery data: Section 3.1 gives a
multinomial model representation of the general probability model for the
joint distribution of recapture and recovery. data; Section 3.2 gives the specific
form of the cell probabilities in this model under the usual permanent
emigration assurmption; Section 3.3 gives theory under the assumption that on
any capture occasion it is an independent random event as to whether a live
bird is in the subset of the population at risk of capture. To have a short way
to refer to this later assumption, I will call it “random emigration.”

2. Separate model theory summarized
2.1 Cormack-Jolly-Seber Probability Model

The basic notation needed for the survival component of the Cormack-Jolly-
Seber model is defined below:

R; The number of ringed birds released at capture occasion i; under the
assumptions of the Jolly-Seber model these birds can be a mix of first
captures and recaptures; i=1,...,t-1.

myy The number of birds recaptured for the first time at occasion j, from
those birds released at occasion i} j=i+1,...,t,1i=1,..,t-1.

I consider herein only the case of t capture and release occasions, hence t -1
recapture occasions, and t -1 time-intervals for recovery of rings from dead
birds. Some derived statistics are also needed, in particular the total
recaptures from the R; releases, :
£
I'NZ'Z: mij, ,i—":].,...,t—]..
J=1+1

As given in much more detail in, e.g., Burnham (1987, 1988 or 1991) the
probability model for these data is the product of t-1 independent
multinomial distributions:

t-1
Pr{recaptures |releases} = [] Pr{m; ;4 ..., myy | R;} =

1=

11 R. t my (R-1y)
' w) S HI= )V 1
i-_Ul(lni,H-l,b eeny My, Ri*fil)( j:lil1(7r”') )( : 2 W)
with
E(m;; | R;) [ P ) ) = i+,
TE R L (2)
i (¢i‘L‘+1) (d’j-z Qj-l)(¢j-1pj) yJ > 1+l
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For any definition of m;; (not just (2) above), define

t
’\il=_ > Tt ,i=1, ..., t-1.
j=itl

When (2) holds then there is a convenient recursive formula,

it = Gi(Piga + Qiprdiga) yi=1,..,t-1,

with boundary condition ;= 0.
The parameters in the Cormack-Jolly-Seber model are defined below:

o The probability of capture on occasion i given that the bird is still in
the population at risk of capture on occasion i, q;=1-p;;1=2, ..., t.

&, The probability of surviving in the subset of the population at risk of
capture from occasion i to occasion i+1 given that the bird is alive in
the population at risk at the start of survival period i,i=1, ..., t -1.

There are 2t —3 identifiable parameters in this model: ¢, ..., 2, P2y ..., Pe1s
and the product ¢, ,p,. However, the parameter ¢, is a product of two
biologically interpretable parameters: ¢, =S;F;. The probability of surviving
between capture occasion i and i+1 is S;; thus 1-S; = probability of death.
Given an animal is alive at occasion i+ 1, then F,; (fidelity) is the probability
of it being in the study area at that time.

2.2 Ring Recovery Probability Model

Basic additional notation needed for the time-specific ring recovery model
M, in a form that will be compatible with capture-recapture data 1s below
(still for t occasions):

m;y The number of rings recovered between rmgmg occasxons jand j+1,
from birds released on occasion i, j =1, ..., t,i=1,

The total number of rings recovered from released cohort i is

t .
rid=j§m;jd yi=1, ., t.

As shown in detail in Burnham (1988 or 1991) (see also Brownie et al., 1985)
the probability model for these data is the product of t independent
multinomial distributions:

Pr{recoveries | releases } = H Pr{m;,, ..., m; 4R} =
i=1 itd 1
t R. t m;iy ] (R—l‘ )

i .. 1=\ i~ tid 3

iI:I1<mnd, com Myeg, R; -m)( jgi(w"d) >( i) (3)
with
E(mijd I Rl) fi ’ ., =1,

T TR T S-Sk, Ji>i, )
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For any definition of T4, define

t .
Aig = 3 Tija . yi=1,..,t
J

=1
If (4) applies then there is a convenient recursive formula,
)‘id:fi'*'si)‘i-}-l,d ,i:l,...,t,'

with boundary condition A, 4 =0.
The parameters in this ring recovery model are defined below:

g The probability of a ring being recovered between occasions i and
' 1+1 given that the bird is alive on occasioni,i=1, ..., t.

S; The probability of surviving from occasion i to occasion i+1 given
that the bird is alive at occasion i,i=1, ..., t -1.

The above 2t — 1 parameters are all identifiable (i.e., Sy, ..., Sy4, fy, ..., £,).
2.3 Comments on Separate vs. Joint Models

The data representation used above is not minimal sufficient for either
model; rather, in both cases a simply expressed, minimal sufficient statistic
exists with a probability distribution representable by a product of binomials.
The dimensionality of the minimal sufficient statistic is the same as the
number of identifiable parameters (2t —3 for the capture-recapture case as
presented, and 2t -1 for the ringing case with t ringing occasions). In both
cases, closed-form (if not restricted to the unit interval) maximum likelihood
estimators exist. When the models are “merged” for joint analysis of recapture
and recovery data, this simple reduction to a minimal sufficient statistic no
longer seems to hold under the permanent emigration assumption of the Jolly-
Seber model, hence I do not give the reduced probability models for these two
above cases.

At first thought one might think to simply combine the multinomials and
use, as the joint model for the i'" released cohort, the set of independent
multinomials with cell probabilities as defined above in (2) and (4).
Structurally this would be the set of cell probabilities ‘

Tiidy Tii+1dy Tii+1,ds Tiitz,lr oo Tig1,dy Tty Tid>

and a final cell probability of 1 -\, — ;. This is correct in the context of this
modeling approach only if some of the cell probabilities are appropriately
redefined. Once a recapture at occasion j ( >1) occurs that bird is reassigned
upon release to the j'" release cohort and hence is no longer available to
become a dead recovery from the ih release cohort after occasion j. Similarly,
when a recovery is recorded in year j, that bird is known to be no longer
available to become a live recapture in occasions beyond j. Thus, heuristically
it should be clear that some modification to these sets of marginal cell
- probabilities (i.e., the m;;, or the 7;;;) is needed in the joint model to adjust
for the fact that the two possible types of re-encounters, after a known release,
compete (as in competing risks) to remove birds from that release cohort. In
the next section I consider a correct form of the joint cell probabilities.

There is also an issue here about whether to include or drop the final year of
recovery data, the m;4,1=1, ..., t. If we think of having a classical capture-
recapture study and adding possible dead recoverics to the data during the
study years, then the study ends at occasion t and we would do the data
analysis without the m;,,; data. That is, we use ring recovery data m;;, only for
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i=1,..,t-1, j=i,..,t-1. However, if the ring recovery process is
independent of the capture process, then we will ultimately have not only the
m;,, data, but also recoveries beyond capture occasion t (as in the models of
Brownie et al., 1985): myy, j=t,t+1,..,k,i=1,.., t. It is beyond the scope
of this paper to consider in detail the extension of theory to k > t.

3. A Probability Model for Joint Analysis of Recapture-Recovery Data

3.1 The general model structure

The organization of the joint recapture and recovery data under the
multinomial modeling framework used here is displayed in Table 1 for the case
of no dead recoveries tabulated after the end of the last live capture occasion.
Each of the t-1 cohorts of releases, of size R;, leads to a multinomial
distribution for the counts of first recaptures and recoveries from that cohort.
That this is so is a straightforward result of the usual assumptions of bird
ringing studies (see e.g., Lebreton et al., 1992): the same parameters apply to
each bird, independent fates of each bird and under the data summary form in
Table 1, the possible fates (multinomial cells) within cohorts are mutually
exclusive. Therefore, the probability model structure for these data is
represented as below. Note that the cell probabilities (T34 and ;) in this joint
model are not all identical to the forms given in (2) and (4), which are the
marginal cell probabilities of the two data types separately. Two possible cell
forms for the joint model are given in Sections 3.2 and 3.3; since (2) and (4)
are special cases I do not use new notation here to denote the cell probabilities.
The joint model is below:

Pr{recapture-recovery data up to occasion t | releases } =

t-1
_Hlpr{m;;d, Wiiprdy oo My g, My | Ry} =
i=

t-1 .
i % x
= I\ Mids M1, oo My g My, Ry—139 -1

Pﬁl H tnl (Wijd )mijd (”iu‘rld )mi’jﬂ'l}(l— Mg — Ay )(Ri_rid - ?i:)ﬂ ) ‘ %)

i=1] {j=i

Also
t
A= X my y1=1, .., -1,
J=i+1
t-1
/\ld"‘ .Z:.Wijd yi1=1, ., t-1
j=i

The number of releases, R;, includes all newly ringed birds and all re-released
live recaptures made on occasion i.

The probability model given in (5) is for the case where we do not have, or
do not use, the recovery data m, obtained in time interval t to t+1 (i.e., in
year t). If we include these data, then one more cell is added to each
multinomial and a t"* multinomial (binomial, actually) distribution is added to
the probability model. This probability model is given below:
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Table 1. Symbolic cohort representation of joint recovery-recapture data, my,,
for t occasions with effort ending at the last recapture occasion; i
denotes release occasion, j denotes the time interval for recoveries or
the recapture occasion; post stratification is v=d (dead recoveries) or
I (live recoveries).

i Releases j=1 2 3 t—1 t

1 R, my4 Myyr Myoyq mygy Mygzg -+ Myeqp Myead My
R, Mg Mgy IMapzy o+ Mgy Myeqd Mgy

3 Rs Mgzg -+ Mgeqq Mgead Mgy

t-1 Ry, Meqe1,d Mg,

Pr{recapture-recovery data through year t | releases } =

t-1
[_Hlpr{mnda M40y om0 g gy M, Mg | Ry }}[Pr{mud IR }]=
1=

_ tﬁ Ri Rt )
| i=1 My Miigr, oo My g gy Wiers Mieds R;—r1;y—1y m.q
(61 [( 1 m.. m. . . R ror '
H [{ H(”rijd) ijd (7ri,j+1,l) "J+1’l}(7ritd) Ud(l"/\id_)\il)( i id xl) %
[ m;; R,-m
;(”ttd) ud(l"ﬂ'ud)( t ttd)]_ (6)
Also
t’ . X R
A= Z“Wijl ,i=1, .., 61,
j=i
t .
Nd = .Z.Wijd ,1=1, .., t.
=i

Finally, note that cohort sums of re-encounters, r;; and r;;, mean the same
thing for models (5) and (6) — separate sums of the m;;, and my; by cohort; I
do not explicitly give their formulae under each model.

The correct cell probabilities for (5) and (6) can be given as formula (2) for
the live (first) recapture-after-release probabilities, m;;;. For the recoveries
component we use (7) given below, which is a modified version of (4):

E(my, |R;) {

1

fi yi=1,

(7)

Si"'Sj-ﬂijf' y1>1,

where 7;; is the probability that a bird released at capture occasion i and still
alive at occasion j will never have been removed from the i*® released cohort
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by being captured on one of occasions i+1 to, and including, occasion j. Such a
removal from the cohort, and reassignment to a later released cohort, makes
the bird (i.e., ring) not available to be recovered as a part of count m;jq.
Rather, if that ring is then subsequently recovered in year j, that count
becomes part of a different recorded my;, for i <h <j. This bookkeeping device
allows us to formulate our model in terms of familiar multinomial
distributions, for which much theory is known. If no live capture data are used
(or recorded) then, in effect, all p;=0 and as a result all ;; = 1. Similarly, if
there are no recovery data collected or used, then all f; = 0.

3.2 Joint cell probabilities under permanent emigration

Previously ringed birds may still be alive at a later capture occasion but
may have moved out of the area (i.e., subset of the population) in which birds
are at risk of capture. This sort of “movement” may be accompanied by an
intervening round trip migration, but that is not relevant per se. Such
movements out of the subset of the population at risk of capture are said to be
emigration, especially if these are permanent, i.e., the bird never returns to the
subset of the population at risk of capture, at least at any time capture is
occurring. Permanence of emigration movements (if any occur) is the usual
assumption in capture-recapture. By making this additional assumption we
can determine an explicit form for ~;;:

Mi=1,
Yi-1,; = 1 '—Fj-l(l - %) y

Y25 = L= Fia(l = q1%1,5)

or, in general

Y =1-Fi(l = dip1%ig15) » (8)

with boundary condition 7; =1 and indexed for i=1,..,j-1 and j=1, ..., t.
To compute these parameters, do it for any given fixed j by iterating

backwards fromi=j~1,j~2, ..., to 1. Written out in one long, awkward, form
for j > 1, we have

Y =1-F(1-q(1 -Fi(1-qi,(1 —=Fi4(1 —q;)-))))

and computation is from the inner-most component outward. Clearly, the
probability +; depends on only the parameters F;, ..., Fi1s Qig1y .en g5 of
course ¢; = 1 —p;. Thus the +;;’s do not introduce any new parameters into the
model.

The +; probabilities adjust the cohort-specific ring recovery probabilities, in
the multinomial approach, for the expected live capture rate after known
releases. For releases at occasion j there are no recaptures before recoveries in
time interval j to j+1, hence v;; =1. Under the data representation scheme of
Table 1, in order to be counted as a recovery in m;q ;4 @ bird must first
survive year j—1 and then not be recaptured live at occasion j. This latter
probability, ;; ;, is the probability of two mutually exclusive events. Either
the bird emigrates (note, E;=1-F,) in year j—1 or stays in the population at
risk of capture but is not captured at occasion j. This probability is

Yj-1,5 = B+ Fj-1‘1,‘ =1- Fj—l(l —Qj)-

In general for a bird released at occasion i, given that it is still alive at
occasion j, to still be available to contribute a recovery from release cohort i in
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year ] to the count m;jy, the bird must either emigrate in year i or stay in the
population at risk of capture but not be caught at occasion i+1 and then not
be caught after occasion i+ 1. Translating this description to a mathematical
formula we get the recursive definition of Vit '

Y = Ei + Fidip1%i4,j

which is equal to form (8): 1-F;(1-q;;17i41,;). This form for +; is unique to
the assumption of permanent emigration.

It is instructive to consider three special cases. If no emigration is possible,
or if otherwise fidelity is perfect, then all F; =1 and an explicit expression for
7;; exists:

’Yij = Qi+19%42°°°9; -

If no recapture occurs, say because recaptures are ignored (i.e., not recorded),
then all p; =0, hence all ;=1 and this leads to all 7;; = 1. This result is casily
proven by induction on (8). If for a particular i and'j, v;; =1, then from (8),
Yia,j =1-Fiy(1-q;) and hence if all ¢; =1 then v, ;=1. But we already know
that all ;; = 1, thus it follows that if all p; =0, then all ¥ = 1.

If the adjustment entailed by +v; in (7) to the marginal recovery
probabilities is not made and distribution (5) or (6) is erroneously used, the
cell probability totals A\j; + A, can exceed 1. With the adjustment, these totals
will never exceed 1. By way of example consider the case represented in Table
1 for t =3, hence model (5), for F;=1 and the extreme (but mathematically
possible) case of f; =1-S; for i =1, 2. For the proper model (multinomial cells
defined by (2) and (7)), we have

A+ Ay =1~(514,5,q3) ,
which can never exceed 1. But with the cells as defined by (2) and (4) we have
Ara+ All =1-5:5;+5,(p2+425,p3) -

Let 5;=5;,=p;=p3=0.9 and the above is equal to 1.0729. This example is
just to reinforce the point that in the joint analysis of recapture-recovery data
the model must properly account for the fact that known recoveries cannot
thereafter become live captures. o

- Under the case represented by model (5), permanent emigration and t
occasions for capture and release with t —1 ring recovery time intervals, there
are 4t-6 identifiable parameters: S;, ..., S.5, Pay .on Pety T15eem fits Fiy oomy
F.,, and the product (S5,,F_;p,). If we add to model (5) a t* year of ring
recovery data, thus we have model (6), there are 4t — 4 identifiable parameters:

Sty v Stets P2y oo Doty F1y oy £y Fy, ooy Fiy, and the product (F_;p,).
3.3 Cell probabilities under random emigration

The permanent emigration assumption is not the only assumption under
‘which the time-specific models remain structurally valid. As given in Burnham
1988) an alternative parameterization of the Jolly-Seber model cells given in
2) is possible. Specifically, the “location” of a live bird during a capture
occasion could be random with regard to whether or not it is in the sub-
population (area) at risk of capture. Now the parameter F; is the probability at
occasion i that the bird is at risk of capture given it is alive; p; is the
probability of capture given the bird is alive and at risk of capture. The
structure of mj; remains as in (2) however, we must now interpret ¢; as in fact
being true survival rate, S;, and p; is actually the product of F, and the
traditional conditional capture probability.
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To avoid confusion I will explicitly give cell probabilities appropriately
reparameterized under this “random emigration” assumption. For live captures
we have

= E(mijl | R]) _ { Sip;‘+1 s J = ?-}-1, (9)
it R; (Siaty) -+ (Sj-z(Ij"-l)(Sj-lP}') yJ>1+1

The model structuré, under this assumption, for the recovery cell probabilities
under the joint analysis model is given by (7) with

Yi=1 ,j =1,
Vi = G Qe qf , > 1.

Here we have p! = F; |p; and qf =1-F, p;. One can think of this model as one
wherein the birds have fidelity F, =1, capture probability p;, and ¢;=S;. The
separate Fy, and p; are confounded, hence not estimable; only their product,
p; = F,p; 1s estimable.

s a consequence of the multiplicative structure on the 7¥:i» we have for this
model

E(mijd | Rx) { fi | y1=1,
i. I e e T * . . 10
Tiyd R; (SiQi+1)"'(Sj-1QE“)fj y}1>1. ( )

Thus under the random emigration assumption, the model for joint recapture-
recovery data is the probability distribution in (5), or (6), with cell
probabilities as given in (9) and (10).

Under the case represented by model (5) with t occasions for capture and
release, t—1 ring recovery time intervals, random emigration and with full
time-specificity of parameters there are 3t -4 identifiable parameters: Sty eens
Sia, f1; ... fiq, and the products p3, ..., pty, (S,.;pf) where pf = (Fiqpy)- If we
add to this model a t'"year of ring recovery data, then there are 3t -2
identifiable parameters: Sy, ..., S, ;, f;, ..., f,, and the products p%, ..., pi.

4. Direct Construction of the Likelihood

The approach used here to give a probability model for capture-recapture
and recovery data separately or jointly is not unique. This is because there are
other approaches to the capture-recapture aspect of the problem, e.g.,
hypergeometric models (Pollock, 1975), Poisson models (Cormack and Jupp,
1991), log-linear models (Cormack, 1989) and capture history based models
(Crosbie and Manly, 1985, Lebreton et al., 1992). All these approaches to
. capture-recapture give either the same or almost the same likelihood (the
differences relate to what parameters are the focus of the model). The most
flexible approach to creating likelihoods for bird ringing data, as regards
inference on survival rates, is the encounter history approach. The data are
represented as the ordered sequence of all possible encounters (captures,
recoveries, etc.) coded 1 for encounter, 0 otherwise. For an encounter history,
h, let X, be the count of birds having this history and let Y, =1 if at the last
recorded encounter the bird is re-released; Y, =0 if the bird is not re-released
on last encounter. Trailing zeros in h are used for convenience after a ring
recovery.

Under the encounter history formulation the likelihood contribution of each
observed encounter history is first computed; some examples are given in
Table 2 wherein t =5 and j=the capture occasion, or the between-occasion
interval during which ring recoveries are made. The first encounter is a live
capture at which time the bird is ringed. Thereafter potential dead and live
encounters alternate. Assuming ‘the usual Cormack-Jolly-Seber model with
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Table 2. Examples of the probabilities of specific encounter histories (h)
assuming the Cormack-Jolly-Seber model (with permanent
emigration); t =35, the study ends at occasion 5, j=the capture
occasion or the between-occasion interval during which ring
recoveries are made (live, or dead); X, =number of birds with
history, h; Y, =0 if the bird is not re-released at its last encounter;
probabilities are conditional on first capture.

J=112233445 X, Y,  Pr(h|first capture)
h=_{dldldIdl]
100010001 3 1 ¢,d;0oP3640,6,Ds
100010010 2 1 ¢,q,6,05557a4ls
100100000 9 0  S;7ysf,
100000010 9 0 S,5,5;7.4f,
100000000 44 1 1—(A;+Xy)
101010000 11 1 $1P99203 (1 — (Agy + A3))
101010000 1 0 $1P295P3 |
001000100 6 1 bod3dapy (1= (Mg + Agy))
001010010 6 0  ¢,P5S37a4f,
000010110 2 0 $3DP4fy

permanent emigration, each Pr(h|first capture) is easily written, as has been
done in Table 2. The full likelihood is then

L= g[{Pr(h | first capture)}xh} .

Numerical-based likelihood inference is feasible as the “rules” for constructing

Pr(h|first capture) can be encoded in a computer program. Technically, Y
enters the model (or likelihood) via the form \

Pr(h |first capture) = Pr(first to last encounter events of h | first capture) x
[Pr(never encountered again | final encounter of h)]Y

This formalism is hardly needed as Y = 0 denotes that the probability is 1 that
the bird will never be encounted again.

If the last encounter is a live capture, the form of Pr(h |first capture) up to
that last occasion, j (i.e., the first symbolic component above), is well known
from capture-recapture theory. The remaining multiplicative component of the
probability for that encounter history is 1 - (A, + Aq) if the bird was released,
and is 1 otherwise (bird not released). If the last encounter was a ring
recovery (hence the bird is dead) the (first component) probability of h is
more complex and we must partition the encounter history into two parts:
from the first capture occasion (i) to last live recapture occasion (0); then from
that last recapture to the next encounter (j) which is the ring recovery event.
Symbolically the probability is PPy If i=o0, then P, =1. For o>1i the
probability terms in P,  are just the usual Cormack-Jolly-Seber product
$i+++$o.1Poy and the corresponding product of p,, or qy for w=i4+1 to o-1,
according to whether capture occurred or not at occasion w. The second
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~ multiplicative component is
Poj = fo ’ .] =0,
= So"'Sj-l’Yojf' ’ J >0,

for ,; as given in (8). Several examples of Pr(h |first capture) are in Table 2.

Using this encounter history approach the models for joint analysis of
recapture-recovery data can be generalized to include factors such as age,
control-treatment, sex, capture-history dependencies, and so forth, such as the
models discussed in Lebreton et al. (1992). Also, it is clearly possible to use
multinomial models (or explicit estimators) for inference and then construct
estimated expected counts for any encounter histories; this is important for
some types of model goodness of fit testing. This direct approach of getting
Pr(h |first capture) is not as convenient for theory development because there
are a very large number of histories to consider, much more than 2¢ and t > 10
is not uncommon. '

5. Discussion

The purpose of this paper is to give a form of the correct joint sampling
probability distribution for recapture and recovery data arising from the same
set of released ringed birds. Moreover, this is herein done mostly in terms of
extending the Cormack-Jolly-Seber model for survival estimation to include
the ring recoveries, assuming such recoveries would have a marginal
probability distribution as in the Brownie et al. (1985) time-specific model M,.
There are easy extensions or special cases possible for this joint recapture-
recovery model, in particular to the use of ring recoveries from years beyond
year t.

If the same ring recovery process continues in years beyond capture occasion
t, then there are also recovery data myq for j=t+1, ..., k. These counts just
extend the number of mutually exclusive cells in the underlying multinomial
models. The corresponding cell probabilities in model (6) for these extended
ring recovery process counts is a generalization of (7):

Tia = S5 Se1Yie Se -+ Siaf » s t+1<i<k.

Because the live capture process ends at occasion t, birds are no longer subject
to cohort reassignment after occasion t; therefore, the role of the Yii-
parameters ends after occasion t.

These additional ring recovery data (i.e., having k >t) can increase the
precision of some parameter estimators, such as S;; however, no additional
parameters of real interest become identifiable by this extension. Rather, this
model extension adds to the parameters the k —t identifiable products (Sf,,,),
(S:Seafurads o (Se-+-Sicahy).

ther assumptions about the recovery process can be made which lead to
different forms for the v, in particular, the assumption that birds are not
hunted, but rather recoveries come from birds found dead. The nature of the
model then depends on the spatial area and time interval over which rings are
found and reported. One restricted case is that only the area in which captures
occur is examined for dead birds. This case is further restricted if the searches
for dead birds occur only during the time of live capture effort. For such a
situation we take m;,; to be the number of rings recovered at occasion i+ 1
from birds ringed at occasion i and not live captured at occasion i+1. In
general, now the time interval for recoveries is the limiting case of “time”
being j—e€ to j. Then the survival parameter in (7) is really ¢;, not S;. Under
permanent emigration and the recovery process limited to the capture area
and to the capture occasions, (7) becomes
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— E(m;;, | R;) _ { ¢if; y1=1, (11)
iid R; Giig1 - D519505 ; yJ>1.

There are 3t -4 identifiable parameters in this model: B1s oo Dzy P2y -+r Prots
f), ..., f,.; and the products (¢, ,p,) and (¢, f, ;).

The integrity of the notation is retained in this special case even though a
different indexing (j+1 in place of j) would make sense and be easier to
understand for this case because the counts my;4 are now actually obtained on
occasion j+1. This shows the difficulty of finding a general, logical notation
that would cover all special cases. Note that fidelity is not an estimable
parameter in this model.

If we reparameterized (11) to have ¢;f; = £* then (11) is structurally identical
to (10). Hence, heuristically this case of all dead recoveries being from the
capture area on the capture occasions is structurally like the joint model with
all F; = 1. A conclusion I draw here is that if one caught and released a bird on
occasion j and then found it dead very soon afterwards, that bird could be
treated as a loss on (live) capture. However, birds only found dead on occasion
J should not be considered a loss on capture because that will bias the
estimators of p;. This is because the encounter probabilities are different for
live recapture (or resighting) vs. for dead birds.

Closed-form maximum likelihood estimators and their variances do not seem
possible for the joint recapture-recovery model under permanent emigration.
Nor does it seem possible to get explicit probability distributions for a reduced
dimension sufficient, or minimal sufficient, statistic under this assumption.
However, under the assumption of random emigration the multiplicative
nature of all the cell probabilities Tjqa and m;; allows determination of a full
rank minimal sufficient statistic and its distribution and closed-form
maximum likelihood estimators and their sampling variances. Those results
require far too much space to be given here, but have been derived by the
author. ’

Numerical likelihood-based estimation and inference for joint recapture-
recovery data in the model given by (5) or (6) under cell structures given by
(2), (7) and (8) is straightforward because this is a standard multinomial-based
model. The model can be, for example, implemented in program SURVIV
(White, 1983). This has been done recently by Szymczak and Rexstad (1991)
for some gadwall (Anas strepera) data. Alternatively, the method presented in
Burnham (1989) can be implemented using SAS° PROC NLIN to achieve
convenient and flexible data analysis of joint recapture and recovery data.
Also, methods of parsimonious model construction and selection as presented
in Lebreton et al. (1992) and Burnham and Anderson (1992) are directly
applicable to this extended general model. In fact, Szymczak and Rexstad
(1991) used these analysis methods, such as AIC (Akaike, 1985) based model
selection, for the gadwall recapture-recovery data; their paper provides the
interested reader with an example of this “joint” analysis theory.

The Jolly-Seber model includes components for the estimation of population
abundance parameters, N;’s and B,’s. As shown in Burnham (1991) the
additional model component needed is Pr(uy, ..., u,), the probability
distribution of the first captures of birds. At first-capture birds are not ringed;
u; denotes the number of unringed birds caught at occasion i. All or most of
these birds would be ringed and released, hence contribute to R;. The Pr(u,,
..y W) is not effected by whether or not there are dead recoveries augmenting
the usual live recaptures of the Jolly-Seber model. Also, the sets of random
variables {myg, m;;|R;} and {u} are independent, hence the models given
here can be extended to include abundance estimation by just including the
component for Pr(uy, ..., w,) from Burnham (1991) with the recapture-
recoveries likelihood. This added theory is too extensive to repeat here.
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Basically, however, abundance estimation under the Jolly-Seber model is the
same regardless of whether or not any ring recovery data are used.

There are additional theoretical models that should be developed for the
joint analysis of recapture-recovery data, in particular extensions to age-
specific models. However, I think the most pressing need now is to try the
existing (above) theory on a wide variety of adult data to find out if this
theory is useful: is the inclusion of recapture data with recovery data (in what
are meant to be ring recovery studies) worthwhile, and conversely in recapture
studies is the inclusion of any recovery data worthwhile? Calculation of
theoretical efficiencies will also be a useful research direction and it could be
done using Monte Carlo simulation.
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