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Discussion comments on: the use of auxiliary
variables in capture- recapture modelling.
An overview

GARY C. WHITE, Department of Fishery and Wildlife B iology, Colorado State

University, USA

The incorporation of auxiliary variables into capture- recapture models provides

the biologist the opportunity to explore many biological hypotheses, and thus

provides a powerful technique for extending the analysis of encounter history data.

However, cause-and-eþ ect relationships cannot be gained without experimental

manipulation of the system. That is, even though an auxiliary variable in a capture-

recapture model may provide a good predictor of survival, unless the auxiliary

variable is part of a manipulative investigation, the relationship is only correlative

and lacks the stronger frame of inference provided by experimental manipulation.

Opportunities to incorporate covariates into designed, manipulative experiments

should not be declined.

The Achilles’ heel of using auxiliary variables in capture- recapture modelling is

assessing goodness-of-® t. With the procedures presented by Burnham & Anderson

(1998), quasi-likelihood approaches are used for model selection and for adjust-

ments to the variance of the estimates to correct for over-dispersion of the capture-

recapture data. An estimate of the over-dispersion parameter, c, is necessary to

make these adjustments. However, no general, robust, procedures are currently

available for estimating c. Although much of the goodness-of- ® t literature concerns

testing the hypothesis of lack of ® t, I instead view the problem as estimation of c.

Logistic regression also su þ ers from the detriment of no generally robust

methodology to estimate c. The goodness-of- ® t procedure derived from likelihood

theory suggests the deviance of the model is chi-square distributed with degrees of

freedom equal to sample size of the data minus the number of estimated parameters
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(McCullagh & Nelder, 1989). The chi-square distribution follows because the

deviance is the likelihood ratio test statistic of a saturated model, with the number

of parameters equal to the sample size versus the ® tted model. However, the

deviance statistic is known not to be chi-square distributed for small samples

(McCullagh & Nelder, 1989), and the resulting estimate cÃ 5 deviance/df is a biased

estimate of the true overdispersion. The Hosmer- Lemeshow test (Hosmer &

Lemeshow, 1989) provides an alternative procedure for goodness-of- ® t in logistic

regression, but su þ ers from the subjectivity of breaking a continuous variable into

discrete classes. Although apparently a useful approach for logistic regression, the

test has not been extended to handle capture- recapture data.

The parametric bootstrap procedure currently implemented in Program MARK

(White & Burnham, 1999) does not provide an unbiased estimate of c, based on

simulations with the Cormack- Jolly- Seber model. Simulated data with c 5 2 were

generated for 5, 10 and 15 occasions, u equals 0.5 and 0.8, p equals 0.5, with 100

releases on each occasion. The 100 sets of simulated data for each of the six

scenarios included extra binomial variation by simulating a single encounter history,

but recording two animals as experiencing that history. Results shown in Fig. 1

suggest a negative bias for the bootstrap procedure, whereas the goodness-of- ® t

tests provided in Program R ELEASE (Burnham et al., 1987) provide reasonable

estimates of c near the expected value of 2.

Another diý culty with incorporating covariates into capture- recapture models

that allow estimation of population size, N , is to model N directly as a function of

covariates, e.g. habitat characteristics. For likelihood-based estimators, NÃ > M t +1,

i.e. the estimate must be the number of marked animals in the population.

Typically, to implement this constraint, numerical optimization is performed on

the quantity fÃ 0 5 NÃ 2 M t +1, i.e. the estimated number of animals never captured.

Incorporation of covariates to model NÃ is not possible directly in software packages

Fig. 1. Simulation results for estimates of the overdispersion parameter (c) from chi-square tables of

Program RELEASE (Burnham et al., 1987) and the parametric bootstrap procedure of Program MARK

(White & Burnham, 1999). Each scenario consists of 100 replications.



Discussion comments 105

such as MARK (White & Burnham, 1999) because f0 is being modelled instead

of N .

Another issue concerns the loss of e ý ciency of models that do not include N in

the likelihood and condition on the animals observed (e.g. Huggins, 1989, 1991;

Alho, 1990) and models that include N in the likelihood (Otis et al., 1978, and

references therein). The Huggins models provide a much more ¯ exible framework

to incorporate auxiliary information, particularly individual-speci® c information,

into the model.

To evaluate the diþ erence in bias and eý ciency of the Huggins and unconditional

likelihood models, I conducted a small simulation study with 2000 replications of

the M 0 estimator of Otis et al. (1978) with N 5 500, for 5 occasions, and 9 values

initial capture and recapture rates of p 5 c 5 0.0690, 0.0970, 0.1294, 0.1674,

0.2140, 0.2752, 0.3690, 0.4507 and 0.6019. These values correspond to the

fraction of the population seen during the 5 occasions [ p* 5 1 2 (1 2 p)5] of 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 0.99. Results for percentage relative bias and

standard deviation of NÃ are shown in Figs 2 and 3, respectively. Both estimators

become biased high as the proportion of the population decreases, although this

bias is greater for the Huggins estimator. As expected from likelihood theory, the

Huggins estimator is also less e ý cient, although not markedly so. Basically, neither

estimator performs well for small capture probabilities.

In summary, three diý culties with incorporating auxiliary variables into capture-

recapture models have been considered: estimation of over-dispersion, constraints

on NÃ , and the performance of estimators when the likelihood is conditioned on

only the animals observed. The general estimation of over-dispersion is an unsolved

issue. Constraints on NÃ may be possible with more robust software. Lastly, the

Huggins estimator performs reasonably well with data where at least 60% of the

population was captured.

Fig. 2. Percentage relative bias of the Huggins (1989, 1991) and unconditional likelihood (Otis et al.,

1978) estimators as a function of the proportion of the population captured. Each scenario was

simulated 2000 times.
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Fig. 3. Standard deviation of the estimates of population size for the Huggins (1989, 1991) and

unconditional likelihood (Otis et al., 1978) estimators as a function of the proportion of the population

captured. Each scenario was simulated 2000 times.
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