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The use of auxiliary variables in capture-
recapture modelling: an overview

KENNETH H. POLLOCK, Department of Statistics, North Carolina State

University, Raleigh NC 27695- 8203, USA

abstract I review the use of auxiliary variables in capture- recapture models for

estimation of demographic parameters (e.g. capture probability, population size, survival

probability, and recruitment, emig ration and immigration numbers). I focus on what has

been done in current research and what still needs to be done. Typically in the literature,

covariate modelling has made capture and survival probabilities functions of covariates,

but there are good reasons also to make other parameters functions of covariates as well.

The types of covariates considered include environmental covariates that may vary by

occasion but are constant over animals, and individual animal covariates that are usually

assumed constant over time. I also discuss the diý culties of using time-dependent individual

animal covariates and some possible solutions. Covariates are usually assumed to be

measured without er ror, and that may not be realistic.

For closed populations, one approach to modelling heterogeneity in capture probabilities

uses observable individual covariates and is thus related to the primary purpose of this

paper. The now standard Huggins- Alho approach conditions on the captured animals

and then uses a generalized Horvitz- Thompson estimator to estimate population size.

This approach has the advantage of simplicity in that one does not have to specify a

distribution for the covariates, and the disadvantage is that it does not use the full

likelihood to estimate population size. Alternately one could specify a distribution for the

covariates and implement a full likelihood approach to inference to estimate the capture

function, the covariate probability distribution, and the population size.

The general Jolly- Seber open model enables one to estimate capture probability,

population sizes, survival rates, and birth numbers. Much of the focus on modelling

covariates in program MARK has been for survival and capture probability in the

Cormack- Jolly- Seber model and its generalizations (including tag-return models). These

models condition on the number of animals marked and released. A related, but distinct,
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topic is radio telemetry survival modelling that typically uses a modi® ed Kaplan- Meier

method and Cox proportional hazards model for auxiliary variables. Recently there has

been an emphasis on integration of recruitment in the likelihood, and research on how to

implement covariate modelling for recruitment and perhaps population size is needed. The

combined open and closed `robust’ design model can also bene® t from covariate modelling

and some important options have already been implemented into MARK. Many models

are usually ® tted to one data set. This has necessitated development of model selection

criteria based on the AIC (Akaike Information Criteria) and the alternative of averaging

over reasonable models. The special problems of estimating over-dispersion when covariates

are included in the model and then adjusting for over-dispersion in model selection could

bene® t from further research.

1 Introduction

Here I brie¯ y review the use of auxiliary variables in capture- recapture models as

they apply to the estimation of demographic parameters (e.g. population size,

survival, recruitment, emigration, and immigration) for wild animal populations.

Typically in the literature covariate modelling has made capture and survival

probabilities functions of covariates, but it is logical to make other parameters

functions of covariates as well. There are two very important reasons to model

covariates. First it enables more parsimonious parameterizations and thus precision

of all parameter estimates is increased. Second there may be inherent ecological

importance in understanding the nature of the relationships between the parameters

and speci® c environmental and individual animal variables.

The types of covariates considered include group or environmental covariates

that may vary by occasion but are constant over animals and individual animal

covariates that are usually assumed to be constant over time. I discuss the diý culties

of using time-dependent individual animal covariates and some possible solutions.

Also covariates are usually assumed to be measured without error and that may

not be realistic.

While much research is being conducted, there are still enormous gaps in our

knowledge of how to use covariates. In this paper I review what has been done

and, where possible, suggest some alternative new approaches. Section 2 reviews

closed models; Section 3 open models; Section 4 radio telemetry survival models;

Section 5 combined open and closed models; Section 6 the special diý culties with

time-dependent individual covariates. I conclude the paper with my views on other

fruitful current and future research directions.

2 Closed models

2.1 Overview

I begin with a very brief review of closed capture- recapture models based on

Pollock (1991, 2000) and other sources. Other important reviews are Schwarz &

Seber (1999) and Chao (2001). The most basic model is the Lincoln- Petersen

model for a closed population of size N. There is one sample of size M , where all

animals are marked, and a second later one of size n 5 (m + u) where both marked

(m) and unmarked (u) animals are captured. Simple intuition suggests equating

the sample proportion marked with the population proportion marked m /n 5 M /

N. Thus our estimate is

NÃ 5 Mn /m
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This estimator is maximum likelihood under a model with the following assump-

tions (Seber, 1982):

(i) the population is closed to additions and deletions;

(ii) all animals are equally likely to be captured in each sample; and

(iii) marks are not lost and not overlooked by the observer.

The second assumption may be violated in two ways:

(i) heterogeneity which occurs when diþ erent animals have fundamentally

diþ erent capture probabilities; and

(ii) trap response when the probability of capture depends on the animal’s prior

capture history.

Often one samples the population more than twice and each time every unmarked

animal caught is uniquely marked, previously marked animals have their captures

recorded, and usually all animals are released back into the population. This

more extensive sampling enables sophisticated modelling that permits unequal

catchability due to heterogeneity and trap response. Otis et al. (1978) consider a

set of eight models where capture probabilities vary due to time, heterogeneity,

and trap response in all possible combinations. They also provided a computer

program, CAPTURE, to compute the estimates and select between models.

The heterogeneity models that use a distribution of capture probabilities have

caused theoretical diý culty for statisticians. An early ad hoc approach based on

the `jackknife’ method (Burnham & Overton, 1978; Pollock & Otto, 1983) proved

quite useful. Later Chao and her colleagues, in a series of papers, used a method

based on sample coverage (Chao et al., 1992; Lee & Chao, 1994; Chao, 2001).

Some have suggested use of log linear models (Fienberg, 1972; Cormack, 1989;

Agresti, 1994). Becker, Yip, and others have suggested use of martingales (Becker,

1984; Yip, 1989, 1991; Lloyd & Yip, 1991; Yip & Fong, 1993; Lloyd, 1994).

Maximum likelihood estimation where the heterogeneity is modelled as a ® nite

mixture distribution (usually with two or three support points) (Norris & Pollock,

1995, 1996; Pledger, 2000) is a recent development. We will return to this later as

it leads naturally to modelling covariates to explain some of the heterogeneity in

capture probabilities.

Another diý culty has been to ® nd a good method of model selection for this

series of closed models. The original approach in Otis et al. (1978) does not work

well. I suspect that the ® nite mixture approaches will aid in solving this problem

(Pledger, 2000). Model averaging may also be used (Burnham & Anderson, 1998;

Stanley & Burnham, 1998).

2.2 Auxiliary variables

2.2.1 Environmental covariates. Pollock et al. (1984) suggested linear logistic

modelling of capture probabilities using observed environmental and other auxiliary

variables, such as eþ ort, which only varied by sampling occasion and they gave

some examples. Their approach is very straightforward and is now widely used to

model capture probabilities in both closed and open models. The model is

conditional on the values of the variables observed, so that no attempt is made to

model the distribution of the variables.
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2.2.2 Individual animal covariates. The situation is more complex when individual

animal auxiliary variables are used and I now discuss this in some detail. I consider

the case where the covariate is time-invariant ® rst, as it is much simpler to model

statistically. Linear logistic modelling of capture probabilities, using individual

auxiliary variables, may have the purpose of accounting for heterogeneity although

some inherent heterogeneity may still remain due to other unobservable variables

(Pollock et al., 1984; Huggins, 1989, 1991; Alho, 1990; Borchers et al., 1998;

Pledger, 2000). In addition, the modelling should increase the precision of popula-

tion size estimates and satisfy the principle of parsimony (Burnham & Anderson,

1998).

The paper by Pollock et al. (1984) is now only of historical interest in this

context. They noted that, for individual animal covariates, one can only observe

the covariates on the captured animals, but their solution based on homogeneous

subgroups of animals was ad hoc.

There are two sensible modern approaches to modelling individual covariates.

The ® rst of these suggested independently by Huggins (1989) and Alho (1990) is to

condition on the observed animals and then use a generalized Horvitz- Thompson

estimator to estimate population size. This approach has the advantage of simplicity,

in that one does not have to specify a distribution for the covariates, and the

disadvantage that it does not use the full likelihood to estimate population size.

The second approach is to specify a distribution for the covariates and implement

a full likelihood approach to inference where one has to estimate the parameters of

the capture function, p(x), which is the probability of capture for an animal

conditional on its covariate x, the covariate probability distribution, p (x), and the

population size N. Typically p(x) is modelled as a linear logistic (logit) function of

the covariate so that

ln [p(x) /(1 2 p(x)] 5 a + b x

This approach is suggested by Borchers et al. (1998) for the more general problem

of multiple observer line transect models which can be viewed as a combination

of line transects and closed capture- recapture models. It is diþ erent from the

Huggins- Alho approach in that the parameters of p (x) have to be estimated in

addition to the parameters of p(x) and N.

2.3 Statistical model development for individual covariates

2.3.1 Full likelihood. For simplicity I present the full likelihood for a k-sample

capture- recapture study with one covariate x (having distribution p (x) which is,

for example, Normal with parameters l and r ) and capture functions p1(x),

p2 (x), . . . , pk (x) having diþ erent intercepts ( a ) but the same slope ( b ). A much

more parsimonious sub-model would be to put all intercepts equal. However, the

results developed here are much more general.

The development of the general likelihood equation follows that of Alpizar &

Pollock (1996) and Borchers et al. (1998) for the more general problem of

combining line transects and capture- recapture.

L f 5 L1 L2

where
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L1 5 f N !

n.!(N 2 n.)! g p.n.(1 2 p.)n.

and

L2 5 *
n.

i 5 1

*
h f ph (x i) p (x i)

p. g
with

p. 5 +
h
ò ph (x) p (x)dx

Note that L1 is binomial and that p. is the probability of catching any animal at

least once. Also note that ph (x) is the probability of capture for that history h,

conditional on x, so that for the history captured only in times 1 and 2 it would be

p1(x)p2 (x)(1 2 p3 (x)) . . . (1 2 pk (x))

and so on. The summation is over all distinct h where an animal is captured at

least once. In L2 the product is over all animals captured at least once and the

particular ph (x) is evaluated at the value x i for animal i. Note that the problem of

unobserved covariates does not arise because they are integrated out, making this

a true likelihood.

The parameter estimates for ( a 1, a 2 , . . . , a K , b , l , r ) and hence p. would come

from the second component of the likelihood. The parameter N could be estimated

from the moment equation (Sanathanan, 1972) based on the ® rst component of

the likelihood.

NÃ f 5
n.

pÃ .

or

NÃ f 5
n.

R h ò ph (x) p (x)dx.

The ® rst expression is a ubiquitous equation that occurs for all closed capture-

recapture maximum likelihood estimators of N. The trick is to derive the probability

of capturing any animal at least once for a particular model (p.). It is a function of

the parameters in the model and has to be estimated.

There are important questions that need to be addressed before the full likelihood

approach could be implemented and actual estimates computed. The expression

p. involves some very complex integration problems. Also there are many parameters

to estimate so that in some cases the model may be non-identi® able. For instance,

in the example illustrated it may be necessary to assume that all the intercepts ( a )

are equal unless k is very large. On the other hand, if these problems can be

overcome, then a full maximum likelihood approach might have the advantage of

better precision for the population size estimator than the conditional approach.

2.3.2 Conditional Huggins- Alho likelihood. Here the conditional likelihood is based

on Huggins (1989) but I present it in a slightly modi® ed form to contrast it to the

full likelihood approach. The likelihood (conditional on the observed covariates) is
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obviously only de® ned for captured animals because otherwise the covariates are

unobserved! I also present the Horvitz- Thompson estimator of N suggested by

Huggins (1989).

L c 5 *
n.

i 5 1

*
h f ph (x i )

R h ph (x i) g
NÃ c 5 +

n.

i f 1

R h pÃ h (x i) g
Note that the full likelihood and conditional likelihood estimators of N will only be

algebraically equal in the trivial case where the capture probabilities do not depend

on the covariate (x). One problem with this estimator is that sometimes the capture

history probabilities in the denominator can be small and the estimator can become

very unstable.

I postpone discussion of the situation when individual covariates are time-depend-

ent until Section 3.2.1 because they are also relevant to the open models discussed

next. The fact that the covariates are only observed on the occasions when the

animals are captured creates special problems that are still largely ignored in the

literature.

3 Open populations

3.1 B rief overview

3.1.1 General Jolly- Seber model. Often capture- recapture studies last a long time

rendering the closed models impractical. Therefore there has been a need for the

development of models that allow for additions (recruits and immigrants) and

deletions (deaths and emigrants). The ® rst general stochastic open model was

developed independently by Jolly (1965) and Seber (1965). Their model, which

requires equal catchability and equal survival rates of all animals at each sampling

time, enables one to estimate population sizes, survival rates, and birth numbers

for almost all samples. Detailed treatments are in Seber (1982) and Pollock et al.

(1990). In the Jolly- Seber model survival and capture probabilities are estimated

from the component of the likelihood that involves recaptures of marked animals.

(This is now known as the Cormack- Jolly- Seber model.) Then traditionally these

estimators are used to de® ne moment equations to estimate population size and

birth numbers using the component of the likelihood relating marked and unmarked

animals. We now give an intuitive description of the estimators.

Given the number of marked animals, M i , is known at each sampling occasion,

then population size for period i can be determined using the Petersen estimator.

m i

n i

> M i

N i

NÃ i 5
MÃ in i

m i

(i 5 2, . . . , k 2 1)

Here, n i represents the number of animals captured at each sampling occasion, m i

of which are marked. However, because deletions are now possible, in order to

estimate abundance (and other vital rates), one must estimate M i .



Auxiliary variables in capture- recapture modelling 91

The survival rate estimator is obtained from the ratio of marked animals present

at time i + 1 to time i,

u Ã i 5
MÃ i + 1

MÃ i + (R i 2 m i)
(i 5 1, . . . , k 2 2)

where the term, R i 2 m i , represents the number of newly marked animals released

at time i. The survival estimator does not distinguish between losses due to death

and due to permanent emigration, without more information.

To estimate birth rates, the diþ erence in population size at time i +1 and time i

is determined, by accounting for deaths due to natural mortality (1 2 u i) and

capture mortality (n i 2 R i),

BÃ i 5 NÃ i + 1 2 u Ã i(NÃ i 2 (n i 2 R i)) (i 5 2, . . . , k 2 2)

The birth rate estimator cannot distinguish between individuals entering the

population due to recruitment and immigration. However, in the case of recruit-

ment, it may be possible to separate the individuals entering on the basis of size,

sexual maturity, etc.

Capture probability, p i , is estimated as the ratio of marked animals caught at

time i to the number present in the population at time i.

pÃ i 5
m i

MÃ i

5
n i

NÃ i

(i 5 2, . . . , k 2 1)

All of the above estimators rely on the knowledge (or estimation) of the marked

population size, M i . The marked population size is estimated by equating the

future recapture rates of two distinct groups of animals in the population at time

i, those that are marked (both previously and currently) but not seen at time i

(M i 2 m i), and those that are seen and released at time i (R i). Under the assumption

of equal capture rates and equal survival rates of individuals, the future recapture

rates of these two groups should be equivalent. Thus, if z i and ri are the members

of the M i 2 m i and R i which are captured again later (at least once),

z i

M i 2 m i

»
ri

R i

(i 5 2, . . . , k 2 1)

MÃ i 5 m i +
R iz i

ri

These closed-form estimators are useful for understanding the structure and

assumptions of the Jolly- Seber model. However, in practice there is the need for the

® tting of many sub-models of this general model. The sub-models could be simply

simpli® cations where survival and /or capture rates are made constant over time or

generalizations where survival and /or capture rates are made functions of covariates.

In either case, parameters can no longer be estimated explicitly and complex com-

puter programs are needed. In the next section, I focus on the Cormack- Jolly- Seber

model for survival and capture rate estimation and then return to the more general

Jolly- Seber model which includes recruitment estimation as well.

3.1.2 Cormack- Jolly- Seber model (survival modelling). There has been much

research on modelling survival rates (and capture probabilities) allowing for mul-

tiple strata (e.g. sex, age, location). An important reference is Lebreton et al.
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(1992). An interesting development has been the shift to ® tting large numbers of

models that has necessitated development of model selection criteria based on the

AIC (Akaike Information Criteria). The alternative approach of averaging over

some reasonable models is also being considered. The recent book by Burnham &

Anderson (1998) on model selection is very important to this research.

Related models based on band recoveries of exploited animals (Brownie et al.,

1985) have been developed and are very widely used to analyse band return data

on migratory waterfowl and other animals. These models led to important work

on the compensatory versus additive mortality hypotheses for hunting mortality.

Recently these models have begun to be used in ® sheries studies in a slightly

diþ erent form using instantaneous rates of ® shing and natural mortality (Hoenig

et al., 1998a, 1998b).

A driving force in this recent research has been the availability of excellent

software. The most notable is Program MARK (White & Burnham, 1999) that

makes the ® tting of many related models and choice among them straightforward.

This program will be considered in more detail later when we discuss auxiliary

variables.

Bayesian approaches to these complex survival models for capture- recapture and

tag return models and their combination are now beginning to be used (Vounatsu

& Smith, 1995; Dupuis, 1995; Brooks et al., 2001). This is due to the development

of eý cient computer-based sampling methods to estimate posterior distributions

using Markov Chain Monte Carlo (MCMC) and the BUGS software (Gilks et al.,

1996; Spiegelhalter et al., 1999; Chen et al., 2000).

3.1.3 Other models. Early survival modelling work considered ® xed strata like sex

or strata where the transition to the next stage was automatic (i.e. as in successive

age classes). Recent works have looked at transitions between stages or states in a

probabilistic manner. For example, animals may be marked in two diþ erent

locations and, as well as surviving between periods, they may move to another

location. Stage-structured models allow the estimation of both survival and move-

ment probabilities. Some important papers that outline important theoretical results

and provide interesting examples are Hestbeck et al. (1991), Nichols et al. (1992),

Brownie et al. (1993), and Schwarz et al. (1993). MSSURVIV was written by Jim

Hines to aid in these analyses (Brownie et al., 1993). Research in this important

area is continuing (e.g. Lebreton & Pradel 2001).

Combining data sources to improve precision of survival estimates and allow

separation of apparent survival into true survival and ® delity rates has also been a

source of much recent work. Two very important papers are Burnham (1993) and

Barker (1997). Current work includes Nasution et al. (2001a, 2001b) and others.

Other recent work has emphasized integration of recruitment in the likelihood

(e.g. Schwarz & Arnason, 1996; Pradel, 1996). Related work allows direct estima-

tion of population change ( k ) (Nichols & Hines, 2001).

3.2 Auxiliary variables

3.2.1 Survival and capture probability modelling. Modelling survival as a function

of covariates goes back at least to 1979 when North & Morgan (1979) used winter

temperature to model survival of herons. There have been many examples since

then and recently a variety of software packages has been developed. A very

important reference is Lebreton et al. (1992) who gave a variety of examples using
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Program SURGE. Smith et al. (1994) developed Program SURPH and gave

examples. POPAN-5 (Arnason & Schwarz, 1999) allows modelling of survival and

capture probabilities as a function of group but not individual covariates.

Program MARK allows one to model both survival and capture probabilities as

functions of both environmental and individual covariates (White & Burnham

1999; White et al., 2000; Cooch, 2000a, 2000b; Franklin, 2000) for capture-

recapture and tag return data and combinations of them. Cooch (2000b) and

Franklin (2000) give very useful basic examples that show some of the many

features of this extremely versatile and comprehensive program with covariates.

Analyses are conditional on the observed covariate values (i.e. the covariate

distribution is not speci® ed). A link function links the linear model speci® ed in the

design matrix with the survival, recapture, reporting rate, and ® delity probabilities

speci® ed in the parameter index matrix. Several link functions are available:

· Sin

· Logit (typically used when modelling covariates)

· Loglog

· Complementary loglog

· Log

· Identity

The Logit is the most common link used when modelling covariates and recall, for

example, that the Logit [ u (x)] 5 ln [ u (x)/(1 2 u (x)] 5 a + b x.

When computing the log likelihood function the following conceptual equation

is used:

Log L µ +
h

Log (Pr (Observe encounter history h))

3 (No. animals with encounter history h)

For environmental covariates the basic unit is the encounter history with the

summation over all capture histories h where an animal is captured at least once.

To illustrate some of the computational issues involved when covariates are

modelled consider a 6-period live recapture study, with apparent survival, a logit

linear function of a covariate such as air temperature at each sampling time, initial

weight of each animal, or weight of each animal at each sampling time. One

possible observed history is 101111 with

Prob (Observe this encounter history)

5 u 1(x)(1 2 p2 ) u 2 (x)p3 u 3 (x)p4 u 4 (x)p5 u 5 (x)p6

Recall that in the Cormack- Jolly- Seber Model we are conditioning on marked

animals released and we do not have to worry about modelling unmarked animals.

This makes covariate modelling reasonably simple, at least conceptually. This is

one of the simplest histories to write down, but the principle is the same for any

of the capture histories.

For an environmental covariate such as air temperature at each sampling time,

all animals with this or any other history have the same encounter probability, and

hence they can be grouped. This greatly speeds up the computations. For an

individual ® xed covariate, such as initial weight of each animal, each animal has to

have its encounter history probability computed separately because each animal

has a distinct covariate value. This involves more intense computation.
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Time-dependent individual covariates, such as weight of the animal at each

sampling time, create special diý culties and cannot be computed in the current

version of MARK (or any other program). Environmental and ® xed individual

animal covariates have the same x for all ® ve survival probabilities (i.e. u (x) uses

same x for all periods). However, for time-dependent individual animal covariates

we would have the encounter probability,

u 1(x1)(1 2 p2 ) u 2 (x2 )p3 u 3 (x3 )p4 u 4 (x4 )p5 u 5 (x5 )p6

with each animal in each time period having a distinct x value. Now x2 is not

observed because the animal is not captured at time 2 (note that x1 , x3 , x4 , x5 are

observed). We shall return to this later in Section 6. We note that the special case

of a time-dependent covariate which changes in a known way (i.e. age) can be

handled easily in existing software, because even when the animal is not captured,

the value of the covariate is known.

Remember the analyses are conditional on the marked animals released and the

observed values of covariates, and so the analyses are nice and simple, at least

conceptually, for environmental and ® xed individual animal covariates. One can

standardize the covariates by subtracting oþ the mean and dividing by the standard

deviation to avoid scaling problems. This is recommended when using MARK.

One can add terms to allow for quadratic eþ ects, or interactions between two

covariates and so on. There are dangers of over- ® tting and getting non-identi® able

or near non-identi® able models for `naive’ users. It is crucial to look at model

diagnostics and convergence very carefully before considering model parameter

output. One also needs to use the model selection criteria, AIC, or its modi® cations

to try and keep the ® nal model chosen as parsimonious as possible. An alternative

is to come up with a small set of potential models and use model averaging

(Burnham & Anderson, 1998).

Model selection and precision for estimates under a given model depend for

validity on assuming that the model ® ts the data well. When there are covariates

then it is diý cult to assess goodness of ® t, because one can no longer use the

traditional chi-square goodness of ® t test used for capture- recapture models (see

for example Seber, 1982). In addition, if the model is not ® tting well, then the

AIC and the standard errors of parameter estimates should be adjusted based on

the estimate of the over dispersion parameter c (see Burnham & Anderson, 1998).

Typically c is estimated as deviance /degrees of freedom (McCullagh & Nelder,

1989). White (2001) in his discussion of this paper notes that cÃ as estimated in

Program MARK using a parametric bootstrap procedure (White & Burnham,

1999) can be severely negatively biased and he includes some simulations to show

its magnitude.

3.2.2 Multi-state models. Spendelow et al. (1995) modelled movement as a func-

tion of environmental covariates (i.e. colony size and distance between colonies)

in multi-state models for a meta-population of roseate terns using program

MSSURVIV. The basic multi-state model (Schwarz et al., 1993) has been imple-

mented in MARK so that individual and group covariates can be used for modelling

survival and movement rates.

3.2.3 Recruitment and population change estimation. I think a lot more research

work is needed here. Recruitment as de® ned by Schwarz & Arnason (1996) can
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currently be modelled as a function of an environmental covariate in POPAN-5

(Arnason & Schwarz, 1999) but it is not possible to model individual covariates.

The seniority parameter of Pradel (1996) can be modelled as a function of

individual covariates using MARK (White & Burnham, 1999). The seniority

parameter (c i + 1) is the analog of a survival parameter when a capture- recapture

study is run backwards in time and measures [ u i /( u i + fi)]. Thus (1 2 c i +1) is a

measure of [ fi /( u i + fi)] which is per capita recruitment rate ( fi) as a fraction of per

capita recruitment rate plus survival rate ( u i) (Franklin, 2000). However, I think

biologists would probably be more interested in modelling fi itself as a function of

covariates.

4 Radio-telemetry survival modelling

Biologists began the use of radio tags as a method of studying animal movements.

As the technology improved and the sample sizes increased, this approach has also

been used to estimate survival rates. Early papers were by Trent & Rongstad (1974)

and Heisey & Fuller (1985). Pollock et al. (1989) used and modi® ed the Kaplan-

Meier method that is widely used in medical applications of survival analysis for

wildlife telemetry. There have been many papers in the wildlife journals using these

methods. In some cases the Cox proportional hazards model for relating auxiliary

variables to survival has been used (e.g. Riggs & Pollock, 1992).

When ® rst proposed it was assumed that these models required that these

animals had capture probabilities of 1 (they did allow for right censoring). While

it is reasonable to make this assumption in some cases Pollock et al. (1995)

formulated these models as a Jolly- Seber capture- recapture model where both live

and newly dead animals could be detected with equal capture probability less than

one. They showed that the staggered entry Kaplan- Meier estimator can still be

used for survival estimation. This model has not been used very much, however,

it would be feasible to model survival or capture rates as a function of environmental

or ® xed individual animal covariates using program SURVIV or program MARK.

5 Combined open and closed models

5.1 Overview

Traditionally long-term capture recapture data have been analyzed using the Jolly-

Seber model or its variants. These models were discussed in detail in Section 3.

A problem with this approach is that the assumption of equal catchabilty is often

diý cult to satisfy and bias in population size estimates often results although

survival rate estimates are usually much less aþ ected. In addition, in many studies

there may be multiple capture periods close together in time with the possibilities

of recaptures. In a Jolly- Seber formulation these events would all be pooled and

short-term recaptures ignored. Pollock (1982) suggested a design with primary

periods spaced far enough apart so that an open model is necessary. However, he

suggested an addition where each primary period had several secondary periods

close together. For example a study might have three monthly primary periods and

then within each month ® ve consecutive trapping days. He suggested that the

within primary period captures and recaptures be used in a closed population model

to estimate population size in a manner robust to unequal capture probabilities (i.e.

use one of the 8 models in Program CAPTURE). Survival rate would be estimated
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using the Cormack- Jolly- Seber open model on the primary period captures and

recaptures (i.e. pool all the captures within each primary period). Birth numbers

can also be estimated using the deterministic equations proposed by Jolly (1965)

but with the population estimates coming from the closed models rather than the

open model. Nichols & Pollock (1990) realized that the robust design could be

used to separate in situ recruitment from immigration if young and adults were

both tagged.

Kendall & Pollock (1992) explored this `robust’ design further using simulation.

Kendall et al. (1995) built models that provided more eý cient maximum likelihood

estimators than Pollock’ s ad hoc approach when the closed component did not

include heterogeneity. Kendall & Nichols (1995) and Kendall et al. (1997) realized

that the design had another important bene® t. The problem of temporary emigra-

tion has plagued open capture- recapture models and they realized that if it is

reasonable to assume that the temporary emigration did not occur between the

secondary periods of a primary period then a solution was possible.

SURVIV (White, 1983) can be used to ® t any multinomial model, but it is not

easy to use when there are a large number of cells to specify. Kendall & Hines

(1999) developed a `front end’ to SURVIV called RDSURVIV so that parameter

estimates could be obtained for many sub-models including those allowing time

variation and trap response of capture probabilities, and the modelling of temporary

emigration of animals (i.e. the animals move out of the study area for a period and

then return).

5.2 Auxiliary variables

Program MARK includes analysis based on the robust design as one of its many

options (Kendall, 2000). It goes beyond the earlier program RDSURVIV in a very

important way because it allows an option for the use of ® xed individual covariates

by implementing Huggins conditional likelihood (Huggins, 1989 and Section 2)

within each primary period. Recently Yip et al. (2001) also considered the modelling

of covariates for the robust design using Huggins model as the basis for their

inference.

I believe that the full likelihood approach, discussed earlier in Section 2, could

also be implemented for the robust design. One drawback of the full likelihood for

a single closed population is that there are large numbers of parameters to specify.

However, in the robust design it might be possible to specify equality of parameters

across primary periods, achieving some parsimony and improved precision for

parameter estimation.

6 Time dependent individual covariates

The special problems of using time-dependent individual animal covariates, previ-

ously discussed in Section 3.2.1, should be investigated thoroughly. I have not

been able to ® nd any publications on this topic, although I believe that researchers

have begun to think about it. The key issues here are that the values of the covariate

are only observable when an animal is captured and that a comprehensive analysis

would require information on the distribution of the covariate and how it changes

over time. I suggest some possible approaches that could perhaps apply to either

open or closed population studies.

Lebreton & Pradel (2001) state that multi-stratum models constitute a canonical
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capture- recapture model for individual categorical covariates changing over time.

If we are dealing with a continuous covariate changing over time, then one approach

would be to approximate it as a series of discrete categories with transitions between

them (Nichols pers. com.). Nichols et al. (1992) essentially followed this approach

when they analysed a meadow vole capture- recapture data set with weights

categorized into discrete weight states. The obvious advantage of this ad hoc

approach is that one does not need to specify how animals change in weight or the

distribution of weight within the population of animals. The disadvantage would

be that, if a full model could be speci® ed, then more precise estimates of parameters

would result.

A full likelihood approach could be attempted and this would involve integrating

out the unobserved covariates. However, it would be necessary to specify the

distribution of the covariate and how it was changing over time. Another approach

based on the full likelihood would be Bayesian. The use of Bayesian methods is

particularly suggested here by the need for dealing with unobserved covariates.

Bayesian methods automatically integrate out unobserved random variables using

numerical integration or Markov Chain Monte-Carlo sampling methods (MCMC).

One might also be able to carry out an analysis conditional on the covariates

and view it as a missing data problem. If the change in the covariate were modelled

over time, I suspect the EM algorithm (Dempster et al., 1977; Little & Rubin,

1987) might be useful. Van Duesen (2001) has suggested use of the EM algorithm

in the standard Cormack- Jolly- Seber model to speed up computation times for

large data sets. He mentions individual covariates in his model formulation but his

example does not include them.

7 Discussion and future research

7.1 Discussion

Statisticians may think that the primary purpose of using covariates is to get a

more robust model and avoid bias due to heterogeneity (in the closed models).

Biologists, however, may be drawn to covariate modelling because they want to

explore important ecological hypotheses on the relationship of survival or recruit-

ment parameters to auxiliary variables such as animal weight. White (2001)

notes, however, that cause and eþ ect relationships cannot be established without

experimental manipulation of the system. Therefore opportunities to incorporate

covariates into designed, manipulative experiments should be considered wherever

practically feasible.

The perennial statistical inference question of the trade o þ between model reality

and parameter estimator precision becomes very complex when covariates are

involved. (If full likelihood methods are used there will be even larger numbers of

parameters involved.) Therefore model selection methods and the related topic of

model averaging are very important because, when covariates are involved, there

will be very large numbers of models to choose from.

7.2 Some possible research directions

7.2.1 Closed models. The closed population models are interesting in their own

right, but also, in addition, because they are a key component of the `robust design’

where open and closed models are combined in one overall model. There is a need
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for much more research on these closed models. I suggest some possibly fruitful

avenues now.

While the conditional, Huggins- Alho approach is now widely used, it can be

unstable. An implementation of the full likelihood approach needs to be done and

then a comparison with the conditional likelihood approach made. Borchers et al.

(1998) suggested this initially.

Recent research by Pledger (2000) and others involve combining the observed

conditional covariate approach of Huggins (1989) and Alho (1990) with the

® nite mixture distribution approach for dealing with inherent (or unexplainable)

heterogeneity. Thus heterogeneity is modelled by observed covariates, plus an

additional random component modelled by a ® nite point mixture. Theoretically

this strikes me as important as heterogeneity is unlikely to ever be totally explained

by covariates. In practice there could be serious problems of over parameterization

unless capture probabilities and numbers of capture occasions are both high.

A combination of line transects and capture- recapture methods needs to be

considered further. This could be a very useful practical combination in some

settings (aerial and ship surveys of marine mammals; bird counts with multiple

observers). However, modelling additional covariates beyond perpendicular dis-

tance present practical diý culties. While Borchers et al. (1998) present a complete

likelihood including covariates and a conditional likelihood including covariates

(analogous to the Huggins (1989) likelihood for capture- recapture discussed

earlier), they are clearly uncertain about which is preferable. They note that

simulations showed that the conditional approach had large positive bias for

population size estimates, if detectability is low, while on the other hand they note

that the full likelihood is very complex and requires speci® cations for distributions

of covariates. Note that the distribution of perpendicular distance is uniform if the

transect is placed randomly, and in that case there is no additional complexity. Of

course if the transects were not random (i.e. along trails or roads) modelling the

distribution of distance more generally could be very informative, although I would

never advocate those kind of transects.

7.2.2 Open models. Goodness of ® t, model checking diagnostics, and the estima-

tion of over dispersion, in the presence of covariates, need to be considered further.

White (2001) emphasized that he thought that this area was the most important

for future research.

Not much attention has been given to modelling recruitment or population

change as a function of covariates. The modelling of survival and movement in

multi-state models could also bene® t by more research. Robust design covariate

modelling could be quite rich because of the possibility of imposing constraints

across the primary periods. Many of the points made about the closed population

models research directions also apply to the robust design.

7.2.3 General questions. Scaling of covariates needs more attention. Also the very

important problem of individual animal time-dependent covariates, and the need

for future research in that area have already been considered in Section 3.2.1 and

Section 6.

Brooks et al. (2001) indicate that Bayesian methods for the analysis of individual

covariates in capture- recapture and tag return models are being devised. This

alternative to standard approaches used in Program MARK, for example, is likely
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to receive a lot more attention in the future. Bayesian methods could be used for

both closed and open models.

Measurement errors in the covariates need to be considered very carefully. It is

well known that measurement errors can cause bias in standard linear and nonlinear

regression problems (Carroll et al., 1995). Various authors including Alpizar (1997)

have investigated measurement errors in the distance variable in line transect

sampling, but I have not seen measurement error in covariates addressed in the

capture- recapture context. Alpizar (1997) showed that both the bias and the

variance of the measurement error distribution are important and can cause bias

in diþ erent directions. Thus, even if the measurement error is unbiased, it can still

cause a serious bias in the covariate regression parameter estimates.
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