CHAPTER 3
CAPTURE-RECAPTURE

MODELS

In the typical capture-recapture study, a main objective is to estimate population size N. Neither the
true value of N nor the correct assumptions to make about capture probabilities are known. The scientific
problem is, first, to formulate a model, or a series of models, and to select the most appropriate model
based on the actual data, then, given the model, to compute the most efficient estimate of N and the
reliability of that estimate.

Common practice has been to compute a few summary statistics from the entire X matrix of captures,
then to compute an estimate of N based on these summary statistics, using one of dozens of published
estimators, and to stop there without giving real justification for the selection of the estimator used. The
assumptions are not tested and the sampling variance of N is not estimated. This is not an objective,
scientific procedure. Because there are numerous published estimators, different persons can get quite
different estimates with the same data.

Table 3.1 presents common summary statistics for a 10-occasion, simulated capture-recapture study.
From just these summary statistics, we computed nine estimates of population size: 175, 183, 187, 197,
200, 202, 234, 245, and 260. Each of these numbers derives from a different published estimator of

. TABLE 3.1. Some common summary statistics from a simulated 10-
occasion (10-day) capture-recapture study. The number of captures
each day is n;. The number of unmarked animals caught on day j is u,.
The number of marked animals in the population just before the j*
capture occasion is M,. At the end of the study, the number of animals
captured exactly j times is f. Based on just these summary statistics,
more than a dozen different estimators of population size can be
computed. We computed, from this one set of data, some of the more
common ones plus the estimators we are recommending; the range of
values for N was 175 to 260.

Capture Animals Newly Total Capture
Occasion Caught Caught Caught Frequencies
j n, u; M, f,

38 38 0 26
45 34 38 43
57 27 72 : 39
56 23 99 28
65 17 122 26
72 11 139 13
59 15 150 4
62 5 165 1
64 6 170 0
67 4 176 0

—
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population size for capture-recapture data for closed populations. Still other estimates could be computed
from the data in Table 3.1 or from alternative summaries of the basic data. It is quite possible that a real
study producing these data, if published by different people, could have an estimate ranging from 175 to
260, with no measure of the estimate’s validity or precision. Yet, in this study, there are ample data to
allow an objective assessment of the assumptions underlying any reasonable estimator and, thereby, to
choose an appropriate estimator and to give its reliability.
Given a set of capture-recapture data, several questions need to be answered. What are the plausible
sources of variation in capture probabilities? Hence, what is a plausible model? What is a good estimator
of N? Is there a good estimator, based on the data in hand? Given an estimator, what is its reliability?
Without such a rigorous framework for the analysis of capture-recapture data, estimates of N are not
defensible. We present here the methodology for such an approach (cf. Nichols et al. 1981; Pollock
1981b). :
This chapter provides the basic information on the eight models underlying our suggested methods of
estimating population size from capture-recapture data under the assumption of population closure.
Central to this chapter are the assumptions of the models, the tests of the assumptions, the estimators
based on the models, and confidence interval construction. Tests of assumptions are either tests between
models or goodness of fit tests applicable to individual models. Based on these tests there is.an objective
rule for the selection of the “best” model to describe any given set of capture data. Five of the eight
models have a corresponding “good” estimator of N. :
In this chapter, as elsewhere in this book, the emphasis is primarily on concepts mathematlcal details
are given in Otis et al. (1978). Each example in this chapter is based on simulated data that fit one of the
eight models exactly. To prepare the examples, 10 simulated data sets were generated for each model. The
replications represented by these 10 cases for each model are used to illustrate the naturally occurring
sampling variations to be expected in estimates of population size. The reader should fully comprehend
the material in Chapter 3 before going to Chapter 6, which presents examples using real data.
The typical literature on capture-recapture methods with closed models concentrates on estimating
population size N. However, there are three critical considerations in constructing capture-type models.
e What does population size N mean? Because no capture model has anything analogous to the sides
of the urn in ball'and urn models, consideration often must be given to converting N to a density of
animals per unit area, N/A, where A represents the size of the area being used by the population.
Thus, one must ask, to what area does N relate? We discuss this problem (for closed models) in
Chapter 5. ‘

@ Should the model be demographically open or closed? Some comments on this problem are in
Chapter 8. o

e How can the parameters of the model vary over the three factors time, behavior, and heterogeneity?
We are dealing only with closed models in this chapter (and in most of thisv primer); consequently,
the only parameters of the capture model are the capture probabilities and the unknown population
size N.

Modeling Capture Probabilities

Development of the early capture models was motivated by thoughts of ball and urn studies. Imagine
an urn filled with 100 small white balls. One reaches in and removes, say, 30 (= n,) balls, marks them by
coloring them black, and returns them all to the urn. Thus, there are n, = M, marked balls in the urn when
the second sample is taken. (In our notation the number of marked balls, or animals, just before the jt
capture sample is M;. Given 100% survival of marked animals, M is the total number of animals marked
and released before the j™ sample is taken.) The 100 balls in the urn are mixed well and a second random
sample of size, say 36 (= n,), is drawn. Some of these, say 10 (= m,), will be black (previously marked)
and the rest (26 in this example) will be white (unmarked). We let u, = n, — m, = 36 — 10 represent the



unmarked balls in the sample. The basic assumption is that on the. average, that is, in terms of statistical
expectations, the ratio of marked balls to total balls in the population will be the same as the ratio of
marked balls in the sample—(n,/N) = (m,/n,) = M,/N.

In this example, therefore, the ratios to be set equal (and solved for N) are 30/N and 10/36:

30_10
N 36
or
Q- 30x36
10
=108

In terms of the symbols, n, (animals caught, hence marked, in the first sample), n, (total animals
caught in the second sample), and m, (marked animals caught in the second sample),

nn,

N=
m,

In ecology this equation is known as the Petersen-Lincoln estimator (see Seber 1973.:60).

One can continue to draw samples, recording on each occasion the numbers of marked, m,, and the
numbers of unmarked, u, balls. Each time; white balls are colored black before all are returned to the
urn. This conceptual “model” of capture studies has dominated the ecology literature for 30 years. Yet, it
is illogical to apply such a ball and urn model to biological populations because capture probabilities vary
in real populations and because there is not always an analogy in biological populations to the sides of the
urn. This lack of analogy is what creates difficulties in interpreting what N means.

The process of capturing living organisms is not analogous to the process of stirring up balls in an urn
and drawing a random sample. One cannot mix the population after each capture occasion; moreover,
animals will not mix themselves randomly and the capture process itself is potentially very complex.
Capture probabilities can vary over time, because of weather or the amount of effort expended on any
occasion to capture animals. Individual capture probabilities can vary because of innate factors
(heterogeneity), such as the age and sex of the animal, its social status, the number of traps in its home
range, or its. inquisitiveness. Finally, animals often exhibit a behavioral response to capture; hence the
capture probability of an individual can easily change after first capture. Ball and urn models never have
allowed for heterogeneity and only rarely (and recently) have allowed for limited degrees of behavioral
variations in capture probabilities, but models for estimating the abundance of populations of living
organisms must allow for these sorts of variations.

The most general conceptual model of capture probabilities allows each individual to have a unique
capture probability on every capture occasion. Symbolically, the set of capture probabilities is (p;;), where
1 ranges from 1 to N individuals (not all of which will be caught during a study) and j ranges from 1 to t
occasions. This model has far more capture parameters (the py) than there will be data, although it may
be the only truly realistic model. To derive simple models (that is, models having few enough parameters
that they can be estimated), we must make simplifying assumptions about the capture probabilities. The
models presented below are described in terms of their assumptions about capture probabilities.

It is important to understand the interpretation of the capture probabilities as we use them here.
Conceptually, on each trapping occasion of the study, every individual has an unknown probability of
capture, symbolized as p;;. For the estimation of population size, it does not matter in which trap an
animal is caught, because these capture probabilities do not apply to given traps. Capture probability
means the probability of an animal’s being caught in any trap. The capture process in capture-recapture
and removal sampling basically catches individual animals (not groups of animals in the sense of taking a
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handful of balls from an urn) on a series of separate occasions; the capture probabilities of our models
reflect this aspect of the process.

Model M, Constant Capture Probabilities

If every animal has the same capture probability p on every capture occasion, we have Model M, the
simplest model (Otis et al. 1978:21 -24). It allows for no sources of variation in its capture probabilities.
Model M, is valuable primarily as a necessary starting point for testing assumptions about capture
probabilities. We also use it to introduce many ideas about analysis, such as confidence intervals, that will
apply to all estimators. In terms of a restriction on the most general possible model, Model M, is
equivalent to the assumption that py; = p for every animal at risk of capture i=1, .., N) on every
trapping occasion (j =1, . . ., t).

Simulated data to illustrate Model M, were generated with 6 capture occasions, a true population size
of 50, and a capture probability of p = 0.3. The complete X matrix for the first simulation run of this
capture model is presented in Table 3.2. We deliberately ordered the rows in the table as if the data were

TABLE 3.2. The complete X matrix from the first of 10 simulations of Model M, with N =
50, p = 0.3, and t = 6 occasions. All capture-recapture summary statistics can be
computed from this data representation by various counting methods. For example, the
sum (count) of the 1’sin column 3is N, = 15, the number of captures on day 3. The number
of new animals captured on day 3 (u; = 8) is found by counting the number of 1’s in
column 3 for which no previous captures are recorded on days 1 or 2. Capture
frequencies also can be obtained by counting; for example, 17 rows have only a single 1in
them, thus f, = 17. Three rows (animais) have four 1's each, thus f, = 3.

Occasion Occasion
Animal 1 2. 3 4 5 6 Animal 1 2 3 4 5 6
1 1 1 1 1 0 0 24 0 0 1 0 1 0
2 1 0 0 0 0 0 25 0 0 1 0 0 0
3 1 0 1 0 0 1 26 0] 0 1 0 0 1
4 1 0 0 0 0 1 27 0 0 1 0 0 0
5 1 0 0 0 0 0 28 0 0 1 1 0 0
6 1 1 0 0 0 0 29 0 0] 1 0 1 0
7 1 1 0 0 0 0 30 0 0 1 0 0 1
8 1 0 1 0 1 1 31 0 0 1 0 0 1
9 1 0 0 0 1 0 32 0 0 0 1 0 0
10 1 1 1 0 0 0 33 0] 0 0 1 0 0
11 1 0 0 0 0 0 34 0 0 0 1 0 0
12 1 0 0] 0 0 0 35 0 0 0 1 0 1
13 1 0 0 1 0 0 36 0 0 0 1 0 0
14 1 0 0 1 1 0 37 0 0 0 1 0 1
15 1 0 1 0 0 0 38 0 0 0 1 1 0
16 1 0 1 0 0 0 39 0 0 0 1 1 1
17 0 1 0 0] 0] 1 40 0 0 0 1 0 0
18 0 1 0 0 0 1 41 0 0 0 0 1 0
19 0 1 0 0 1 0 42 0 0 0 0 1 0
20 0 1 0 0 0 0 43 0 0 0 0 1 1
21 0 1 1 1 0 1 44 0 0 0 0 1 1
22 0 1 0 0 1 1 45 0 0 0 0 0 1
23 0 1.0 0 1 0 46 0 0 0 0] 0 1
' 47 0 0 0 0 0 1




from a real study. Specifically, the first 16 rows show the capture histories of the 16 (= n,) animals first
captured on day 1, and the next 7 rows show the 7 (= u,) new (previously unmarked) animals caught on
day 2. This pattern continues for subsequent days. All basic summary statistics can be determined from
this type of table by counting in various ways.

Several basic summary statistics from Model M, are illustrated in Fig. 3.1. Program CAPTURE
always produces this very condensed summary and prints it with the various test results discussed in the
section on testing assumptions. From Fig. 3.1 we see that the numbers caught on each occasion (n, to ng)
are 16, 11, 15, 14, 14, and 18. Under Model M we expect relatively little variation and no trends in the
numbers of captures from day to day; these results illustrate the expected constancy of data under Model
M,.

For estimation of population size N under Model M,,, the entire X matrix of capture-recapture data can
be reduced to two summary statistics: M, = the total number of different individuals captured during
the entire study (the number of rows in the X matrix), and n. = the total number of all captures (the sum
of all the 1’s in the X matrix). For the example simulation data in Table 3.2 and Fig. 3.1, these summary
statistics are M; = 47 and n. = 88.

There is no simple (closed-form) formula for the maximum likelihood (ML) estimator of N under
Model M, when there are more than t = 2 capture occasions. There is a simple estimator for two capture
occasions; however, in this situation it is better to use an alternative estimator valid under the more
general assumptions of Model M,, discussed in the next section.

The exact ML estimate of N computed by program CAPTURE using numerical methods (Otis et al.
1978:105) is shown in Fig. 3.2. From Fig. 3.2, we have N = 55, with an estimated standard error of
4.157. Initially, the approximate 95% confidence interval is computed as 55 + 1.96(4.157), then the upper
limit is rounded up to the nearest integer and the lower limit is rounded down to the nearest integer. All
confidence intervals that we recommend or that program CAPTURE computes are computed in this
way. In this example, the lower limit of 46 is below the number of individuals actually seen (M, = 47).
This occurrence is not uncommon; but it requires that the lower limit be moved up to 47 in this case (or

Fig. 3.1. A print-out of basic summary statistics for the first
of 10 simulations of Model M, with N =50,p=0.3,and t=6
occasions. (Table 3.2 shows the complete X matrix.) The
statistics include n; = the number of animals caught on
occasion j and M; = the total number of marked animals in the

OCCASION o= 1 2 3 4 s 8 population just before thej“1 capture occasion. Also shown are
ANIMALS CAUGHT N(J)= 16 1§} 15 14 1% iB . . . . . .

TOTAL CAUGHT ~ M= © 16 23 31 w0 %u 47 M7 -47. which is the total number of different md‘1v1duals seen
NEWLY CAUGHT  Ulwle 18 7 8 v 3 in this “study.” uj = the number of unmarked animals caught
FREQUENCIES Fid= 17 a2 -] 3 (4 o

on occasion j. and finally, the capture frequencies fj = the
number of animals caught exactly j times during the study (for
j=1, .., t, because f, is not known). Note the lack of any large
variations in the numbers caught on each day (n;) and the
fairly consistent decrease in the numbers of unmarked animals
caught on each occasion. These are characteristics of the data
expected from Model M.

Fig. 3.2. Print-out of the results of estimating N

and p from the simulation data in Table 3.2 and NUMBER OF TRAPPI*3 OCCASIONS WAS 6
Fig. 3.1. The ML estimate of N is 55, with an ;‘g;‘fﬁ”bﬁ:sé:'g?f;;‘ﬁ;g’foﬁ_'?‘L;;" HAS ';;
estimated standard error of 4.2. The approximate

95% confidence interval computed for N from N
and 3e(N) is 46 to 64. However, because M, = 47
(47 individuals were caught), we must replace the
lower limit of 46 by 47 and report this interval as APPROXIMATE 95 PERCENT CONF IDENCE INTERVAL 46 T0 64
47 to 64. The ML estimate of capture probability

is p = 0.2654. In the true, underlying Model M, p

=0.3 and N = 50.

ESTIMATED PROBABILITY OF CAPTURE, P-HAT = D.2B54

POPULATION ESTIMATE IS 55 WITH STANDARD ERROR 4.1570
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up to M, ,, in general). In Otis et al. (1978:133-135) we investigated alternative methods of constructing
confidence intervals, partly to avoid this problem of inadmissible lower limits. After considering a variety
of approaches, we concluded that the most practical approach is to use N + 1.96 x Ee(N) for-approximate
95% confidence intervals and then, if the lower limit is below M,_,, to replace that lower limit by M, ,.
We deliberately did not implement this replacement feature in CAPTURE so that the user could see
whether or how much the computed lower limit falls below M,_, A lower limit far below M ., indicates
very poor experimental results. In this example, the actual, unrounded lower limit is 46.85 = 55 -
1.96(4.157).

The results from this one simulation study are acceptable. If it were a real study, we would have a very
good estimate of N. The true value of p is 0.3; its estimate p is 0.27. Also, the true value of N is 50; its
estimate N is 55. In real studies we do not know N or p; therefore, the judgment of whether the results are
reliable rests on clues from the data and their analyses, and on the consistency of external information
about the population with the results of the analyses.

The estimated (average) capture probability p gives some insight into the reliability of results as do,
the standard error of the estimate of N, and the resultant confidence interval. With typical studies of
populations in the size range from 50 to several hundred, results are not reliable unless the true average
capture probability is at least 0.1 and preferably at least 0.2. In Model M, the estimate of p is the same
as the estimated average capture probability. A p of 0.27 and the small standard error on N of 4.2
indicate the results are trustworthy. '

There is no fail-safe way to be sure that the true average capture probability p for a study exceeds
0.10, because we will have only an estimate of this value. We have not presented confidence intervals
about p itself in Model M, (or about p in other models). Such intervals would be reliable only if the
model were true. Our reason for trying to judge whether p is at least 0.10 is to provide a basis for
deciding whether we can reasonably trust the model selection procedure and the resultant estimate of N.
If the data are poor, the estimate p can be quite a bit greater than 0.10, yet the true § can be less than
0.10. Thus, the problem of judging the data’s reliability from the data themselves is one of circularity. If
the study is reliable (that is, if the capture probabilities are high enough and the true population size is
sufficiently large), one probably will conclude this from the data. But if the data are poor, especially
because of very low capture probabilities, this fact cannot always be determined from analysis of the
data.

The standard error of N depends upon the value of N. Therefore, to judge the relative precxslon of results one can
look at the coefficient of variation of N, cv(N).

ev(N) = SCEN) .

In the example of Fig. 3.2 we have

4.157

cv(N) = e

=0.0756 or 7.56% .

This value reflects good precision for the estimated population size. In our opinion, reliable scientific studies require
a coefficient of variation of N of no more than 20% and investigators should try for ¢cv(N) < 0.1 (10%). Less
exacting management studies, including long-term monitoring studies, may be acceptable with a coefficient of
variation of 20 to 50%. Studies producing cv(N) values above 0.5 (50%) can indicate only order-of-magnitude
changes in population abundance, for example, densities changing from 1 to 10 or vice versa.

We have illustrated Model M,, with the first simulation results of 10 repetitions, using N = 50, p = 0.3,
and t = 6. Summary results of all 10 simulations for this “study,” given in Table 3.3, illustrate natural

sampling variability. For example, M, varies from 41 to 47, n. varies from 81 to 99, and N varies from 45



TABLE 3.3. Summary results from all 10
simulations of Model M, with N =50, p = 0.3, and
t = 6. The variations observed here in quantities
like M,, n., and N are entirely the result of the
stochastic nature of the “capture” process. In
particular, N ranges from 45 to 55 and only one
value is exactly 50.

Repetiton M, n. N se(N) p
1 47 88 55 4.2 0.27

2 47 89 55 4.0 0.27

3 43 81 50 3.9 0.27

4 44 91 49 2.9 0.31

5 45 99 49 25 034

6 41 87 45 2.6 0.32

7 41 83 46 3.0 0.30

8 42 82 48 3.4 0.28

9 43 89 48 29 0.31

10 43 95 46 2.4 0.34

Averages 436 89.0 49.1 3.2 0.30
Sampling

standard

deviation 2.2 5.7 3.5

to 55. These levels of variation are very small compared to those often seen with other models or with
smaller p values. If the data from Model M, were real, with p = 0.3,t = 6, and N = 50, the estimator of
N nearly always would be very good.

Model M,, Variation by Time

The most common model for capture-recapture studies allows capture probabilities to vary only by
time. Thus for t capture occasions, there are t possible capture probability parameters, Py - . D, Where
p; = the probability that any individual animal will be captured on occasion j. This same capture
probability is assumed to apply to all N animals in the population on the jt* capture occasion. Hence, the
past capture history of an animal is not allowed to influence its current capture probability. In particular,
unmarked (not previously caught) animals are assumed to have the same probability of capture as
marked (previously caught) animals. Either behavioral response or innately varying capture probabilities
will invalidate this model.

The basic summary statistics from the first of 10 simulations of Model M,, with N = 150, t = 5, and
daily capture probabilities of p, = 0.20, p, = 0.40, p, = 0.30, p, = 0.35, and ps = 0.25, are presented in
Fig. 3.3. On the average for such a study we would expect to catch Np, = E(n,) animals on the j* day,
and we can readily compute the following for this example. :

E(n,) = 150.0 X 0.20 = 30

E(ny = 150.0 X 0.40 = 60

E(n,) = 150.0 X 0.30 = 45

E(n,) = 150.0 X 0.35 = 52.5

E(n;) = 150.0 X 0.25 = 37.5
The observed daily captures n, shown in Fig. 3.3 reflect these expected numbers.
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Fig. 3.3. Basic summary statistics for the first of 10
simulations of Model M,, with N = 150, t = S occasions, and
daily capture probabilities p, = 0.20, p, = 0.40, p, = 0.30, p,

Z’ﬁfﬁfﬁg"mw N(J:“ 2:3 5§ sg B'; 3_5, = 0.35, and ps = 0.25. The average capture probability is p
TOTAL CAUGHT  Mur= o 28 70 101 121 127 = 0.30. Observe that the variation in the daily numbers
NEWLY CAUGHT — U(w= 28 42 31 20 6 : caught is substantial, and the u, = 42 even though u, = 28;
FREQUENCIES F(= 52 52 20 3 0

that is, substantially more animals were caught fof the first
time on the day 2 than on day 1. This data pattern suggests
time effects in the capture probabilities.

Under Model M,, we expect the significant variation in the numbers of captures on each occasion
shown in Fig. 3.3. Under Model M, we would expect a consistent, somewhat smooth decrease in the
numbers of captures of previously uncaught animals (the u,), but we can expect no such decrease under
Model M,. The first-capture data u,, ..., u, (newly caught) are likely to be erratic. In Fig. 3.3, u; =28, u,
= 42, u, = 31, u, = 20, and u; = 6. The large increase of new animals on day 2 strongly suggests that
Model M, would not be the correct model. Rather, there is some difference between the population
capture probabilities on capture occasions 1 and 2. If we can assume closure to be true, this data pattern
suggests an increased capture probability on day 2 compared with day 1.

There is ample evidence in the literature that varying environmental conditions affect capture
probabilities: Paloheimo (1963) found that water temperature affects the catchability of lobsters; Gentry
et al. (1966) and Getz (1961) found that weather affects the catchability of small mammals when live
traps are used; and Bailey (1969) found that weather also affects the capture probabilities of rabbits.
Varying effort over time also causes time variation in capture probabilities, as when the number of
operational traps or the number of times traps are checked each day varies during the study.

) ‘/l-«.

Capture probabilities may vary over time because of varying weather conditions.



Norman Bailey’s research on open- and closed-popula-
tion models arose 30 years ago in response to problems
discussed with Sir Ronald Fisher. While working at
Cambridge University Medical School, Bailey developed
the so-called “triple catch” method, which was used widely
for many years. Bailey’s primary interest has been medical-
statistical problems, and his work on capture-recapture
was an aside, although the contribution to biologists has
been quite substantial.

Bailey took B.A. and M.A. degrees from Cambridge and
a Doctor of Science from Oxford in 1959. He is the author
of 7 books and more than 90 research papers in medical
statistics and biomathematics. (Recent photograph.)

Norman T. J. Bailey

Model M, is very much a ball and urn model, assuming as it does that marked and unmarked animals
have the same capture probability on any given capture occasion. This concept was clearly the basis for
one of the earliest papers dealing with this model (Schnabel 1938), in fact, in that paper Schnabel tested
~ her estimator with a physical simulation using beans in an “urn.’

The literature on Model M, since Schnabel’s pioneering work is extensive. The first exact treatment was
given by Darroch (1958), although he presented only a close approximation to the ML estimator. We
recommend use of the ML estimator and believe that the only value in all the approximate and ad hoc
estimators presented for this model is their ease of computation and their simplicity for teaching purposes.
An introduction to the extensive literature on Model M, is presented in Seber (1973:130-164).

All relevant information for estimation of population size under Model M, is contained in the summary
statistics ny, .. ., n, (the number of animals captured on each day) and M,, l(the total number of different
individuals captured). The exact ML estimator of N (Otis et al. 1978:106-1 07) does not exist in closed
form; however, for t = 2 the usual Petersen-Lincoln estimate closely approximates the ML estimator. We
advise against the use of only two capture occasions because assumptions cannot be tested. However, this
approach may be reasonable at times, especially when different capture methods are used on the two
occasions. For t = 2 we recommend Chapman’s (1951) modification of the Petersen-Lincoln estimator.

fL mrD@ey
(m, + 1)

where m, = the number of marked animals recaptured. We will not deal further with the case of t = 2;it
is well covered in the literature, for example, in Seber (1973:59-70).
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Douglas Chapman has contributed to the theory and
application of capture-recapture and related sampling
problems over the past 30 years. He took an under-
graduate degree in mathematics and economics at the
University of Saskatchewan in Canada. He entered the
University of California at Berkeley to do graduate work in
mathematics, but came under the influence of Professor
Jerzey Neyman and switched to statistics.

Chapman’s career has been a rich mix of statistical
theory and application, at first closely associated with
fishery problems and later with marine mammal problems.
Consultation concerning fishery problems began in 1946
with the International Pacific Salmon Commission. After
moving to the University of Washington, he became
involved with the fur seal research group of the (then)
Bureau of Commercial Fisheries. Chapman has long been
active in the Center for Quantitative Science at the
University of Washington and was Dean of the College of
Fisheries there until recently.

He has long been interested in the general problems of
population dynamics rather than in the narrower issues of
parameter estimation. This leaning stems from his work on
whales through the International Whaling Commission.
(Photograph taken in the mid-1960s.)

Douglas G. Chapman

Many closed-form estimators in the literature are based on Model M,. The best known is the Schnabel
estimator (Schnabel 1938; Seber 1973:139). The Schnabel estimator is easy to compute and often is a
good approximation to the ML estimator. However, the comprehensive analysis of any multiple recapture
data requires complex testing of assumptions and subsequent selection of a model. For these analyses a
computer routine is essential. Given such a routine it is better to compute the exact ML estimator of N
under Model M, than to bother with approximations, such as Darroch (1 958) and Schnabel (1938).

The ML estimate of N under Model M, applied to the example data in Fig. 3.3 is given in Fig. 3.4. The
value of N = 151 is closer to the true N of 150 than we have a right to expect. The standard error of this
estimate is 6.975. The approximate 95% confidence interval on N is 137 to 165 [computed as 151 +
(1.96 X 6.975)]. The lower limit of this confidence interval is 137, whereas 127 animals were caught.
Thus, in this example the lower limit does not fall below M, ,.

The estimated daily capture probabilities p, = 0.19, p, = 0.35, p, = 0.33, p, = 0.40, and ps = 0.25
also are given in Fig. 3.4. These values should be compared with the true daily capture probabilities. The
rough, but useful, histogram (frequency plot) of the daily numbers of captures, also shown in Fig. 3.4,
provides a visual display of the n;.

Table 3.4 presents the results of 10 repetitions of simulating Model M, with the parameters used in
Figs. 3.3 and 3.4. The variation observed among these 10 repetitions is entirely the result of the stochastic
nature of the data (catching or not catching animals on each occasion). We see that N varies from 138 to
153. Also compare the average of the daily captures, n, over these 10 repetitions with the expected values
of n; given above. For example, E(n;) = 30, and n, = 29.3.



OCCASION J= 1 2 3 4 5
ANIMALS CAUGHT NiJ)= 28 53 50 60 37

TOTAL ANIMALS CAPTURED a7

P-HAT(J)= 0.19 0.35 0.33 0.40 0.25

POPULATION ESTIMATE IS 151 WITH STANDARD ERROR 6.9754
APPROXIMATE 95 PERCENT CONFIDENCE [NTERVAL 137 10 165
HISTOGRAM OF N(J)
FREQUENCY 28 53 50 60 37
EACH * EQUALS . 6 POINTS

60 .

54 . .

4ug * 3 .
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Fig. 3.4. Print-out of Model M, results of estimat-
ing N and capture probabilities from the simulation
data in Fig. 3.3. These data were generated under
Model M,, with N = 150, p, = 0.20, p, = 0.40, p; =
0.30, p, = 0.35, and p; = 0.25. Compare the
estimated daily capture probabilities Dy with the true
ones. The lower limit of the 95% confidence interval
does not fall below M, = 127 in this example. The
coefficient of variation of N is cv (N) = 6.98/151 =
0.046, or 4.6%, which is quite good.

TABLE 3.4. Summary resuits from all 10 simulation repetitions of
Model M, with N = 150, t = 5, and daily capture probabilities, p, = 0.20,
p, = 0.40, p, = 0.30, p, = 0.35, and p, = 0.25. The average capture
probability is p = 0.30. The daily numbers of captures and the total
number of different individuals captured (M) illustrate the variability
in the capture data as well as the variability in the estimates of N.

Notice that N ranges from 138 to 153.

Daily Captures

Repetition  n, n, n, N, n, M, N se(N)
1 28 53 50 60 37 127 151 7.0
2 26 63 50 49 42 125 146 6.3
3 33 51 44 55 27 122 150 8.0
4 31 54 41 48 41 120 143 7.0
5 33 62 42 52 43 129 153 7.1
6 34 53 42 56 38 119 138 5.9
7 27 58 37 62 37 123 145 6.7
8 19 65 43 51 36 118 = 138 6.2
9 33 61 40 53 31 125 152 7.6

10 29 60 46 53
Averages 29.3 58.0 435

53.7 37.4

42 124 144 6.2
123.2 1460 6.8
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Model M,, Behavioral Response

Animals frequently exhibit a behavioral response to capture, especially to first capture. This means
that, after first capture, their capture probability on subsequent capture occasions changes, often greatly.
The biological literature on this phenomenon is extensive; for example, see Tanaka (1956), Crowcroft and
Jeffers (1961), Getz (1961), Hunter and Wisby (1964), Bailey (1969), and Beukema and de Vos (1974).
To deal with this situation Otis et al. (1978:28-32) used Model M,, wherein the probability of recapture,
¢, is allowed to be arbitrarily different from the probability of first capture, p. If the recapture probability
is lower than the first-capture probability (c < p), the animals are exhibiting trap avoidance (they have
become trap shy), whereas if the capture probability increases (¢ > p) after first capture, animals are
showing trap fascination (they have become trap happy). We give simulation examples of both situations.

We again emphasize the interpretation of these capture probabilities: they apply to individual animals
for each separate trapping occasion. For example, let the probability of first capture be p = 0.5, and
consider a single animal. On the first trapping occasion, that animal has a 50% chance of being caught. If
the animal is not caught, then p = 0.5 on the second occasion, and it again has a 50% chance of being
caught. If it is not caught on occasions 1 and 2, it continues to have a 50% chance of being caught on the
third occasion. Once the animal is caught, however, its behavior changes with respect to the traps: it
tends to either avoid traps or return to them. Assume that an animal is caught on occasion 3, likes the
bait, and becomes trap happy, with recapture probability ¢ = 0.80. On capture occasion 4, this animal
has an 80% chance of being caught. Whether or not it is caught on occasion 4, it continues to have an
80% chance of being on caught each subsequent, separate capture occasion.

Model M, does not incorporate any relation between the probability of first capture and the probability
of recapture. The recapture data therefore contain no information about the unknown population size N.
[This is a key point; because proving it would require presenting the full-blown mathematics of Model M,,
we refer the reader to Otis et al. (1978:107-108).] As a consequence, the estimate of N for Model M,, is
based entirely on the first-capture information. Because recaptures are not used in the estimation of
population size for Model M,, the data analysis methods are the same as for removal data, as detailed in
Chapter 4.

We let u, = the number of animals captured on day 1; these are, of course, all first captures. On day 2,
N — u, animals remain uncaught. Let u, be the number of animals caught for the first time on day 2.
These u, animals come entirely from the N — u, animals not caught on day 1. In general we let y
represent the number of animals captured for the first time on day j. Estlmatlon of N and of p, the
first-capture probability, is based entirely on the first- capture data, u;, uy, ..., .

The X matrix from a simulation example of Model M, using N = 100, p=0.25, ¢ = 0.55, and t =7 is
presented in Table 3.5. This is a trap-happy example because after first capture, individual capture
probabilities increase to 0.55. Summary data computed from this X matrix (F1g 3.5) areu; = 19, u, =
17,u; =24,u,=11,u, = 8, u; =4, and u, = 8.

The statistics for n; and'u; in Fig. 3.5 generally reflect the pattern expected under trap happiness. There
is a general decrease in the numbers of first captures. Conversely, there is a general increase in the
numbers of daily captures n;. We expect, on the average, a decrease in first captures (the u;), because the
number of uncaught animals continues to decline. In essence, we are removing animals from the
(uncaught) population by marking them. In this sense, the numbers of first captures constitute data from
a removal study, and their analysis exactly follows methods for the analysis of removal data, to be studied
in Chapter 4.

The increase in the n;, the numbers of daily captures, in Fig. 3 5 is due to the i increasing number.of animals in the
population with the higher capture probability of 0.55. We see n; = 19, n, =28, n, = 44, n,= 37, n;=44,n, = 49,
and n, = 53. By day 3, u, + u, = 36 of the 100 animals in the population have a (re)capture probability of 0.55,



The complete X matrix from the first of 10 simulations of Model

‘TABLE 3.5.

0.55, and t=7 occasions. All capture-recapture

0.25,¢
'summary statistics in Fig. 3.5 can be computed from this data representation

by various counting methods.

M, with N =100, p
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Fig. 3.5. Print-out of basic summary statistics for the first
of 10 simulations of Model M,, with N = 100, p=0.25,c=
0.55, and t = 7; Table 3.5 shows the complete X matrix.

- umbe u , Iy,
22?:1?“%“, N J‘,’s 1_13 ES .j 33, Mf ,‘g 5; The numbers of captures each day, ny, increase from 19 on
TOTAL CAUGHT  M(J1= 0 19 3% 60 71 79 83 9l day 1 to 53 on day 7, because animals are being caught,
NEWLY CAUGHT UtJr= 19 17 a4 11 8 4 8 . e . .
FREQUENCIES Fine 17 1% 31 12 12 4 o and hence their capture probability is changing from 0.25

to 0.55. Notice that even at a first-capture probability of
0.25, 90% of the population has been caught at least once
after 7 days. The numbers of new captures u; generally
decline.

while the remaining 64 animals, not yet caught at the start of day 3,still have a capture probability of 0.25. Thus, at
the start of day 3 in this example the average capture probability in the population of 100 is

5= 64 X 0.25 + 36 ><0.55: 0358 .
100

This probability is increased quite a bit from the 0.25 first-capture probability.
For any Model M,, the expected average daily capture probabilities are given by the formula

E@E)=[1-0 -pfJc-p)+p, Jj=12 ...t

and the expected number caught on day jis E(n) = NE(p,). For the model underlying Fig. 3.5 (N = 100, p = 0.25,
and ¢ = 0.55) we have

i E() E(M)
1 0.250 25.0
2 0325 325
3 0.381 38.1
4 0423 423
5 0455 455
6 0479 47.9
7 0497 497

Note that the formula on p. 57 of Otis et al. (1978) is wrong; the formula given above for E(p)) is
correct. i

Recall that the expected values of n; and p; increase or decrease over time in Model M,. This change
in p; has no relation to the change in Model M,, where capture probabilities vary over time for external
reasons, not because of behavioral response to capture. Yet when we look at capture-recapture data,
especially the n;, we find it difficult to distinguish between the two causes of variation. Choosing between
the models requires tests of assumptions, discussed later in this chapter. Behavioral response can “look”
like time variation, and this similarity causes difficulties in the proper analysis of capture-recapture data.

We recommend ML estimates of N, p, and c. The estimator of recapture probability is simple, but it is
not of primary interest. The ML estimates of N and p do not exist in closed form. Program CAPTURE
can compute N and p from the “removal” data u,, . . ., u,. (See Chapter 4 for discussion of estimation
based on removal data.)



The estimates of parameters based on the simulated removal data in Fig. 3.5 are presented in Fig. 3.6.
We see that a total of 91 (= M,) of 100 animals were caught at least once.

The ML estimate of N is 114, with an estimated standard error of 12.9. This gives a coefficient of
variation on N of 11.3%. The approximate 95% confidence interval on N is computed to be 88 to 140.
However, because 91 animals were actually seen, the lower bound of 88 must be replaced by 91 when
these results are reported.

The estimated first-capture probability from the data in Fig. 3.6 is p = 0.20. The estimated recapture
probability is 0.53. Recall that the true parameters of this simulation were N = 100, p = 0.25, and ¢ =
0.55.

The basic results of all 10 simulations of this trap-happy capture-recapture model are given in Table
3.6. The results are in close agreement with the known parameters.

A simulation example of trap-avoidance response to first capture will further illustrate the behavioral
response model (M,). The basic summary statistics from the first of 10 simulations of Model M,, with N
= 100, p = 0.40, ¢ = 0.20, and t = 7 are shown in Fig. 3.7. In trap-shy behavioral response, the daily
capture probabilities decrease over time. This decrease, however, is not due to time variation in capture
probabilities in the sense of Model M, but rather to the animals’ becoming less catchable (trap shy) after
first capture. Using the formula E(p,) = [1 — (1 — p)!](c — p) + p, we compute the expected daily
capture probabilities and daily captures as follows.

i E(p) En)
1 0.400 40.0
2 0320 320
3 0272 27.2
4 0243 243
5 0226 226
6 0216 216
7 0.209 20.9
OCCASION J= 12 3 4 s 8 7
TOTAL CAUGHT  M(J)= 0 19 36 60 T 79 83 81
NEWLY CAUGHT  U(UI= 19 17 24 11 8 4 8
ESTIMATED PROBABILITY OF CAPTURE, P-HAT =  0.201181
ESTIMATED PROBABILITY OF RECAPTURE, C-HAT = 0.525852
Fig. 3.6. Results of estimating N, p, and ¢ under
POPULATION ESTIMATE 1S 11% WITH STANDARD ERROR 12.8195 Model M, from the data in Fig. 3.5. The ML
estimate of N is 114, with an estimated standard
APPROXIMATE 95 PERCENT CONFIDENCE INTERVALS 88 TO 140

error of 12.9. The approximate 95% confidence
interval is computed to be 88 to 140; however, the
lower limit must be replaced by 91 when the
interval is reported because 91 animals were seen.
) The ML estimates of p (first-capture probability)
FREQUENCY 18 17 2+ 11 8 4 8 and c (recapture probability) are 0.20 and 0.53,
respectively. The true underlying model is M,
with N = 100, p = 0.25, and ¢ = 0.55.

HISTOGRAM OF U(J)
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TABLE 3.6. Summary results for all 10 simulations of Model M, (trap-happy case) with N = 100,

p = 0.25, c=0.55, and t = 7. The variation in the numbers of first captures by occasion (u,), total
individuals captured (M,), and estimates of parameters is entirely the result of the stochastic nature of the
capture processes. Notice that N varies from 83 to 119, but there is no evidence of bias, as the average of
all 10 estimates is 102.4. The average estimates of p and c are also very close to the true values of these
parameters.

.Numbers First Captured on Occasion j v

M, N se(N) p ¢

Replication u, u, U, u, U U u,
1 19 17 24 11 8 4 8 91 114 129 0.20 0.53
2 30 24 8 7 9 4 7 89 97 52 0.29 0.53
3 19 24 14 7 8 2 4 78 85 47 0.29 0.51
4 26 - 13 16 12 6 7 9 89 112 129 0.20 0.52
5 23 - 20 13 8 8 6 6 84 98 80 024 053
6 22 16 17 17 9 3 3 89 105 9.2 023 055
7 28 17 12 7 7 4 3 78 83 35 033 055
8 23 20 12 14 6 5 5 85 97 70 026 054
9 20 14 16 12 7 11 5 85 114 17.2 0.18 0.53
10 26 14 11 14 12 6 8 91 119 154 019 0.58
Averages 236 179 143 109 80 52 58 859 1024 9.6 0.24 054
Standard 4.8 12.5 4.8 0.05 0.02
deviations

T H, 4 oy IS
,\\MA A\).I{

[ 7777

Trap-happy behavioral changes in capture probabilities may result from a favorable first-capture experience.



Fig. 3.7. Basic summary statistics for the first of 10 sim-
ulations of Model My, with N = 100, p = 0.4, c = 0.2, and t

= 7. The daily numbers caught decrease because of trap
0CCASION J= 12 3 4w s B 7

ANIMALS CAUGHT N(J1= 36 3 25 23 18 25 24 §hyness in mdmdu‘als after ﬁfst capture. Begause the probabil-
TOTAL CAUGHT  M(J)= 0 3% 8 76 87 92 3 o+ ity of first capture is substantial (0.4), the daily “removals” (by
NEWLY CAUGHT — Uto= 36 26 14 11l 5 1 | . :

FREGUENC 1ES Fin= 20 43 18 % o o o marking) decrease substantially over the seven capture occa-

sions. This decrease suggests that not many animals are left
uncaught.

[These values of E(p)) are correct for the situation considered on p. 57 of Otis et al. (1978).] A consistent
decrease in daily captures over time may be a clue that the population is exhibiting trap-shy behavioral
response.

The estimates of N, p, and ¢ under Model M, for the simulation data in Fig. 3.7 are shown in Fig. 3.8.
As in the example for trap happiness, the estimates of N and p are based entirely on the first-capture data
(u, to u, here), which may be considered as removal data. (Animals are “removed” from the unmarked
population by marking them.) In this example, 94 of 100 animals were captured. Also, the numbers of
first captures decrease markedly, from 36 (= n,) on day 1to 1 (= n,) on day 7. From such data we can
expect precise estimates of the parameters. Indeed, from Fig. 3.8 we see that N is 96, with an estimated
standard error of 1.8. The computed 95% confidence interval on N is 92 to 100, but 94 animals were
caught so we would report the results as N = 96, with a confidence interval of 94 to 100. The estimated
capture probabilities are f) =0.422 and ¢ = 0.204, compared with true values of p = 0.4 and ¢ = 0.2.

The basic results of all 10 simulations of the Model M,, trap-shy example are given in Table 3.7. Note
that the sampling variance of N in this example is smaller than in the previous example, where p was 0.2
(Fig. 3.6 and Table 3.6). Because the estimate of N for Model M, uses only the first-capture data, the
difference in recapture probabilities is irrelevant in comparing the estimates of N in the two examples; in
both, N = 100 and t = 7. But in the first example (Figs. 3.5 and 3.6, and Tables 3.5 and 3. 6), p=0.2,
whereas in the second (Figs. 3.7 and 3.8 and Table 3. 7), p = 0.4. From Table 3.7 we see that the average
standard error of N is 2.2. This value represents a fourfold increase in precision of the estimate N,
achieved by increasing p from 0.2 to 0.4. The average coefficient of variation with p = 04 is about 2%,
which is excellent.

OCCASION J= 1 2 3 Y4 S 5} 7
TOTAL CAUGHT M) = 2] 36 62 78 87 92 93 N
NEWLY CAUGHT utd= 36 = 14 11 S 1

ESTIMATED PROBABILITY OF CAPTURE, P-HAT = 0.421699

ESTIMATED PROBABILITY OF RECAPTURE, C-HAT = 0.204036

POPULATION ESTIMATE IS 86 WITH STANDARD ERROR 1.7898

APPROXIMATE 95 PERCENT CONFIDENCE INTERVALS Se 10 100

HISTOGRAM OF U(J)

FREQUENCY 36 26 14 1 5] 1 1

EACH * EQUALS 4 POINTS

36
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Fig. 3.8. Results of estimating N, p, and ¢ under Model M,
from data in Fig. 3.7. The ML estimate of N is 96, with an
estimated standard error of 1.8. The confidence interval should
be taken as 94 to 100. The true parameter values underlying
these Model M, simulated data are N = 100, p = 0.4, and ¢
=02./
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TABLE 3.7. Summary results for all 10 simulations of Model M, (trap-shy case) with N =100, p=0.4,

¢ =0.020, and t = 7. The variation in the results across the 10 repetitions is entirely the result of the stochastic
nature of the capture process. Notice that N varies only from 96 to 104. Compare these results with those of
Table 3.6, where N =100, t=7, but p=0.2. Ciearly, valuesof p=0.4and t=7 lead to very good estimates of
N when Model M, is true.

Numbers First Captured on Occasion |

Replication  u, u, u, u, U Ug u, M, N se(N) p ¢

1 36 26 14 11 5 1 1 94 96 1.8 0.42 0.20

2 32 32 17 7 6 1 2 97 99 2.1 0.40 0.21

3 46 26 9 5 5 4 4 99 101 1.8 0.42 0.18

4 38 30 13 9 6 1 1 98 99 1.6 0.44 0.18

5 42 21 15 7 2 7 4 98 101 2.6 0.38 0.23

6 39 21 17 11 5 2 2 a7 99 2.2 0.40 0.21

7 39 23 17 7 2 6 2 96 98 2.1 0.40 0.19

8 37 19 15 13 5 5 1 95 99 2.8 0.37 0.18

9 38 21 16 8 7 6 3 99 104 3.4 0.35 0.22

10 39 27 10 13 3 1 2 95 96 1.6 0.43 0.21

Averages 38.6 24.6 14.3 9.1 46 3.4 2.2 96.8 99.2 2.2 0.40 0.20

Standard ) 1.8 2.4 06 0.03 0.02
deviations

]
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Trap-shy behavioral changes in capture probabilities may result from an unfavorable first-capture experience.



The behavioral response model for capture-recapture data is formulated to allow only one behavioral
response (to first capture) and only that same response for all animals. However, the estimate of N based
on the removal data u,, u,, ..., U, is robust to any extent of behavioral response. Given that one uses the
Model M, estimator, it does not matter that every animal has a different behavioral response to capture.
In particular, some animals can become trap happy, some trap shy. This more general behavioral
response would affect only the model selection procedure.

Model M,, Heterogeneity

Capture probabilities often vary by animal, sometimes for obvious reasons (differences in species, sex,
or age), but there also may be unrecognized sources of variation in capture probability by animal (social
dominance, number and placement of traps in an animal’s home range, or innate level of activity).
Because these factors result in capture probabilities that vary among animals, we refer to this source of
variation as heterogeneity. Numerous studies reported in the ecological literature clearly show
heterogeneity and other sources of variation in capture probabilities for a wide range of species and many
types of studies. Examples include Young et al. (1952), Tanaka (1956), Crowcroft and Jeffers (1961),
Huber (1962), Edwards and Eberhardt (1967), Bailey (1969), Gliwicz (1970), Carothers (1973a),
Beukema and de Vos (1974), Jensen (1975), and Montgomery (1979). In studies where the true
population size was known, the commonly used estimators were biased severely by heterogeneity of
capture probabilities: the estimates were very much too low. (See, for example, Edwards and Eberhardt
1967 and Carothers 1973a.) Computer simulation studies also have shown that heterogeneity can cause

Lee Eberhardt’s interest in capture-recapture studies
dates to the 1950s, when he was the biometrician with the
Michigan Department of Conservation. An estimation
method based on capture frequencies stemmed from his
work with others on rabbits, which revealed the obvious
inadequacies of’ existing methods. He was among the first
to recognize that heterogeneity is a common violation -of
the equal-catchability assumption. More recently, he has
studied sample size prediction in capture-recapture sam-
pling.

Eberhardt took a B.S. degree in education from Minot
State Teachers College and a Ph.D. degree in wildlife
management from Michigan State University. He did
postdoctoral work in statistics at the University of Cali-
fornia at Berkeley under Jerzey Neyman, a founder of
modern statistical theory. Since 1965, he has worked on a
wide variety of quantitative ecological problems at Battelle
Memorial Institute, including work with seals in Antarctica
and New Zealand. (Recent photograph.)

L. Lee Eberhardt
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substantial negative bias in the commonly used estimators. (See, for example, Burnham and Overton
1969; Manly 1970; Gilbert 1973; Carothers 1973b and 1979; and Otis et al. 1978.) In spite of the
evidence that heterogeneity exists and invalidates the usual estimates under Model M,, only recently has
Model M, been formalized and has an estimator been derived for it, because it is a very difficult model.
(See Burnham 1972; Otis et al. 1 978:33-37; and Burnham and Overton 1978 and 1979.)

Model M, assumes that each animal has a possibly unique individual capture probability p; for the i =
1, ... N individuals. In terms of the most general capture probability structure py for individual i on
occasion j, this model assumes that p; = p, independent of capture occasion. Thus, neither time variation
nor behavioral response is allowed in capture probabilities for this model.

In Model M,, different individuals can have quite different capture probabilities . For example, animal
a may have p, = 0.20, and animal b may have p, = 0.60. As always, these capture probabilities apply to
each separate capture occasion; hence, on the first occasion, animal a has a 20% capture probability, but
animal » has a 60% capture probability. By assumption, the catching of animal a will not influence
whether ‘animal b is caught. Of course, for this to be true there must be a sufficient number of traps to
avoid having all traps fill up with animals. Also, if animal b, for example, is caught on day 1, it still will
have a 60% capture probability on day 2, day 3, and so on.

Like Models M, and M, Model M, has only one source of variation in capture probabilities. Unlike
those models and Model M,, which have only a few parameters (for example, N and p in Model M,),
Model M, can have as many as N + 1 parameters: N and p;, p,, . . ., Py- Estimating this many
parameters from capture-recapture data is not possible. We must either reduce the number of capture
probabilities in some way or find a way to estimate N without having to estimate all the capture
probabilities. Both approaches have been explored (Burnham 1972). We discuss here the only known
method derived specifically to estimate N under Model M, : the “jackknife” estimator.

The summary statistics from the first of 10 simulations of Model M, with N = 200 and t = 7 are
presented in Fig. 3.9. The specified capture probability structure has 10 values of p;, each value holding
for 20 of the 200 animals. The set of 10 capture probabilities is 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40,
0.45, 0.50, and 0.55. For the example, 20 individuals have a daily capture probability of only 0.10, while
a different 20 individuals have a daily capture probability of 0.55. The average of all the capture
probabilities is E(p) = 0.325. Thus, the expected number of captures on each occasion is E(n;) = NE(p)
= 65, a value in close agreement with the results shown in Fig. 3.9.

Estimation of N under Model M,, is based on the capture frequency data. For the example in Fig. 3.9,
these data are f, = 50, f, = 46, f, = 35, f, = 24, f, = 14, f; = 5, and f, = 0. Thus, 50 animals were caught
only once, but 5 animals were caught on 6 of the 7 capture occasions. The Jackkmfe estimator of N is
computed as a linear combination of these capture frequencies: N = a,f, + a,f, +. . . + af,. The key to this
estimator is the derivation of the coefficients a,. In keeping with our emphasis on concepts, we will not
delve into the mathematics behind the jackknife estimator of N. For those details see Burnham and
Overton (1978, 1979) and Otis et al. (1978:33-37, 108-109).

The estimation of N based on the simulation data of Fig. 3.9 is shown in Fig. 3.10. The capture
frequencies are followed by a table of computed jackknife coefficients. Each column gives the first five
coefficients (a;) of a different estimator. (The values of coefficients 6, 7, etc., are all 1.) The program uses

Fig. 3.9. Basic' summary results from the first of 10
simulations of Model M,,, with N = 200, t = 7, and 10
different capture probabilities, each of which is applied to

OCCASION " . 2 3 % s 8 7 20 different animals; the p; values are 0.10, 0.15, 0.20,

ANIMALS CAUGHT N(J)= 65 68 60 68 67 48 67 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, and 0.55. Notice that
TOTAL CAUGHT  M(Ji= 0 65 107 133 149 162 167 174 : . i
NEWLY CAUGHT  Utn= 85 w2 26 18 13 5 7 there is no apparent time variation in the numbers caught

FREQUENCIES Ftdi= 50 46 35 2+ 14 5 0 on each occasion, ny, and there is a distinct decrease in the
numbers of first captures. Finally, nothing in the capture
frequencies f; distinguishes these results (visually) from
those of Model M,,.



NUMBER OF TRAPPING OCCASIONS WAS 7
NUMBER OF ANIMALS CAPTURED, M(T+1), WAS 174
TOTAL NUMBER OF CAPTURES, N., WAS L1 X

FREQUENCIES OF CAPTURE.F(I)
i= 1 2 3 4 5 6 7
F(l)= 50 46 35 24 I4 5 0

COMPUTED JACKKNIFE COEFFICIENTS

N(1) N(2) N(3) Niy) N(S)
1 1.857 2.571 3.143 3.571 3.857
2 1.000 0.405 -.452 -1.310 -1.976
3 1.000 1.000 1.305 1.833 2.357
% 1.000 1.000 1.000 0.904 0.748
S 1.000 1.000 1.000 1.000 1.013
1
THE RESULTS OF THE JACKKNIFE COMPUTATIONS
1 N(D) SE(1) 0.85 CONF. LIMITS TEST OF ‘N(I+1) VS. N(I)
] 174 CHI-SQUARE (1 D.F.)
1 216.9 8.92 198.4 a34.3 | 1.867
2 285.2 13.82 198.1 252.3 0.001
3 225.0 19.52 186.7 263.3 0.0862
4 2e3.2 25.48 173.2 273.1 0.072
5 221.6 30.48 161.9 281.3 0.000

AVERAGE P-HAT = 0.2944

INTERPOLATED POPULATION ESTIMATE IS 215 WITH STANDARD ERROR 8.6844

APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 198 10 233

HISTOGRAM OF F (1)

FREQUENCY 50 46 3B 24 14 S 0

EACH * EQUALS 5 POINTS
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Fig. 3.10. Results of estimating N under Model M, from the simulated data of Fig. 3.9; N = 200 and t = 7. Ten different
capture probabilities are spread evenly over p = 0.10 to 0.55, and each value is applied to 20 different animals. Program
CAPTURE computes N and its standard error and prints out some intermediate results of the estimation process, which
are not explained here. For this example, N= 215 + 8.7, and the 95% confidence interval on N is therefore 198 to 233. The
histogram of capture frequencies provides a visual display of these data.

the coefficients to compute a sequence of five estimators, then selects one estimator to simultaneously
minimize bias and sampling variance. The second table of values in Fig. 3.10 gives the results of this
procedure for estimator selection. Finally, CAPTURE gives the estimate of N and its estimated standard
error. The user need not be concerned about the intermediate computations in the figure; they are
explained in Otis et al. (1978:108-109) and in Burnham and Overton (1979).

In the example of Fig. 3.10 we have N = 215 and §e(N) = 8.68, thus the coefficient of variation of N
is estimated as 8.68/215 = 4.0%. The 95% confidence interval is 198 to 233, covering the true population
size of 200. The average capture probability during the entire study is estimated as p = 0.294; the true
value is E(p) = 0.325. The probability is high enough to make the results seem reliable.

The jackknife estimator is not an ML estimator. We cannot derive a useful ML estimator for Model M,
because of the many parameters. This model is mathematically very difficult to deal with, but it probably
is very realistic for many studies. Consequently, having an estimator for it is important, even though the
jackknife estimator does not perform well under some patterns of heterogeneity. Specifically, if many
animals have very small capture probabilities (say, less than 0.05), the jackknife estimator will
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underestimate N, as will every other known estimator. There is no mathematical solution to this problem;
if some animals are essentially uncatchable, no estimation method can estimate N properly.

The results of estimating N for all 10 simulations of the heterogeneity model underlying Figs. 3.9 and
3.10 are shown in Table 3.8. The 10 sets of capture frequencies again illustrate sampling variation. The
average of the 10 values of N is 209.4. For this particular model, N probably has a slight positive bias. In
general, N under the Model M, is not free of bias, but is more robust (has smaller bias) than the
previously discussed estimators for Models M, M, and M, when these estimators are applied to data
that really fit Model M,. ’

Model M,,, Behavioral Response and Heterogeneity

In real populations, capture probabilities may vary by animals, as in Model M,,, and there may also be
behavioral response to first capture, as in Model M. The presence of both sources of variation in
individual capture probabilities results in Model M,,. Under this model, each animal is allowed to have its
own probability of first capture, p, i = 1, ..., N. This part of Model M, is exactly like Model M,
However, the animal also may have a behavioral response to first capture, which alters its subsequent
(daily) capture probability. Thus, we let c; be the probability of recapture for the i*" animal. There is no
relation between p, and ¢, built into this model (although there could be).

To explain Model M,,, consider three individuals with first-capture probabilities of 0.25, 0.5, and 0.65.
There is a 25% chance of catching individual 1 on day 1. If individual 1 is not caught on day 1, there
remains a 25% chance of catching it on day 2. Let individual 1 become trap shy if caught, say, ¢, = 0.1,
but let animal 3 become trap happy if caught, say, ¢, = 0.9. Finally, assume that animal 2 has no
behavioral response to capture, hence ¢, = p, = 0.5. These types of capture and recapture probabilities
are allowed under Model My,

TABLE 3.8. Summary results for all 10 simulations of Model M, withN = 200,t = 7. Thereare
10 different individual capture probabilities assumed for this population; 20 animals have

p = 0.10, 20 have p = 0.15, and so on with sets of 20 animals each having a capture probability
of p = 0.20,0.25, 0.30, 0.35,.0.40, 0.45, 0.50, or 0.55. The estimate of N is generally reasonable,
with an average value over the 10 repetitions of 209.4. ,

Capture Frequencies

Replication f, f, f, f, f f f, M, N se(N) p
1 50 46 35 24 14 5 0 174 215 8.68 0.294
2 49 37 38 26 13 3 0 166 - 211 9.75 0.287
3 41 53 38 22 17 3 1 175 207 7.63 0.317
4 41 37 38 26 19 4 0 165 - 198 7.80 0.326
5 48 36 34 25 20 3 0 166 210 9.60 0.299
6 39 51 42 23 13 3 1 172 203 . 7.42 0.316
7 44 43 41 37 8 6 0 179 215 8.02 0.317
8 34 50 32 34 15 5 0 170 197 6.94 0.342
9 42 54 38 24 15 3 0 176 209 7.73 0.310
10 54 49 40 27 9 5 0 184 229 9.08 0.284
Averages 302 456 376 26.8 143 4.0 0.2 1727 2094 8.3 0.309
Standard 6.2 9.3 0.018

deviations




The estimator of population size for use with Model M,,, is based entirely on the first-capture data, just
as it is in Model M,,. First-capture data are uy, . . ., u,, the numbers of animals caught for the first time on
occasion 1 through t. Because recapture information does not enter the estimator, the nature of the
behavioral response for each animal is irrelevant to the estimation of N. In principle, one is “removing”
animals from the population by marking them and estimating population size as if this were a removal
study. In this example, however, these first-capture data do not now fit Model M, because of the presence
of heterogeneity. Thus a more general estimation method is required for Model M,,, than for Model M,.
See comments on this method given below, in Chapter 4, and in Otis et al. (1978:40-43, 112-1 13).

Summary data from the first of 10 repetitions simulating a Model M,,, study are presented in Fig. 3.11.
This simulation uses N = 200 and t = 8 occasions. The heterogeneity structure assumed for first-capture
probabilities is the same as that used in the previous section on Model M,; namely, 20 animals with p, =
0.1, 20 with p; = 0.15, and so on up to 20 animals with p; = 0.55. On the average, results for capture
occasion 1 will be the same for this example as for the Model M, example. After first capture, however, a
trap-shy behavioral response is assumed to occur for all 200 animals. To simulate such a response, we
generated an individual’s recapture probability as c; = 0.6 X p; after its first capture. If an individual had
a first-capture probability of 0.1, its recapture probability became 0.06 (= 0.6 x 0.1); if its first-capture
probability was 0.50, its recapture probability became 0.30.

Perhaps a useful way to visualize this example is to see it as 10 separate Model M, studies that have
been pooled. Specifically, each set of 20 animals, with their own common first-capture probability,
satisfies the assumptions of a Model M, study.

The concept that, on the average, the first-capture data (u;) will decrease over the t capture occasions is
illustrated by Fig. 3.11. The expected decrease in the numbers of animals caught for the first time on
occasions 1, 2, 3, and so on, is the only certain feature of Model M, data. The characteristics of total
daily captures (n;) are not predictable because the recapture probabilities are not predictable. However, if
all animals show a trap-shy response, some decrease in the n; will be expected over time. Such a decrease
is not very evident in the data of Fig. 3.11, especially after occasion 1. In general, there are no easily
perceived clues in the summary data from a Model M,, study to distinguish it from the results of Model
M, or severa] other models, such as some versions of Models M, and M,,- Making a judgment on the best
underlying model for a capture study requires sophisticated data analyses to test model assumptions.

The results of applying the Model M,,, estimator to the first-capture data of Fig. 3.11 are shown in Fig.
3.12. The computed estimate is 192 with an estimated standard error of 5.0. The approximate 95%
confidence interval covers the true value of N = 200, and the lower limit of the interval (182) is not less
than the number of different individuals caught (M, = 181). In addition to the estimate of N, the print-out
gives information on the estimation process and provides a histogram of the “removal” data, u,, .. ., Ug.
To explain the main body of numbers in Fig. 3.12, we must discuss the ideas behind estimation of
population size with Model M,,.

We define the expected probability of first capture on occasion | as Py = E(u)/[N —
E@)—...—E(y_)|;j=1,..., t. Under Model M,), these probabilities are constant; that is, p; = p.
With such a model for the first-capture data (conveniently called removal data), estimators of p and N are

Fig. 3.11. Basic summary statistics for the first of 10
simulations of Model My, with N = 200 and t = 8. First-
capture probabilities have the same structure as the
simulation example of Figs. 3.9 and 3.10; namely, the 10

OCCASION J= 1 2 3 4« 85 B8 7 8 sets of 20 animals each have capture probabilities 0.10,
ANIMALS CAUGHT N(Ji= 6% 47 S+ 39 4 50 45 39

TOTAL CAUGHT Mo 0 e+ 95 128 1v2 156 168 175 1sr  O-15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45., 0.50, and 0.55.
NEWLY CAUGHT . Uts)= B4 - 32 22 14 (4 12 7 & However, after the first capture each animal becomes trap

FREQUENC IE! Fly)= 74 S0 30 af 5 0 . e . .
EQUENCIES v . ! 0 shy; its new capture probability becomes 0.6 times its

previous capture probability. These data give no visual clue
to the complex, underlying probability-of-capture model,
although there is some basis for thinking that average daily
capture probabilities are changing.
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OCCASION J= 1 2 3 4 5 6 7 8

TOTAL CAUGHT M) = 0 B4 96 128 142 156 168 175 181

NEWLY CAUGHT Utdr= B4 32 32 14 % 12 7 6
K N-HAT SE(N) CHI-SG. PROB. ESTIMATED P-BAR(J),J=1,..., 8
1 191.60 5.026287 5.518 0.4792 0.2998 0.2998 0.2998 0.2998 0.2998 0.2998 0.2998 0.2998
2 195.86 7.537645 3.4586 0.6300 0.3268 0.2647 0.2647 0.2647 0.2647 0.2647 0.2647 0.2647
3 192.77 7.023416 2.876 0.5788 0.3320 0.2485 0.2915 0.2915 0.2915 0.2915 0.2815 0.2915
4 201.16 15.53082 0.984 0.8026 0.3182 0.2333 0.3043 0.2238 0.2238 0.2238 0.2238 0.2238
S 192.44 10.27116 0.434 0.8050 0.3326 0.2492 0.3318 0.2173 0.3029 0.3029 0.3028 0.3028
6 187.77 8.008418 0.466 0.4946 0.3408 0.2586 0.3487 0.2342 0.3058 0.38B88 0.3888 0.3888

POPULATION ESTIMATE IS 192 WITH STANDARD ERROR 5.0263

APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 182 10 202

HISTOGRAM OF U(J)

FREQUENCY B4 32 32 14 [ 12 7 6

EACH * EQUALS 7 POINTS

63
56
49
42
35
28
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14

P

PR
S

Fig. 3.12. Results of estimation of N from the simulation data of Fig. 3.11; the true population size is 200, and the true
model is M,,. The estimator under Model M,,, computed by CAPTURE is 192, with an estimated standard error of 5.03.
The confidence interval covers N and does not overlap the total number of animals caught, 181.

possible without further assumptions. When there is heterogeneity of capture probabilities, all the p, are
different, but in a qualitatively predictable way: p, is greater than p,, p, is greater than p,, and so on.
The expected capture probabilities decrease, p, > P, > ... > Py > Dy, and there is a reason for this
decrease. Individuals with greater first-capture probabilities tend to be caught earlier in the trapping than
individuals with smaller first-capture probabilities. For example, consider the simulation study underlying
Figs. 3.11 and 3.12. Of the 20 individuals having a first-capture probability of 0.50, half (or 10) of them
would be caught, on the average, on day 1. But of the 20 individuals with capture probability 0.10, we
would expect to catch only 2 on day 1. In only these 2 groups of 20 animals, on day 2 there would be an
expected 10 + 18 = 28 animals left, and their expected average capture probability would be p, = (0.5
X 10 + 0.1 X 18)/28 = 0.24, down from 0.30 on day 1. Thus on day 2, on the average, only 10
individuals with a capture probability of 0.5 would be left uncaught, but 18 individuals with a capture
probability of 0.1 still would be uncaught. It is this phenomenon that causes the first-capture probabilities
p; to decrease over time when heterogeneity is present.

For these same two groups of animals, the value of P, is (0.5 X 5 + 0.1 X 16.2)/21.2 = 0.19, and
similar computations yield p, = 0.158 and p; = 0.135. Although these expected first-capture
probabilities are computed for only 2 groups of 20 animals in this population, they illustrate two points:
(1) the expected probabilities of first capture, pj, decrease over time, and (2) this decrease is most rapid
for the first few days. The second point is hard to see, but it is important. The differences p, — Py, get
smaller as time (j) progresses; in a sense, the later values of p; tend to stabilize. For instance, from the
sample values above we have p, = 0.30, p, = 0.24, p, = 0.19, p, = 0.158, and p, = 0.135.

If we are to estimate N from the data u,, .. ., u,, we must reduce the number of parameters (B, - . -
p. Because of the characteristic pattern of p, values decreasing toward a limit, we have devised the
following scheme (Oftis et al. 1978:40-43). We fit a sequence of increasingly general models to the
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Capture probabilities can be affected by the number of traps in an individual’s home range. The two traps in the range
above versus the nine in the range below are a source of heterogeneity.

“removal” data u,, ..., u, and stop when a suitable fit is found. For each model, N can be estimated. The
first model is that of a constant first-capture probability: p, = p, =. .. = p, = p, the situation assumed
for Model M, (no heterogerieity). The parameters p and N are estimated by the ML method, and a
goodness of fit test is computed for this model. In Model M, there is only one capture probability
parameter (k = 1). If heterogeneity is slight, this model may be a reasonable one to use. In Fig. 3.12, the
row for k = 1 gives the results of this model: N = 191.6, §e(N) = 5.03, a chi-square goodness of fit test
statistic of 5.518 with an associated observed significance level of 0.4792, and finally §, =, =...=
Py = 0.2998.

The next model fit by CAPTURE allows two capture probabilities: p, = p, = . . . = P, are as-
sumed all equal, but p, is allowed to differ from these. Results of estimation for this model are shown on
row k = 2 in Fig. 3.12. In particular, note that 5, = 0.3268, whereas p, = p, = . . . = Py = 0.2647.

This model is also judged to fit the data by the chi-square goodness of fit test; the observed significance
level is P = 0.6300.

In general, the k™ model of the sequence allows k different capture probabilities: p,, . . ., P,_, are
allowed to differ, but p, = . .. = P, are forced to be equal. Thus, k is the number of different capture
probability parameters in the model. Such models are fitted for k = L2, ...,t—2.InFig. 3.12, rowk =
6, we see that the first 5 values of p, all differ (slightly) but the values P = p, = Py = 0.3888 all are
forced to be equal. :

The heuristic intent in fitting a sequence of increasingly general models is to find the simplest one that
gives an adequate fit to the data. Results from that model are used to estimate N. Often k = 1 is chosen
unless heterogeneity is extreme. The criterion of “fit” implemented in CAPTURE is that P > 0.20 must
hold where P is the observed significance level of the chi-square goodness of fit test; that is, the
probability of a test statistic as large as, or larger than, the computed statistic (see Fig. 2.9). The large
significant value (0.2) was chosen to minimize Type II errors (selecting too simple a model and thereby
getting a biased but precise estimator).
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Individual capture probabilities (heterogeneity) may depend on the age of the animals.

The results for all 10 simulations of the Model My, example used in this section are presented in Table
3.9. In general, N tends to be an underestimate in the presence of heterogeneity, even when the scheme of
selecting from a series of models is used. Also, as replication 10 illustrates, a very poor result occasionally
occurs when both heterogeneity and behavioral response are present. However, the estimated standard
error of 76.7 clearly shows that this estimate is very unreliable.

Heterogeneity of capture probabilities makes estimation of N difficult. We saw this for Model M,, and
we observe it again here, for Model M,;. Unbiased estimation of N cannot be expected when
heterogeneity is present. But the estimation scheme used for Model M,,, which is basically the generalized
removal method discussed in Chapter 4, reduces the bias as compared with results from using the
estimator for Model M,,

TABLE 3.9. Summary results for all 10 simulations of Model M, withN = 200,t = 8. Initial
capture probabilities have the same structure as that of the Model M, example; namely sets of 20
animals each have capture probability 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, or 0.55.
After an animal is first captured, it becomes trap-shy, and its recapture probability becomes 0.6
times its probability of first capture. For example, an animal with first-capture probability of 0.40
has a recapture probability of 0.24 = 0.40 x 0.60. The results for repetition 10 are no mistake;
rather, they demonstrate that occasionally one gets very poor results from capture studies.

Numbers First Captured on Occasion j

Replication u, u, Us u, U Ug u, Ug M, N seN)
1 64 32 32 14 14 12 7 6 181 192 5.0
2 57 45 44 14 9 0 0 0 169 178 4.7
3 61 39 24 17 16 10 7 6 180 191 5.0
4 54 43 29 21 18 4 5 1 175 179 2.9
5 76 37 26 9 9 7 9 4 177 184 4.3
6 75 39 26 11 8 9 8 5 181 189 4.6
7 66 48 22 17 8 7 7 3 178 182 2.8 -
8 63 38 29 20 10 6 9 5 180 188 41
9 63 34 29 19 15 6 9 5 180 189 4.6
10 66 35 38 10 12 10 11 7 189 254 76.7
Averages 645 390 299 152 119 7.1 7.2 42 179.0 1926 25.8
Standard ~ 5.1 22.1
deviations




Model M,,, Time Effects and Heterogeneity

Of the three remaining models, none has an associated estimator. Rather, these models are necessary
to complete the set of conceptual models for the three sources of variation we have recognized (time,
behavior, and heterogeneity). They are needed for testing, and they certainly can arise as descriptions of
real capture-recapture data. As with the five models previously described, we have done a simulation
example of each model; most of the results are presented later in this chapter for purposes of comparing
estimators over models.

If both time and heterogeneity affect daily capture probabilities, we have Model M,,. This model can be
conceptualized by starting with the heterogeneity-only Model M, and then by assuming that external
factors, such as weather or unequal effort, cause an upward or downward shift in all individual capture
probabilities on each capture occasion. Let p,, p,, - . ., py be individual capture probabilities, and assume
that on the j'" capture occasion the actual capture probabilities (as in Model M,) are Py = p; X a;, where
the parameter a; represents a time effect. For example, let us again consider the heterogeneity structure
used for the capture probabilities in the simulation of Models M, and M,,;, (sets of 20 animals each at 10
different capture probability levels, p = 0.1 to 0.55). Then let there be t = 5 capture occasions with a, =
1.0, a, = 0.6, a; = 1.5, a, = 0.7, and a; = 0.9. On day 1, the capture probabilities are the original ones
given by the heterogeneity structure above. But on day 2, each animal’s capture probability (p,,) is p,
multiplied by 0.6: p, = p;; X 0.6. Therefore, on day 2 the set of 10 basic capture probabilities becomes
0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3, and 0.33, with each set of 20 animals having one of
these capture probabilities, as before. There is a considerable difference in average capture probability on
days 1 and 2. In fact, in this example the average capture probability for day 1 is 0.325, but it drops to
0.195 = 0.6 x 0.325 for day 2. The change in capture probability is applied to all animals, regardless of
whether they were caught on day 1. Changes in capture probabilities thus are not a result of behavioral
response of animals, but rather are due to external factors, which we lump under the name of time effects.

In this example, which is the basis for our simulation example of Model M., a; = 1.5, so individual
capture probabilities are greater on day 3 than they were on day 1. The capture probabilities of day 3 are
based on the original heterogeneous capture probabilities of day 1 times 1.5, not on those of day 2 times
L.5. Thus on day 3, animals with the “base” capture probability of 0.40 have a capture probability of 0.6
= 040 X L.5. The full set of capture probabilities in this example is given in Table 3.10. There are 5
occasions and 10 groups of 20 animals (N = 200); each group has a different capture probability.

Summary statistics for the first repetition of 10 simulations are presented in Fig. 3.13 for this example
of Model My,,. These data show time variation in the average daily capture probabilities: n, =73, n, =43,
n, = 91, n, = 45, and ny = 57. The n; compare well with the expected values E(n) = N X p, =N X
0.325 X a;; for example, E(n,) = 200 X 0.325 X 1.5 = 98. However, it is impossible to tell by looking at
just these summary statistics that the data arise from a case of Model M,,.

Model M,,, Time Effects and Behavioral Response

When both time and behavioral response affect capture probabilities, we have Model M,,. We
conceptualize a set of time-varying daily capture probabilities (Pys Py - - - Py that apply to all animals not
yet caught. Thus if an individual is not caught on day 1, its probability of capture on day 2 is p,. If an
animal is caught on day 1, however, it exhibits a behavioral response to this capture, and its subsequent
daily capture probabilities alter. They become € €3, . . ., C.. The recapture probabilities also are allowed
to vary by time, but ¢, # p,, ¢; 5 p;, and so on. Notice that if we assume no time variation in capture or
recapture probabilities (p, =p,=...=p,and ¢, = ¢, =...=c,), we have Model M, (behavior only), or
if we assume capture and recapture probabilities are the same (¢,=ppi=2, ...,t), we have Model M,

Example data for Model M,,, were simulated with the following parameters. First note that N = 150
and t = 5 were used. The probabilities of first capture on days 1 through 5 were p, = 0.3, p, = 0.2, p; =
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TABLE 3.10. The capture probability structure used
as the basis of a simulation example of Model M,;, with
N = 200andt = 5. The populationis composed of 10
groups of 20 animals each. Heterogeneity of capture
probabilities extends over these 10 groups.
Superimposed on the heterogeneity structure is a
multiplicative time effect; p;, = p, x @, where a, =1,
a, = 0.6,a, = 1.5,a, = 0.7,a, = 0.9, and the p,
have the same values as for the Model M, example.

Day
Animal
Group 1 2 3 4 5
1 0.10 006 0.15 0.07 0.09
2 0.15 009 023 0.11 0.14
3 0.20 012 030 0.14 0.18
4 0.25 0.15 0.38 0.18 0.23
5 0.30 018 0.45 0.21 0.27
6 035 021 053 025 0.32
7 0.40 0.24 060 0.28 0.36
8 0.45 0.27 068 032 041
9 0.50 030 075 035 045
10 0.55 033 083 039 0.50

Averages 0325 0.20 049 0.23 0.30

Fig. 3.13. Basic summary statistics for the first of 10
simulations of Model My, with N =200 and t =35. The

heterogeneity structure in the population is the same as that
OCCASION J= i 2 3 4 5

ANIMALS CAUGHT N(Jy= 73 43 91 45 &7 used in the simulation of Models M,, and My,. Time variation
TOTAL CAUGHT  M(J)= 0 73 95 144 153 164 in capture probabilities is imposed on these individual capture
NEWLY CAUGHT ~ Uth)= 73 22 43 9 Il o .

FREQUENCIES FJl= 65 B4+ 2 11 . 0 probabilities. See Table 3.10 for the complete capture probabil-

ity structure of this (simulation) model. Notice that time
variation is evident in the data, both in the n; and in the fact
that u, =22 while u; =49. There is no way to look at
summary statistics like these and tell that the model is M,
rather than M, M, or M.

0.4, p, = 0.35, and p; = 0.25. Of course, on day 1 all animals have p, = 0.3 as their capture probability,
but on day 2 only those animals not caught on day 1 have capture probability p, = 0.2. Here, the
recapture probabilities are set at one-half the original capture probabilities, thus ¢, = 0.1, ¢; = 0.2, ¢, =
0.175, and c, = 0.125. This is a case of trap-shy response. We have set c; equal to a constant multiple of
p; only for convenience when we simulate Model M, data. The basic model assumes no constant relation
between p, and c, '

There are only five relevant different capture histories for this example, corresponding to the day on
which the animals were first caught. Table 3.11 shows the applicable set of capture probabilities, and Fig.
3.14 gives the summary statistics from one simulation repetition of this example of Model M,,. Because of
the trap-shy behavioral response, recapture probabilities are less than first-capture probabilities. Under
Model M,, this relationship would cause a decline in the daily numbers caught (ny), over time. However,
such a decline is masked here by the time variation in capture probabilities.



TABLE 3.11. A representation of the capture
probabilities applicable to different capture histories of
animals in the simulation example of Model M,,. If an
animal is captured on day 1, the first row of the table
gives its capture probabilities. On days 2 through 5, the
animal is subject to the lower recapture probabilities as
a result of a trap-shy behavioral response. At the other
extreme, animals not captured at all or not captured
until day 5 are subject to the daily capture probabilities
shown in row 5. Viewed another way, if we look at
column 3, all individuals caught on either day 1 or 2 or
on both days have capture probability 0.2 on day 3, but
individuals not caught by day 3 have capture probabili-
ty 0.4 on that day.

Capture Probability On Each Capture
Occasion

Occasion When
First Caught 1 2 3 4 5

1 0.3 0.1 0.2 0.175 0.125
2 0.3 0.2 0.2 0.175 0.125
3 0.3 0.2 04 0175 0.125
4 0.3 0.2 04 0.350 0.125
5 0.3 0.2 04 0350 0.250
Fig. 3.14. Basic summary statistics for the first of 10
OCCASION . J= 1 2 3 4 s simulations of Model M,,,, with N =150 and t = 5. See text
:g;::l.;ﬁg:c:m ::j: 53 éZ ;S 3; 112 S and Table 3.11 for the underlying capture probability struc-
NEWLY CAUGHT  UtJ)= 80 14 25 23 4 ture. Merely looking at these data does not make clear what
FREQUENC IES Ftw= 79 31 B8 0 0

the true model is.

Because no relation is assumed between recaptures and first captures, only the first-capture data, u,,
Uy ... U, are relevant for estimating population size N under Model M,,. These removal data are the
appropriate basis for estimating N whenever there is a behavioral response to first capture. For Model
M,, the data u;, u,, ..., u, depend on only two parameters, N and p; hence, N can be estimated if there
are at least two capture occasions. For Model M, ,, there are t + 1 parameters (N, Py .. Dy, but we

Heterogeneity of individual capture probabilities can be caused partly by differences in sex-specific capture rates.
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know enough about the nature of the average first-capture probabilities B, to devise an estimation
scheme. For Model M,,, there also are.t + 1 parameters, for only t “bits’” of data. However, now there are
no logical relations among the (average) first-capture probabilities, B,, . . ., b, and therefore we cannot
devise a reasonable method of estimating population size from Model M, data.

Model M,,,, Time Effects, Behavioral Response, and Heterogeneity

In Model M,,,, the most general (closed) model of capture-recapture studies, all three factors (time,
behavior, and heterogeneity) are operating. To formulate the factors as a mathematical model, we take
the heterogeneity and time effects to be multiplicative—exactly as with Model M,;. A behavioral response
change in basic capture probabilities is assumed after an animal’s first capture. There is no unique way to
formulate this model. However, we can illustrate the concept by reference to a simulation example of
Model M,,,,, with N = 200 and t = 6.

We start on the first trapping day with only heterogeneity evident in the population, because it takes at
least 2 days for behavior or time effects, or both, to become evident. The heterogeneity structure on
capture probabilities assumed here is the same as in the examples of Model M,, M,;, and M,;;: 10 groups
of 20 animals each with capture probabilities 0.1 (1st group), 0.15 (2nd group), up to 0.55 (10™ group).
Thus the expected results on day 1 are the same for Model M,,,, as for Models M, M, and M;. This
heterogeneity structure is modified during the course of six trapping occasions for time effects and
behavioral response. For animals not previously captured, the probability of first capture is p;a;, for the ith
individual on the j*" day. The time effects here are a, = 1, a, = 0.7, a, = 1.3, a, = 1.4, a, = 0.6, and a; =
1.2. If no behavioral response were allowed, the capture probability structure, p; = p;a; would be an
instance of Model M. -

Very active and socially dominant individuals may have high individual capture probabilities—a possible source of
heterogeneity. )



After the first capture; the recapture probability for an animal is equal to c;a;, where c, is not the same
as p;. For simulation of this example we assume a fixed relation between initial and subsequent capture
probability. Thus we set the recapture probability as ¢a; = p;ajb and use b = 1.3 in the simulation.
Consider the second trapping day. All animals not caught on the first day have capture probability p; X
0.7, where p; is their initial (or “basic™).capture probability. Any animal caught on the first day has a
recapture probability on day 2 of p; X 0.7 X 1.3 = p; X 0.91.

Consider what happens on day 4. The capture probability ‘of an animal not previously caught is p; X
1.4. For example, if p; = 0.55, that animal’s capture probability on day 4 is 0.55 X 1.4 = 0.77. If the
animal had been céptured previously, its recapture probability is computed as p; X 1.4 X 1.3. For p, =
0.55, this computation gives 0.55 X 1.4-X 1.3 = 1.001. Of course, a capture probability exceeding 1 is not
meaningful. The full-blown mathematical versions of all the models we present here do not allow capture
probabilities outside the range of 0 to 1. Program CAPTURE truncates back to 1 any capture probability
computed as more than 1. Thus, on day 4 in this example, all previously captured animals with the basic
capture probability of 0.55 will be caught. L R

Another way to view the example is to see each group of 20 animals as a case of Model M,,. Because
the capture probabilities differ between the groups, heterogeneity is also present, and the whole
population becomes a case of Model M,,.

The summary statistics from the first of 10 repetitions of this simulation example of Model M, are
presented in Fig. 3.15. As with data from other models, we cannot identify the underlying model just by
looking at these data. However, the increase in first-capture data on day 3 over day 2 and again on day 6
over day 5 (u;, = 63, u, = 23, u, = 44, u, = 21, us =4, and ug = 14) tends to rule out Model M,, and
hence Model M,. Also, the time variation evident from the u; and n; tends to rule out Model M, Further
determination of the best fitting model would require tests of assumptions.

Summary of Models

Because the reader must have the eight models and the relations among them clearly in mind before
proceeding further, we summarize them here briefly. The reader also should see Otis et al. (1978:50-52).
Table 3.12 shows the models by symbol, the sources of variation in capture probabilities that enter into
each model, and the estimator associated with the model. For convenience we have associated a name
with each estimator; the names are used by program CAPTURE and appear in the CAPTURE output.

The eight models have distinct relations to each other. For example, the simplest model, M, is a special
case of all other models. Figure 3.16 diagrams the relations between the models, some of which have been
pointed out in the preceding discussions. In the figure, each arrow points from one model to another,
which is a special case of the first model. Mathematically, the relations are true because we can assume
that some parameters of the more general model are equal to each other to “produce” the simpler model.
For example, in Model M, if first-capture probability p is assumed equal to recapture probability c, we
have Model M., Assurriptions such as these about capture probabilities often can be tested.

Fig. 3.15. Basic summary statistics for. the first of 10
simulations of Model M,;,, with N =200 and t = 6. The

" capture probability structure for this simulation is discussed in
OCCASION U= 1 2 3 4 5 &

ANIMALS CAUGHT N(J)= 63 46 100 102. 38 95 the text. Briefly, there is heterogeneity (as for Model M,), 10
TOTAL CAUGHT — M()= 0 63 85 127 148 152 166 groups of 20 animals each at “basic” capture probabilities 0.1
NEWLY CAUGHT  UtJi= B3 23 41 21 4 14 . L . .

FREQUENCIES F(dl= 36 45 w2 a4 17 @ ) to 0.55. Thesé capture probabilities are modified for time

variation and for behavioral response. The probability of first
capture on any day is p; X a; (8, =1, a, =0.7, a, = 1.3, a,
= 1.4, 2, = 0.6, a; = 1.2). The probability of recapture on any
given day is ¢; X yX1.3,j=2,..,6.
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TABLE 3.12. The eight models summarized by symbol,
sources of variation in capture probabilities, and the
associated estimator, if any. Program CAPTURE uses
these names for the estimators.

Sources Of Variation In Appropriate

Model Capture Probabilities Estimator

M, none null

M, time Darroch

M, behavior Zippin

M, heterogeneity jackknife

Me time, behavior noene

M., time, heterogeneity none

My behavior, heterogeneity  generalized removal
Me. time, behavior,
heterogeneity none

Mtbh

X

Mt My M
AN

Mo

Fig. 3.16. Relations among the models. Each arrow points
from one model to an immediate special case of that model.
Tests of assumptions are based partly on these relations
among the models.



Testing Model Assumptions and Model Selection

Overview. Our objective in developing these models and their associated estimators is to allow
selection of the “best” estimator, of those we present, for any given set of capture-recapture data
(assuming closure). We test the assumptions about capture probabilities by comparing the absolute and
relative fits, to the data, of the various models, and then we select the simplest, best-fitting model.
Unfortunately, three of the eight models do not have estimators. If one of these three models is selected as
best, we must either forego estimation or continue to search for the simplest model that is relatively
best-fitting and for which an estimator exists. Foregoing estimation is theoretically desirable, but usually
unacceptable in practice. In this section we introduce the seven statistical tests of the assumptions on
which model selection is based; they are summarized in Table 3.13.

Tests 1, 2, and 3 compare models to detect the presence or absence of heterogeneity, behavior, and
time, respectively. Tests 4, 5, and 6 test the goodness of fit to the data of Models M,, M,, and M,,
respectively. Finally, test 7 compares Models M, and M,,, to detect behavioral response in the presence of
heterogeneity. There is an estimator for each of these models. The tests are illustrated in Fig. 3.17, which
uses the simulation example of Model M, described in Figs. 3.1 and 3.2, and Table 3.2. All seven test
statistics have a chi-square distribution under the null hypothesis.

Model M, was simulated with true N = 50 and p = 0.3. Figure 3.17 shows the summary statistics of
the first simulation repetition, the seven tests of assumptions, and the model selection criteria, along with
the suggested model and estimator. The model selection criteria represent an automated procedure
implemented in program CAPTURE to suggest the apprc‘)priate'model. It uses the results of all seven tests
and generally is better than human judgment.

Test 1, Heterogeneity. If Model M, provides a significantly better description of (a significantly
better fit to) the data than Model M,, provides, we conclude that some form of heterogeneity is affecting

TABLE 3.13. Summary of the statistical tests of assumptions about capture probabilities,
which form the basis of model selection. Test numbers are identical to those used by program
CAPTURE.

Test
Number ‘ Test Purpose
1 Compares the relative fits of Models M, and M, to detemine whether there is
evidence of heterogeneity in capture probabilities.
2 Compares the relative fits of Models M, and M, to determine whether there is
evidence of behavioral effects on capture probabilities.
3 Compares the relative fits of Models M, and M, to determine whether there is

evidence of time variation in capture probabilities.

4 Judges the goodness of fit of Model M,; the test result is that Model M, either fits or
fails to fit the data.

5 Judges the goodness of fit of Model M,; the test result is that Model M, elther fits or
fails to fit the data.

6 Judges the goodness of fit of Model Mt, the test result is that Model M, either fits or
fails to fit the data.

7 Compares the relative fits of Models M, and M,, to determlne whether there is
evidence of behavioral response in the presence of heterogeneity.
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OCCASION J= 1 2 3 4 S 6
ANIMALS CAUGHT N(J)= 18 11 18 14 14 18
TOTAL CAUGHT M) = 0 16 23 31 40 44 47
NEWLY CAUGHT Utdr= 16 7 8 9 4 3
FREQUENCIES Fth= 17 22 5 3 0 )

1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(O) VS. ALTERNATE HYPOTHESIS OF MODEL M(H)

CHI-SQUARE VALUE = 3.524 DEGREES OF FREEDOM = 3  PROBABILITY OF LARGER VALUE = 0.31767

2. TEST FOR BEHAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(Q) VS. ALTERNATE HYPOTHESIS OF MODEL M{(B)

CHI-SQUARE VALUE = 0.002 DEGREES OF FREEDOM = 1 PROBABILITY OF LARGER VALUE = 0.96170

3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)

CHI-SQUARE VALUE = 2.670 DEGREES OF FREEDOM = S5  PROBABILITY OF LARGER VALUE = 0.75075
%. GOODNESS OF FIT TEST OF MODEL M(H}
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)
CHI-SQUARE VALUE = 2.485 DEGREES OF FREEDOM = S PROBABILITY OF LARGER VALUE = 0.77878

TEST OF MODEL M{H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)

NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY

1 3.8a4 5 0.57509
2 2.G514 5 0.75929

5. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B) VS, ALTERNATE HYPOTHESIS OF NOT MODEL M(B)

CHI-SQUARE VALUE = 6.433 DEGREES OF FREEDOM = 8  PROBABILITY OF LARGER VALUE = 0.59886
SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBABIL!ITY ACROSS TIME
CHI-SQUARE VALUE = 3.183 DEGREES OF FREEDOM = 4  PROBABILITY OF LARGER VALUE = 0.52774
SB8. CONTRIBUTION OF TEST OF HOMOGENEITY OF RECAPTURE PROBABILITIES ACROSS TIME
CHI-SQUARE VALUE = 3.250 DEGREES OF FREEDOM = 4 PROBABILITY OF LARGER VALUE = 0.51686
6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL MI(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)

EXPECTED VALUES TOO SMALL. TEST NOT PERFORMED.

7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H} VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)

CHI-SQUARE VALUE = 5.410 DEGREES OF FREEDCM = 11 PROBABILITY OF LARGER VALUE = 0.80970

MODEL SELECTION CRITERIA. MODEL SELECTED HAS MAXIMUM VALUE.

MODEL M) M(H) M(B) M(BH) M(T) M(TH) M(TB) M(TBH)
CRITERIA 1.00 0.85 0.29 0.57 ¢.00 0.42 0.29 0.65

APPROPRIATE MODEL PROBABLY IS M(0)
SUGGESTED ESTIMATOR IS NULL.

.Fig. 3.17. The seven tests of assumptions used in model selection applied to the simulated data from Model M, with true N
=50 and p = 0.30. The underlying data are exactly the same as those used for Figs. 3.1 and 3.2 and given in Table 3.2.



capture probabilities. Program CAPTURE gives the chi-square test statistic used for test 1, its degrees of
freedom (df), and the probability of a more extreme (larger) test statistic value if, in fact, the null
hypothesis is true. Roughly stated, the null hypothesis for test 1 is that there is no heterogeneity of
capture probabilities. Rigorously stated, the null hypothesis is that Model M;, does not provide a better
description of the data than Model M, provides. However, no matter which way the test resuit goes (in
favor of M, or of M,), it provides no evidence that either model actually fits the data.

From Fig. 3.17, for test 1, the chi-square value is 3.524, with 3 df for these data. The probability P of
a larger value is only 0.31767. The observed significance level is far from significant; hence we have no
basis to reject the null hypothesis for test 1. The conclusion is that the simpler Model M, is to be preferred
over Model M, for these data. Of course, we expected this result because Model M, is the true model for
this example.

Test 2, Behavioral Response. By testing the relative fit to the data of Model M, versus Model
M,, we are testing whether behavioral variation in capture probabilities is likely. As with all of the tests, a
chi-square test statistic is used. This test always has just 1 df because it is testing the assumption that
first-capture probabilities p are equal to recapture probabilities c, given that either Model M, or Model
M, is the true model.

From Fig. 3.17, for test 2, the chi-square value is 0.002 with an observed significance level P of
0.96170. That is, 96% of the time the test statistic value will be this large or larger if there is no behavioral
response. If this test had rejected the null hypothesis (that Model M, provides a better fit to the data than
Model M), we would conclude that some form of behavioral response was affecting capture probabilities.
In this example we conclude that Model M, is to be preferred to Model M,,.

Test 3, Time Effects. By comparing the relative fit to the data of Model M_ versus Model M,, we
are testing for any time variation in capture probabilities. If p,, p,, . . ., p, represent the average first-
capture probabilities for the population on capture occasions 1, 2, .. ., t, then this test is testing the null
hypothesis that p; = p, =. . . = p,, given that either Model M, or Model M, is the true model.

From Fig. 3.17, the chi-square value of test 3 is 2.670, with 5 df and an observed significance level of
0.75075. (Here, significance requires P < 0.05, or perhaps even P < 0.01.) Because this P value is far
from significant, we conclude that, in a comparison of Models M, and M,, M fits the data just as well as
M,. As with tests 1 and 2, this is not an absolute test of the goodness of fit of Model M,. To determine
absolute goodness of fit, we use tests 4, 5, and 6.

Test 4, Goodness of Fit of Model M,. The null hypothesis for test 4 is that Model M, fits the
data versus the alternative that Model M, does not fit the data. From Fig. 3.17, the chi-square value of
this test is 2.485 with 5 df. The P value of 0.77878 is not significant. We conclude that Model M,
adequately fits these data. Note that Model M, is a special case of Model M, (Fig. 3.16).

Test 4 can be applied to the capture data partitioned by frequency of capture. Although program
CAPTURE gives these partitioned results, it is rarely necessary to look at them. The overall value of test
4 is all we need to examine. (Partitioned results in Fig. 3.17 are chi-square values of 3.824 and 2.614 for
animals caught once and twice, respectively.)

Test 5, Goodness of Fit of Model M,. The null hypothesis for test 5 is that Model M, fits the
data versus the alternative that Model M, does not fit the data. This null hypothesis can be broken into
two parts: (1) first-capture probabilities are constant over time, and (2) recapture probabilities are
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constant over time. The parts constitute tests Sa and 5b, respectively. The sum of the two chi-square test
statistics gives the overall goodness of fit statistic for Model M,

From Fig. 3.17, the overall goodness of fit chi-square for Model M, is 6.433 with P = 0.59886. The P
value is not significant, as we would expect, given that Model M, is the true model. Similarly, we judge
first-capture probabilities and recapture probabilities to be adequately modeled as constant over time.

Test 6, Goodness of Fit of Model M,. The null hypothesis for test 6 is that Model M, fits the
data. The alternative is that Model M, does not fit the data. This test requires more data for computation
than the other 6 tests require, and it sometimes cannot be computed for small numbers of captures. For
the Model M, simulation (N = 50), insufficient numbers of captures and recaptures were available to
compute this test. However, Fig. 3.18 presents the same tests and the model selection criteria for the first
simulation case of Model M,. In this simulation N = 150, with t = 5 and an average capture probability
of about 0.3. Under these conditions sufficient data were available. From Fig. 3.18, the chi-square
goodness of fit statistic is 56.082 with 68 df; the observed significance level of 0.84862 is not significant.
We conclude that Model M, adequately fits these data.

Test 7, Behavioral Response Given Heterogeneity. Test 7, like tests 1, 2, and 3, compares
the relative fits of two models, in this case, Models M, and My,. The null hypothesis is that Model My,
does not provide any better fit to the data than Model M, provides. The alternative is that Model M, is
a better fitting model for the data at hand than Model M,. From Fig. 3.17, the chi-square value for test 7
is 5.410 with 11 df; the observed significance level of 0.90970 is not significant. We conclude that Model
M, provides an adequate model as opposed to Model M. Again, the result is to be expected, given that
the true model for these data is M,

Comment. From Fig. 3.17 we see that none of the seven null hypotheses were rejected in this
example, where the true model is M, We expect this result when Model M, is the correct model (a rare
situation), or when the data are very poor (unfortunately a common situation). Conversely, any time that
all seven tests are nonsignificant, the appropriate conclusion is that Model M, best represents the data.
We do not conclude that it is the true model, only that it is the best model to represent the given data.

The Model Selection Procedure

It is very difficult to evaluate the results of these seven tests subjectively (for example, on the basis of
observed significance levels) and to decide on the most appropriate model. We need an objective,
mathematical procedure (see Otis et al. 1978:56-57). Such a procedure has been developed and
implemented in program CAPTURE: it is an application of multivariate discriminant function analysis
(see Otis et al. 1978:57-66). The basic idea is that the pattern of observed significance levels, on the
average, will be different for each of the eight models. If these patterns can be characterized, then a
mathematical function can be constructed to classify an unknown set of data into the most likely pattern,
and hence to judge which model would be most appropriate for those data. The details are very complex,
because the “patterns” are really regions in a seven-dimensional space.

The model selection procedure involves computing a selection criterion (a number) for each model
from the seven observed significance levels. Using a different mathematical function for each model, the
computation gives seven “raw” selection criteria, whose absolute values are not important. The values are
all nonnegative numbers. The most appropriate, or likely, model is the one corresponding to the
maximum selection criterion. Therefore, CAPTURE finds this maximum value and divides it into all
seven model selection criteria. As a result, one of the selection criteria (or more in the case of ties), is equal



OCCASION J= 1 2 3 4 S

ANIMALS CAUGHT N(J)= 28 53 50 60 37
TOTAL CAUGHT MiJy= 0 a8 70 101 121 127
NEWLY CAUGHT utdr= 28 42 31 20 6
FREQUENC [ES FtJi= 52 52 20 3 0

1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(H)

CHI-SQUARE VALUE = 1.460 DEGREES OF FREEDOM = 3 PROBABILITY OF LARGER VALUE

2. TEST FOR BEHAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(Q) VS, ALTERNATE HYPOTHESIS OF MODEL M(B)

CHI-SQUARE VALUE = 1.654 DEGREES OF FREEDOM = 1 PROBABILITY OF LARGER VALUE

3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(0Q) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)

CHI-SQUARE VALUE = 23.479 DEGREES OF FREEDOM = 4 PROBABILITY OF LARGER VALUE
%. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)
CHI-SQUARE VALUE = 20.405 DEGREES OF FREEDOM = Y PROBABILITY OF LARGER VALUE

TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)

NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY

1 10.885 4 0.02789
e 5.051 4 0.28208
3 11.000 4 0.02656

S. GOODNESS OF FIT TEST :OF MODEL M(8)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)

CHI -SQUARE VALUE = 21.235 DEGREES OF FREEDOM = 6 PROBABILITY OF LARGER VALUE
5A. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBASILITY ACROSS TIME
CHI-SQUARE VALUE = 14.827 DEGREES OF FREEDOM = 3 PROBABILITY OF LARGER VALUE
5B. CONTRIBUTION OF TEST OF HOMOGENEITY OF RECAPTURE PROBABILITIES ACROSS TIME
CHI~SQUARE VALUE = 6.408 DEGREES OF FREEDOM = 3 PROBABILITY OF LARGER VALUE
6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL 'HYPQTHESIS OF MODEL M(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T}

CHI-SQUARE VALUE = 56.082 DEGREES OF FREEDOM = 68 PROBABILITY OF LARGER VALUE

7. TECT FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)

CHI-SQUARE VALUE = 21.904 DEGREES OF FREEDOM = 10 PROBABILITY OF LARGER VALUE

MODEL SELECTION CRITERIA. MODEL SELECTED HAS MAXIMUM VALUE.

MODEL M(O) M{H} M(B) M(BH) M(T) M(TH) M(TB} M(TBH)
CRITERIA 0.13 0.00 0.10 0.12 1.00 0.75 0.49 0.26

APPROPRIATE MODEL PROBABLY IS M(T)
SUGGESTED ESTIMATOR 1S DARROCH.

Fig. 3.18. The seven tests of assumptions used in model selection applied to the simulated data from Model M, with true N
= 150. The underlying data are exactly the same as those used for Figs. 3.3 and 3.4. (See Table 3.4 and the discussion of the

simulation of Model M, for the capture probability parameters.)

0.69161

0.19842

0.00010

0.00042

0.00166

0.001897

0.08336

0.84807

0.01567
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to 1.00; that criterion corresponds to the most likely model. The other selection criteria lie between zero
and 1.00. Roughly speaking, the higher the model selection criterion, the more likely that model is to be
appropriate for the data. (However, these criteria, as we have constructed them, cannot be interpreted as
probabilities in favor of the individual models.) These “normalized” model selection criteria are printed by
CAPTURE just below the resuits of the seven tests of assumptions. The program also indicates the
apparent appropriate model and the estimator based on that model.

In Fig. 3.17, the simulation case of Model M, the maximum selection criterion of 1.00 is for Model
M, hence that is the indicated appropriate model for these data. Figures 3.18-3.25 give the results of the
7 tests and the model selection criteria for the first of 10 simulation runs of Models M, through M. The
simulation examples were used as the basis for illustrating the data and estimators (where one exists) for
these models. The summary data are repeated as part of the new figures.

Consider Fig. 3.18, for which Model M, is the true model. Test 1 does not reject; thus, in a choice
between Models M, and M,, the simpler model is just as suitable as Model M,. Because both models are
false, there is in fact no reason to use the more complex Model M,, so this failure to reject M is logical.
Alternatively, we can interpret this result as showing no evidence of heterogeneity of capture probabilities.
Similarly, test 2 provides no evidence of behavioral variation in capture probabilities. Test 3, however,
strongly suggests the presence of time variation in the capture probabilities (chi-square = 23.479, 4 df, P
= 0.0010). ' ‘

Considering the three goodness of fit tests in Fig. 3.18, we see that neither Model M, nor Model M,, fits
these data (chi-square = 20.405, 4 df, P = 0.00042 and chi-square = 21.235, 6 df, P = 0.00166,
respectively). From test 6, we do not reject the null hypothesis that Model M, fits the data.

Finally, test 7 suggests some behavioral response (chi-square = 21.904, 10 df, P = 0.01560). Because
Model M, is the true model for these data, this is a type I error (rejection of a true null hypothesis). Any
time multiple tests are made, we must expect to encounter some type I errors.

The pattern of observed significance levels in Fig. 3.18 strongly suggests that Model M, is the best
model for these data. This belief is corroborated by the results of the model selection procedure. From
Fig. 3.18, the model criterion value is 1.00 for Model M,, whereas the next highest value is only 0.75 for
Model M;,, and the next is 0.49 for M,,. None of the other criteria are greater than 0.26. Model M, is
clearly the most appropriate model for these data.

At this point, the reader should study Figs. 3.19-3.25 in detail, bearing in mind in each case what the
true model is and observing the model selection criteria. In every case for these examples, the model
selection procedure selected the correct model. Thus, the pattern of observed significance levels is fairly
typical of what we can expect for each type of model, with reasonably good data.

For Fig. 3.19, the true model is M,. Notice the suggestion of heterogeneity from test 1; it is appropriate
in a sense. After the first capture day the population has two types of animals: those not captured and
those previously captured. The two groups have different capture probabilities. Thus, a kind of
heterogeneity is induced by behavioral response. It is not, of course, the kind we mean by the term
“heterogeneity,” but test 1 is sensitive to this kind of “heterogeneity” when, in fact, Model M, is correct.

In Fig. 3.19, notice that test 3 clearly shows time variation in average daily capture probabilities. This
inference is also correct, because the behavioral response to capture increases (Fig. 3.19) or decreases
(Fig. 3.20) average daily capture probabilities. Because of effects like these, determination of the correct
model just by casual examination of the seven test results is not easy and whether we could correctly
judge Model M, to be appropriate for these data is not clear. However, the model selection procedure
clearly indicates Model M, as the choice. The next closest model, M,,, has a selection criterion of only
0.67; then M,, has a criterion of 0.58. Notice that behavior enters both models.

For the trap-shy case in Fig. 3.20, Model M, is selected as appropriate; it also fits the data in test 5.
But in this example many of the remaining selection criteria are higher than in the Fig. 3.19 example (the
trap-happy case). In part, this is because the trap-happy case generates more recaptures, hence more
data. These two examples also illustrate that the selection criteria are only relative measures of the
appropriate model.



OCCASION J= 1
ANIMALS CAUGHT N(J)= 18
TOTAL CAUGHT Mtdr= 0
NEWLY CAUGHT utdy= 18
FREQUENCIES Fdr= 17

2 3 4 5 ] 7
28 4y 37 Yy 49 53
19 3B 60 7t 79 B3 91
17 24 11 8 4 8
14 31 13 12 4 1]

1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(Q) VS. ALTERNATE HYPOTHESIS OF MODEL M(H)
CHI-SQUARE VALUE = 13.877 DEGREES OF FREEDOM = <1 PROBABILITY OF LARGER VALUE = 0.0164]
2. TEST FOR BEHAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(B)
CHI-SQUARE VALUE = 38.965 ODEGREES OF FREEDOM. = 1 PROBABILITY OF LARGER VALUE = 0.00000
3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(O) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)
CHI-SQUARE VALUE = 47.445  DEGREES OF FREEOOM = 6 PROBABILITY OF LARGER VALUE = 0.00000
“. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)
CHI-SQUARE VALUE = 40.018 DEGREES OF FREEDOM = 5} PROBABILITY OF LARGER VALUE = 0.00000
TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)
NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY
1 17.176 B 0.00866
2 12.000 6 0.08197
3 23. 184 6 0.00073
5. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M{B)
CHI-SQUARE VALUE = 12.488 DEGREES OF FREEDOM = ' 10 PROBABILITY OF LARGER VALUE = 0.25497
5A. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBABILITY ACROSS TIME
CHI-SQUARE VALUE = 9.268 DEGREES OF FREEDOM = S PROBABILITY OF LARGER VALUE = 0.09879
5B. CONTRIBUTION OF TEST OF HOMOGENEITY OF RECAPTURE PROBABILITIES ACROSS TIME
CHI-SQUARE VALUE = 3.198  DEGREES OF FREEDOM. = 5 PROBABILITY OF LARGER VALUE = 0.66943
6. GOODNESS OF FIT TEST OF MODEL M{(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)
CHI-SQUARE VALUE = 23.572  DEGREES OF FREEDOM = 23 PROBABILITY OF LARGER VALUE = 0.42781
7. TEST FOR BEHAVIORAL RESPONSE !N PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)
CHI-SQUARE VALUE = 74.257 DEGREES PROBABILITY OF LARGER VALUE = 0.00000

MODEL SELECTION CRITERIA.

MODEL
CRITERIA

M(0)
0.22

MH)
c.10

MB)
1.00

APPROPRIATE MODEL PROBABLY IS M(B)
SUGGESTED ESTIMATOR IS ZIPPIN.

Fig. 3.19. The seven tests of assumptions used in model selection a

M(BH)
0.58

OF FREEDOM = 19

MODEL SELECTED HAS MAXIMUM VALUE.

M)
0.00

M(TH)
0.31

M(TB)
0.67

M(TBH)
0.31

pplied to the simulated data from Model M, (the

trap-happy case) with true N = 100. The underlying data are exactly the same as those used for Figs. 3.5 and 3.6. (See
Table 3.6 and the discussion of the simulation of Model M,, trap-happy case, for the capture probability parameters.)

83



OCCASION 1 2 3 4 S 86 7
ANIMALS CAUGHT N(J 36 34 25 23 18 2% 24
TOTAL CAUGHT M) = 0 3B 62 76 87 92 93 94
NEWLY CAUGHT uthr= 36 26 14 11 5 1 1
FREQUENCIES Ft= 29 43 18 4 0 0 o]
1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(H)
CHI-SQUARE VALUE = 5.419 DEGREES OF FREEDOM = 3. PROBABILITY OF LARGER VALUE = 0.14354
2. TEST FOR BEHAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(B)
CHI-SQUARE VALUE = 23.31% DEGREES OF FREEDOM = 1 PROBABILITY OF LARGER VALUE = 0.00000
3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)
CHI-SQUARE VALUE = 11.901° DEGREES OF FREEDOM = 6 . PROBABILITY OF LARGER VALUE = 0.06422
4. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPGTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)
CHI-SQUARE VALUE = 11.696 DEGREES OF FREEDOM = 6  PROBABILITY OF LARGER VALUE = 0.06911
TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.}
NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY
1 17.586 6 0.00735
2 5.219 6 0.51610
3 8.833 6 0.18317
5. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)
CHI-SQUARE VALUE = g.164 DEGREES OF FREEDOM = 10 PROBABILITY OF LARGER VALUE = 0.51658
S5A. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBABILITY ACROSS TIME
CHI-SQUARE VALUE = 3.324 DEGREES OF FREEDOM = 8 PROBABILITY OF LARGER VALUE = 0.65010
58. CONTRIBUTION OF TEST OF HOMOGENEITY OF RECAPTURE PROBABILITIES ACROSS TIME
CHI-SQUARE VALUE = 5.840 DEGREES OF FREEDOM = 5 PROBABILITY OF LARGER VALUE = D.32211
6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF ‘MODEL M(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)
CHI-SQUARE VALUE = 53.857 DEGREES OF FREEDOM = 60 PROBABILITY OF LARGER VALUE = (.69836
7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)
CHI-SQUARE VALUE = 22.630 DEGREES OF FREEDOM = 15  PROBABILITY OF LARGER VALUE = 0.09232

MODEL SELECTION CRITERIA.

M(0)
0.59

M(H)
0.52

M(B)
1.00

MODEL
CRITERIA

APPROPRIATE. MODEL PROBABLY 1S M(B)
SUGGESTED ESTIMATOR IS ZIPPIN.

Fig. 3.20. The seven tests of assumptions used in model selection applied to the simulated data from Model M, (the trap-shy
case) with true N = 100. The underlying data are exactly the same as those used for Figs. 3.7 and 3.8. (See Table 3.7 and

M(BH)
0.94

MODEL SELECTED HAS MAXIMUM VALUE.

M(T)
0.00

M{TH})
0.47

M(TB)
0.71

M(TBH)
0.72

the discussion of the simulation of Model M, for the capture probability parameters.)
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OCCASION J= { 2 3 4 5 6 7

ANIMALS CAUGHT N(J)= 65 68 60 68 67 4B 67
TOTAL CAUGHT M(J)= 0 85 107 133 148 162 167 174
NEWLY CAUGHT Ut = 65 42 26 16 13 S 7
FREQUENCIES Fto= 50 4B 35 24 14 5 0

1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(H}

CHI-SQUARE VALUE = 24.084 DEGREES OF FREEDOM = 4 PROBABILITY OF LARGER VALUE

2. TEST FOR BEHAVIORAL RESPONSE AfTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(O) VS. ALTERNATE HYPOTHESIS OF MODEL M(B)

CHI-SQUARE VALUE = 0.092 DEGREES OF FREEDOM = 1 PROBABILITY OF LARGER VALUE

3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(O) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)

CHI-SQUARE VALUE = 8.597 DEGREES OF FREEDOM = 6 PROBABILITY OF LARGER VALUE
4. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPOTHESIS OF MODEL M(H) VS.. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)
CHI-SQUARE VALUE = 8.180 DEGREES OF FREEdOM = 6 PROBABILITY OF LARGER VALUE

TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)

NUMBER OF CAPTURES CHI-SQUARE O.F. PROBABILITY

1 4. 040 6 0.671a6
2 4.096 6 0.66373
3 6.200 6 0.49116
“4 6.333 6 0.386390
S 5.400 6 0.49362

5. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL - M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)

CHI-SQUARE VALUE = 9.636 DEGREES OF FREEDOM = 10 PROBABILITY OF LARGER VALUE
SA. CONTRIBUTION OE TEST OF HOMOGENEITY OF FIRST CAPTURE PROBABILITY ACROSS TIME
CHI-SQUARE VALUE = 2.273 DEGREES OF FREEDOM = S  PROBABILITY OF LARGER VALUE
SB. CONTRIBUTION OF TEST OF HOMOGENEITY OF RECAPTURE PROBABILITIES ACROSS TIME
CHI-SQUARE VALUE = 7.363 DEGREES OF FREEDOM = § PROBABILITY OF LARGER VALUE
6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)

CHI-SQUARE VALUE = 167.216 DEGREES OF FREEDOM = 130 PROBABILITY OF LARGER VALUE

7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)

CHI-SQUARE VALUE = 14,741 OEGREES OF FREEDOM = 21 PROBABILITY OF LARGER VALUE

MODEL SELECTION CRITERIA. MODEL SELECTED HAS MAXIMUM VALUE.

MODEL MO M(H) M{(B} M{BH) M{T) M(TH) M{TB} M(TBH)
CRITERIA 0.7 1.00 0.z22 0.52 0.00 0.43 0.26 0.56

APPROPRIATE MODEL PROBABLY IS M(H)
SUGGESTED ESTIMATOR IS JACKKNIFE.

Fig. 3.21. The seven tests of assumptions used in model selection applied to the simulated data from Model M,, with true N
= 200. The underlying data are exactly the same as those used for Figs. 3.9 and 3.10. (See Table 3.8 and the discussion of

the simulation of Model M,, for the capture probability parameters.)
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OCCASION J= ] 2 3 4 5 6 7 8

ANIMALS CAUGHT N(J)= 64 47 S4 39 40 S0 46 339
TOTAL CAUGHT M(Sy= 0 B4 96 188 142 156 168 175 181
NEWLY CAUGHT U= 84 3 3 14 4 12 7 6
FREQUENCIES Fth= ™ 50 30 21 S 1 0 a

1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(H)

CHI-SQUARE VALUE = 11.852 DEGREES OF FREEDOM .= 4 PROBABILITY OF LARGER VALUE = 0.01848

2. TEST FOR BEHAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(O) VS. ALTERNATE HYPOTHESIS OF MODEL M(B)

CHI-SQUARE VALUE = 8.073 DEGREES OF FREEDOM = 1 PROBABILITY OF LARGER VALUE = 0.00449

3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(O) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)

CHI-SQUARE VALUE = 13.570 DEGREES OF FREEDOM = 7 PROBABILITY OF LARGER VALUE = 0.05938
4. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)
CHI-SQUARE VALUE = 14.735 DEGREES OF FREEDOM = 7 PROBABILITY OF LARGER VALUE = 0.03956

TEST OF MODEL M{H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)

NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY

1 9.459 7 0.22133
2 9.520 7 0.21745
3 17.809 7 0.01387
Y 5.8667 7 0.57917

5. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)

CHI-SQUARE VALUE = 8.698 DEGREES OF FREEDOM = 12 PROBABILITY OF LARGER VALUE = 0.72846

S5A. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBABILITY ACROSS TIME

CHI-SQUARE VALUE = 5.518 DEGREES OF FREEDOM = B PROBABILITY OF LARGER VALUE = 0.47924
SB. CONTRIBUTION OF TEST OF HOMOGENE!TY OF RECAPTURE PROBABILITIES ACROSS TIME
CHI-SQUARE VALUE = 3.180 DEGREES OF FREEDOM = 6 PROBABILITY OF LARGER VALUE = 0.78595
6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)
CHI-SQUARE VALUE = 162.378 DEGREES OF FREEDOM = 125 PROBABILITY OF LARGER VALUE = 0.01251
7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)
CHI-SQUARE VALUE = 23.398 DEGREES OF FREEDOM = 21 PROBABILITY OF LARGER VALUE = 0.3231%

MODEL. SELECTION CRITERIA. MODEL SELECTED HAS MAXIMUM VALUE.

MODEL M(0) M(H) MB) M(BH) M(T) M(TH) M(TB) M(TBH)
CRITERIA 0.58 0.66 0.67 1.00 0.00 0.40 0:39 0.63

APPROPRIATE MODEL PROBABLY 1S M(BH)
SUGGESTED ESTIMATOR [S GENERALIZED REMOVAL .

Fig. 3.22. The seven tests of assumptions used in model selection applied to the simulated data from Model My, with true
N = 200. The underlying data are exactly the same as those used for Figs. 3.11 and 3.12. (See Table 3.9 and the dlscussxon
of the simulation of Model M, ,, for the capture probability parameters.)



OCCASION J= 1 e 3 4 S

ANIMALS CAUGHT N(J)= 73 43 91 45 57
TOTAL CAUGHT M) = 0 73 95 144 153 164
NEWLY CAUGHT uthr= 13 22 49 9 11
FREQUENCIES Fto= 65 B4 24 11 0

1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(H)
PROBABILITY OF LARGER VALUE

CHI-SQUARE VALUE = 3.960 DEGREES OF FREEDOM = 3

2. TEST FOR SEHAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(B)
PROBABILITY OF LARGER VALUE

CHI-SQUARE. VALUE = 1.725  DEGREES OF FREEDOM = 1

3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)
39.771 PROBABILITY OF LARGER VALUE

CHI-SQUARE VALUE = OEGREES OF FREEDOM = 4

4. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPOTHESIS OF MODEL M(H)} VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)
CHI-SQUARE VALUE = 39.346 DEGREES OF FREEDOM = 4 PROBABILITY OF LARGER VALUE
TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)

NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY

1 10.462 4 0.03333
2 25.063 4 0.00005
3 10.167 4 0.03771
Y4 8.455 4 0.05069

5. GOODNESS OF FIT TEST OF MODEL M(B)
NULI\_ HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)

CHI-SQUARE VALUE = 43.018 DEGREES OF FREEDOM = 6 PROBABILITY OF LARGER VALUE

SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF

CHI-SQUARE VALUE = 32.652 DEGREES

SB. CONTRIBUTION OF TEST OF HOMOGENE!TY OF

CHI-SQUARE VALUE = 10.366 OEGREES

6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE
117.857

CHI-SQUARE VALUE = DEGREES

FIRST CAPTURE PROBABIL}TY ACROSS TIME
OF FREEDOM = 3 PROBABILITY OF LARGER VALUE
RECAPTURE PROBABILITIES ACROSS TIME

OF FREEDOM = 3 PROBABILITY OF LARGER VALUE
HYPOTHESIS OF NOT MODEL M(T)

OF FREEDOM = 93 PROBABILITY OF LARGER VALUE

7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)
42.816 PROBABILITY OF LARGER VALUE

CHI-SQUARE VALUE = DEGREES OF FREEDOM = 10

MODEL SELECTION CRITERIA. MODEL SELECTED HAS MAXIMUM VALUE.

MODEL MOy M(H) M(B) M(BH) M) M(TH) M{TB} M(TBH)
CRITERIA 0.13 0.00 .11 0.10 0.88 .00 0.49 0.c28

APPROPRIATE MODEL PROBABLY IS M(TH)
NO ESTIMATOR RESULTS FROM THIS MODEL .

Fig. 3.23. The seven tests of assumptions used in model selection applied to the simulated data from Model M,;, with true
N = 200. The underlying data are exactly the same as those used for Fig. 3.13. (See Table 3.10 and the discussion of the

simulation of Model M,,, for the capture probability parameters.)
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QCCASION J= 1 2 3 4 5
ANIMALS CAUGHT N(J)= 50 17 40 37 15
TOTAL CAUGHT M) = o 50 84 89 112 116
NEWLY CAUGHT U= 50 4 25 23 4
FREQUENCIES FlJd= 79 31 6 0 )
1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(0)} VS. ALTERNATE HYPOTHES1S OF MODEL M(H)
CHI-SQUARE VALUE = 0.605 DEGREES OF FREEDOM = 2 PROBABILITY OF LARGER VALUE
2. TEST FOR BFHAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTH™SIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(B)
CHI-SQUARE VALUE = 12.829 DEGREES OF FREEDOM = i PROBABILITY OF LARGER VALUE
3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)
CHI~SQUARE VALUE = 39.776 DEGREES OF FREEDOM = Y PROBABILITY OF LARGER VALUE
4. GOODNESS OF FIT TEST OF MODEL M(H)

NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS

CHI-SQUARE VALUE 34.454 DEGREES OF FREEDOM
TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE

(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)

NUMBER OF CarTURES CHI-SQUARE D.F. PROBABILITY
1 25.494 4 0.00004
2 9.591 Y4 0.04790

5. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B} VS. ALTERNATE

CHI-SQUARE VALUE = 29.390 DEGREES OF FREEDOM

S5A. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTUR

CHI-SQUARE VALUE 19.987 DEGREES OF FREEDOM =

5B. CONTRIBUTION OF TEST OF HOMOGENEITY OF RECAPTURE PR

CHI-SQUARE VALUE = 9.403 DEGREES OF FREEDOM =

. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE
CHI-SQUARE VALUE = 47.145

DEGREES OF FREEDOM =

. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS

CHI-SQUARE VALUE = 29.927 DEGREES OF FREEDOM

MODEL SELECTION CRITERIA. MODEL SELECTED HAS MAXIMUM VALUE.

MODEL
CRITERIA

M(0)
0.12

MH)
0.00

M{B)
0.3%

M(BH)
0.18

M(T)
0.42

APPROPRIATE MODEL PROBABLY IS M(TB)
NO ESTIMATOR RESULTS FROM THIS MOODEL.

Fig. 3.24. The seven tests of assumptions used in model selection applied to the simulated data from Model My, with true
N = 150. The underlying data are exactly the same as those used for Fig. 3.14. (See Table 3.11 and the discussion of the

simulation of Model M,, for the capture probability parameters.)
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OCCASION
ANIMALS CAUGHT N(J

i 2 3 4 5 6
63 46 100 102 38 96

TOTAL CAUGHT M(JS}= Q 63 86 127 148 152 166
NEWLY CAUGHT Ut = 63 23 ui 2l 4 14
FREQUENCIES Flh= 36 45 42 24 17 2

1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
ALTERNATE HYPOTHESIS OF MODEL M(H)

NULL HYPOTHESIS OF MODEL M(0) VS.

CHI-SQUARE VALUE = 14.763

DEGREES OF FREEDOM = 4

2. TEST FOR BEHAVIORAL RESPONSE AFTER INITIAL CAPTURE.

NULL HYPOTHESIS OF MODEL M(0) VS.

CHI-SQUARE VALUE = 18.741

DEGREES OF FREEDOM = 1

ALTERNATE HYPOTHESIS OF MODEL M(B)

3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.

NULL HYPOTHESIS OF MODEL M(0)

CHI-SQUARE VALUE = 116.194%

4. GOODNESS OF FIT TEST OF MODEL M(H)

DEGREES OF FREEDOM = S

VS. ALTERNATE HYPOTHESIS OF MODEL M(T)

NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)

CHI-SQUARE VALUE = 104%.054

DEGREES OF FREEDOM = 5

TEST OF MODEL MIH) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)

NUMBER OF CAPTURES CHI-SQUARE O.f.

PROBABILITY

16.333
24.600
50. 794
18.125
18.647

AN+ W -
aagaoxm

5. GOODNESS OF F1T TEST ,OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE
CHI-SQUARE VALUE =

93.254 DEGREES

SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF
CHI-SQUARE VALUE = 23.418  DEGREES
SB. CONTRIBUTION OF TEST OF HOMOGENEITY OF

CHI-SQUARE VALUE = 69.836  DEGREES

6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE
CHI-SQUARE VALUE =

176.095  DEGREES

0.00596
0.00018
0.00000
0.00280
0.00224

HYPOTHESIS OF NOT MODEL M(B)
OF FREEDOM = 8  PROBABILITY OF LARGER
FIRST CAPTURE PROBABILITY ACROSS TIME

OF FREEDOM = 4 PROBABILITY OF LARGER
RECAPTURE PROBABILITIES ACROSS TIME

OF FREEDOM = 4 PROBABILITY OF LARGER
HYPOTHESIS OF NOT MODEL M(T)

OF FREEDOM = 124 PROBABILITY OF LARGER

7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.

NULL HYPOTHESIS OF MODEL M(H)

CHI-SQUARE VALUE = 50.998 DEGREES

VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)

OF FREEDOM = 15 PROBABILITY OF LARGER

MODEL SELECTION CRITERIA. ﬁwEL SELECTED HAS MAXIMUM VALUE.

MODEL MG M(H) M(B)

M(BH) M(T)

M(TH) M(TB)

CRITERIA 0.47 0.38 0.23 0.59 6.00 0.46 0.53

APPROPRIATE MODEL PROBABLY 1S M(TBH)
NO ESTIMATOR RESULTS FROM THIS MODEL .

PROBABILITY OF LARGER VALUE =

PROBABILITY OF LARGER VALUE =

PROBABILITY OF LARGER VALUE =

PROBABILITY OF LARGER VALUE

0.00522

0.00002

0.00000

0.00000

VALUE = 0.00000

VALUE

0.00010

VALUE = 0.00000

VALUE

0.00114

VALUE = 0.00001

M(TBH)

1.00

Fig. 3.25. The seven tests of assumptions used in model selection applied to the simulated data from Model M, with true
N =200. The underlying data are exactly the same as those used for Fig. 3.15. (See the discussion of the simulation of

Model M, for the capture probability parameters.)
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Contrast the results in Fig. 3.25 (Model M,,,) with those in Fig. .3.17 (Model M,). In Fig. 3.25 each of
the seven tests clearly rejects the null hypothesis. The only possible conclusion is that all three factors
(time, behavior, and heterogeneity) must be present in these data. Thus Model My, is the appropriate
model. How, then, can we estimate N? There is no satisfactory solution. In the example of Fig. 3.25 we
look for the model with the next highest selection criterion; here, it is M,,. Because there is an estimator
for M,,, we can use that model as a basis for estimation. If, however, the selected generalized removal
estimator corresponds to a model that does not fit, we can place little confidence in the estimator.
(Goodness of fit tests are given along with the generalized removal estimator for each submodel of M
examined.) Even if the model does fit, we cannot be very confident that the estimator is unbiased, because
the model initially selected was Model M.

Consider the example in Fig. 3.23; here the true model is M,,. To compute an estimator from these
data, however, we would be led to use Model M,; it has the next highest selection criterion (0.88). Having
made that decision, we would look at the goodness of fit test results for Model M, (test 6). The chi-square
test value of 117.857 (93 df) has an observed significance level of 0.042; therefore, we would conclude
that Model M, does not fit these data, or at least we would be very suspicious of it as an adequate model.
In fact, the estimate of N based on Model M, cannot be considered very reliable for these data; it is liable
to be biased and the estimated sampling variance will be too small.

A Comprehensive Look at the Simulation Examples

Throughout this chapter we have used simulation examples to illustrate the models, estimators, and
model selection method. So far, only the first of 10 simulations has been presented for each model. In this
section we present summary results on estimation and model selection for all 10 repetitions for each
model. The summary results illustrate some common features of these methods. The general statements
about the properties of the estimators are based on the theoretical and simulation results in Ofis et al.
(1978) and on practical experience with these methods.

Robustness of the Different Estimators. Each of the five estimators was derived under a
different model (see Table 3.12). When the correct model is assumed for the capture-recapture data being
analyzed, the given estimator performs well. That is, it has small bias, and estimated sampling variances
are also relatively unbiased. When the wrong model is assumed, the computed estimator is generally
biased, often badly so, and the estimate of its sampling variance is unreliable. In the worst case, the use of
too simple a model, like Model M, can lead to a very biased estimate with a severe underestimate of its
sampling variance.

Table 3.14 presents the average values of all five estimators, for all 10 repetitions of the 8 models. (Two

cases of Model M, were simulated.) The values in parentheses are the observed standard errors of these
means. For Model M, with the null estimator, for example, there were 10 independent values of No. The
sampling variance among these 10 values was computed. Dividing that estimated variance by 10 (the
sample size) and taking its square root gave 1.1 as the standard error of the mean, 49.1, of these 10
values. .
From Table 3.14, we can see that any given estimator does well when used with the true model. For
example, when Model M, was true (N = 50), the null estimator averaged 49.1 (1.1), but when Model My,
was true (N = 200), the null estimator averaged 176.2 (1.0), which is clearly biased. In contrast, all the
estimators ought to give reasonable results when the true model is M. The first row of Table 3.14 shows
that this is indeed the case. The reader should examine all of the table, bearing in mind that these results
are not representative of all possible cases: high average capture probabilities (around 0.3) were used in
the simulations, hence estimators are more reliable when used with the wrong model than would be the
case with lower average capture probabilities, (around 0.2 or 0.15).



TABLE 3.14.  Average value of each estimator, over the 10 simulations for each
model. Numbers in parentheses are the standard errors of these averages, based
on the 10 replications. The standard errors provide a basis for judging the degree
of bias of the estimator. The capture probability parameters for each model have
been described in the text for that model.

Estimator (Model) Used

True True Null Darroch Zippin Jackknife Generalized
Model N (M,) (M,) (M) (M) Removal
M, 50 49.1(1.1 49.0(1.0) 48.5(1.1) 53.4(0.9 49.7(1.8)

)
M, 150 147.1(1.7) 146.0(1.7) 155.8(2.4) 168.1(3.0) 136.7(2.7)
b 100 86.9(1.6 86.8(1.6) 102.4(3.9) 94.5(2.4) 105.0(4.6)
M, 100 114.2(1.2) 113.3(1.1) 99.2(0.8) 129.1(3.4) 100.0(1.2)
h 200 180.4(2.3) 180.4(2.3) 182.2(2.5) 209.4(2.9) 182.3(2.5)
bh 200 201.3(2.4) 200.7(2.4) 186.8(2.1) 239.4(5.0) 192.6(7.0)

M (

M (7.
M 200 182.2(1.9) 178.8(1.9) 178.9(1.7) 216.8(3.2) 161.3(1.3)
M (2.

M (4.

(1.
th 150 212.8(7.3) 208.1(7.1) 160.5(5.3) 252.3(5.3) 131.9(2.4)
thh 200 176.2(1.0) 174.8(0.9) . 190.3(2.0) 201.0(2.1) 181.9(4.4)

2/ Trap-happy case.
%/ Trap-shy case.

In terms of their robustness we rank the five estimators in the order N, (jackknife, Model M,); Nyy
(generalized removal, Model M,,); N, (Zippin, Model M,); N, (Darroch, Model M));and N, (null, Model

M,). Darroch’s estimator is always valid when Model M, is true; moreover, very little precision is lost by
using N, when Model M is indicated. Also, N, is a special case of Ny Thus, we can reduce the choices
to three estimators: Nh, th, and N,. Certainly, when the selection procedure suggests Model M, M,,, or
M,» and estimation is necessary, only one of these three estimators should be considered for use. Of the
three, Nh will generally be the best choice, although the partlcular set of data, circumstances, and model
selection criteria may cause one to select either Ny, or N,.

Model Selection and Estimation. In practice, we attempt to select the correct model before
estimating N. Thus, the real test of the methods we recommend first involves model selection, then
estimation based on the most appropriate model and concurrent evaluation of whether that model fits the
data. These results, for each simulated case, are shown in Table 3.15. For example, the model selection
procedure correctly selected Model M, in 8 of the 10 simulation cases. In the other two cases, Model M,
was used as the basis for estimation, even though M,, was chosen once. Results of point estimation,
confidence interval coverage, and model goodness of fit were all very good when Model M, was the true
model. (A significance level of 5% was used to judge model fit.)

Results from Table 3.15 are also good for Models M,, M,, and M,. The model selection procedure in
these examples generally led to use of the correct model. For Model M,, the correct model was selected
only 7 (of 10) times, but when Model M, was selected, the selection criteria clearly indicated that Model
M, (not M,) should be used for estimation.

Results for Model My, are good, but not as good as for the four simple (one- -factor) models (M, M,,
M,, and M,). In general, the results when Model My, is true tend to underestimate N the presence of
heterogeneity “causes” this tendency toward a negative bias.

For Models My;,, My,,, and My, estimation is clearly inferior to estimation under the other models. For
example, for Model M,;, the correct model was selected only 4 (of 10) times. This is not critical from an
estimation viewpoint because there is no estimator for Model M,,. However, it is clearly misleading that 6
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TABLE 3.15. Model selection and estimation results for the 10
simulations of each model. “Model selected” means the model
recommended by the mode! selection procedure of program
CAPTURE. “Coverage” shows whether the computed 95% confidence
interval on N included the true value of N. When the selected model had
no estimator, we examined the model selection results and chose the
apparent “‘best” model that had an estimator. “Goodness of fit” shows
whether the model used as a basis for estimation fit the data.

Model M,, N = 50

Model Model Used Goodness

Repetition  Selected N Coverage For Estimation  Of Fit
1 M, 55 Yes M, Yes
2 M, 55 “Yes M, Yes
3 M, 50 Yes M, Yes
4 M, 49 Yes M, Yes
5 M, 49 Yes M, Yes
6 M, 45 Yes M, Yes
7 M, 52 Yes M, Yes
8 M, 48 Yes M, Yes
9 M, 48 Yes M, Yes
10 M, 50 Yes M, Yes

Mean 50.1

TABLE 3.15. (cont)

Model M, N = 150

Model Model Used Goodness

Repetition Selected N Coverage For Estimation Of Fit
1 M, 151 Yes M, Yes

2 M 146 Yes M, Yes

3 M, 150 Yes M, Yes

4 M, 144 Yes M, Yes

5 M, 153 Yes M, Yes

6 M., 138 Yes M, Yes

7 M, 145 Yes M, Yes

8 M, 138 Yes M, Yes

9 M, 152 Yes M, Yes
10 M, 144 Yes M, Yes

Mean ; 146.1




TABLE 3.15. (cont)

Model M, (trap-happy case),

N=100

Model Model Used Goodness
Repetition  Selected N Coverage . For Estimation  Of Fit
1 M, 114 Yes M, Yes
2 M, 97 Yes M, No
3 M, 85 No M, Yes
4 M, 112 Yes M, Yes
5 M, 98 Yes M, Yes
“6 M, 105 Yes M, Yes
7 M, 83 No M, Yes
8 M, 97 Yes M, Yes
9 M, 114 Yes M Yes
10 M, 119 Yes M, Yes
Mean 102.4
TABLE 3.15. (cont)
Model M,, (trap-shy case), N=100

Model Model Used Goodness

Repetition Selected N  Coverage For Estimation  Of Fit
1 M, 99 Yes M, Yes

2 M, 101 Yes M, Yes

3 M, 99 Yes M, Yes

4 Mg 103 Yes My Yes

5 M, 96 Yes M, Yes

6 M, 99 Yes My Yes

7 M, 98 Yes M, Yes

8 M, 96 Yes M, Yes

9 M, 99 Yes M, Yes
10 Myn 104 Yes My Yes

Mean 99.4
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TABLE 3.15. (cont)

Model M,, N = 200

Model Model Used Goodness
Repetition Selected N Coverage For Estimation  Of Fit
1 M, 215 Yes M, Yes
2 M, 211 Yes M, Yes
3 M, 207 Yes M, Yes
4 M, 198 Yes M, Yes
5 M, 181 No M,, Yes
6 M, 203 Yes M, Yes
7 M, 215 Yes M, Yes
8 M, 197 Yes M, Yes
9 M, 209 ~ Yes M, Yes
10 M, 229 No M, Yes
Mean 206.5

TABLE 3.15. (cont)

Model M,,, (trap-shy case), N=200

Model Model Used Goodness

Repetition Selected N Coverage For Estimation  Of Fit
1 My 192 Yes My Yes
2 M, 219 Yes M, Yes
3 M, 191 Yes M, Yes
4 Mo 179 No My Yes
5 M, 181 No M, Yes
6 M, 186 No M, Yes
7 M, 182 No M, Yes
8 Moy 188 No M, Yes
9 My, 189 No Mo Yes
10 M 254 Yes . Myn Yes

o
=

Mean 196.1




TABLE 3.15. (cont)

Model M,,, N = 200

Model Model Used Goodness
Repetition Selected N Coverage For Estimation Of Fit
1 M, 177 No M, Yes
2 M, 179 No M, Yes
3 M, 179 No M, Yes
4 M., 188 Yes M, No
5 M., 176 No M, Yes
6 M, 175 No M, Yes
7 M, 170 No M, Yes
8 M, 176 No M, Yes
9 Mg, 190 Yes M, Yes
10 M, 178 No M, Yes
Mean 178.8

TABLE 3.15. (cont)

Model M,,, N = 150

=
=3
-

Model Model Used Goodness
Repetition  Selected N Coverage For Estimation  Of Fit
1 M, 207 No M, Yes
2 M, 208 No M, Yes
3 M., 192 No M, Yes
4 M, 221 No M, Yes
5 M., 145 Yes M, Yes
6 M, 207 No M, Yes
7 My, 149 Yes M, No
8 M, 182 Yes M, Yes
9 M., 236 No M, Yes
10 M 182 No M Yes

Mean 192.8




26

TABLE 3.15. (cont)

Model M,,, N = 200

Model Model Used Goodness

Repetition  Selected N Coverage For Estimation Of Fit

1 Mon 186 Yes My ~ No

2 Miph 174 No My, " No

3 Meon 174 No My No

4 Mon 179 No "My No

5 M., 175 No Mo No

6 Mipn 177 No My, No -

7 Meon 169 No My Yes

'8 M, 216 Yes My No

9 M,, 194 Yes . M No

10 M., 175 "No Men Yes

Mean 181.8

of 10 times Model M, was selected and that Model M, was not rejected by the goodness of fit test. This is
just one example; the model selection procedure often will do better, even for Model M,,.

These results illustrate a general truth: the goodness of fit test for Model M, has low power. That is,
even when Model M, is false, this goodness of fit test does not have a large probability of rejecting Model
M,. (This is a type II error: failure to reject a false null hypothesis). The low power of the Model M,
goodness of fit test must be kept in mind when the adequacy of Model M, is judged, especially when the
selection criteria suggest a model such as My, My, or My,;,. Then it will often be best, if an estimator must
be computed, to take Model M, or My, rather than M,, unless M, has a selection criterion very close to 1.

Testing for Closure

We have emphasized the need to make assumptions explicit and to test those assumptions. All of the
models we have presented assume closure. Thus, it is natural and appropriate to want a statistical test of
the closure assumption. Unfortunately, such a test is impossible. The problem is that true failure of
closure cannot be distinguished from behavioral changes in capture probabilities or from certain patterns
of time-varying capture probabilities. Thus, only when we assume that either Model M, or Model M, is
the underlying model (the null hypothesis), can we test for closure. Pollock et al. (1974) present a test for
closure assuming Model M, is the null hypothesis. Otis et al. (1978:66-87, 120-121) present a test for
closure assuming Model M, is the null hypothesis. We emphasize that neither test is valid if closure is true
but a different model holds, such as M, or M,,,. Program CAPTURE however, computes the closure test
assuming Model M, is the null hypothesis. ‘ ‘

For all simulation examples in this chapter, the closure test in CAPTURE was performed. That test is
one of the first items presented by CAPTURE. The results for the example data case of simulating Model
M, (wherein p = 0.3) are shown in Fig. 3.26. The closure test statistic has a standard normal distribution
under the null hypothesis, which is Model M, and closure. As expected under Model M, the closure test
does not reject the null hypothesis: z =—0.328 and P = 0.37145. A partitioned version of this closure test
is computed for subsets of the data defined by frequencies of capture. However, both the partitioned
version and the overall closure test should be ignored because of serious problems in their interpretation.

The results of the closure test for the first simulation repetition of Model M,, the trap-happy case (p =
0.25, ¢ = 0.55), are given in Fig. 3.27. The test rejects the null hypothesis of population closure: z =



OVERALL TEST RESULTS --

Z-VALUE -.328
PROBABILITY OF A SMALLER VALUE 0.37145 Fig. 3.26. Results of the closure test for the first simulation
case of Model M,. Under the null hypothesis of either Model
M, or M, (only) and closure, the computed z-value has a
standard normal distribution. The program gives the observed

significance level of the test, P = 0.37145 in this example.

TEST OF CLOSURE BY FREQUENCY OF CAPTURE.
(FREQUENCIES LESS THAN 10 ARE NOT COMPUTED.)

NUMBER OF CAPTURES Z-VALUE PROBABILITY

2, 0.285 0.6l214%

OVERALL TEST RESULTS --
Z-VALUE -3.010

PROBABILITY OF A SMALLER VALUE 0.00131 Fig. 3.27. Results of the closure test for the first simulation
) case of Model M,, trap-happy case. Closure is true, but the
TEST OF CLOSURE BY FREQUENGY OF CAPTURE. test cannot distinguish failure of closure from behavioral
(FREQUENCIES'LESS THAN 10 ARE NOT COMPUTED.) change in capture probabilities. The test rejects the null
NUMBER OF CAPTURES Z-VALUE PROBABILITY hypothesis (P = 0.00131) because of this behavioral response.

2 -1.494 . 0.06758

3 -1.988 0.02341

y -1.246 0.10647

5 -1.215 0:11216

—3.01 and P =:0.00131. In fact the population is closed, but the test is “reacting”. to the behavioral
change in capture probabilities, which “looks” like recruitment.

In all, for examples in this chapter, we simulated 10 repetitions of 9 models (two cases of Model M,).
For Models M, and M,, the closure test did not reject the model even once at the 5% significance level.
This result is not strange, given that only 20 tests were made and that the test is valid for these two
models. But for the 70 remaining simulations, the closure test rejected the model 23 times at the 5%
significance level; of course, closure was really true in all these cases. The number of rejections
corresponds to a 33% rejection rate, when it should be 5%, and illustrates that this closure test is invalid
whenever time or behavior affects’capture probabilities. We emphasize that this problem is fundamental;
no valid statistical test of closure can be constructed on the basis of only the capture-recapture data.

Summary

1. There are three critical considerations in constructing capture-recapture models: what population
size N means (this relates to geographic closure), whether the model should be demographically closed or
open, and how to model capture probabilities.

2. Ball and urn models have motivated most of the thinking about capture—recapture models. Ho§vever,
in real populations, capture probabilities vary and there is no analogy to the sides of the urn.

3. We have not dealt with the case of t = 2 because we cannot test any assumptions in this case, and it
is covered adequately in the literature. ’

4. Models are based on the concept of capture probabilities: p;j = the probability of capturing the i*®
animal (in the population at risk of capture) on the j'" sampling occasion.

5. Three factors can affect capture probabilities: time effects, behavioral response to capture, and innate
heterogeneity (that is, variations among individuals in capture probabilities). On the basis of the three
factors, eight different basic models for closed-population capture-recapture studies are presented (see

97



98

Table 3.12 and Fig. 3.16). The reader should be able to name these models and describe their nature
before proceeding to the next chapters.

6. The biological literature clearly shows that heterogeneity and behavioral effects on capture
probabilities are common.

7. Five of the eight models have associated estimators; only the jackknife estimator, which was derived
originally for Model M,, exists as a simple algebraic formula. All other estimators require a numerical
computer solution of complicated equations. The reader should be able to name the estimators and their
associated models and should know which three models have no estimator.

8. When Model M, is true, there will be time variation in average daily capture probabilities, and there
will be a type of heterogeneity of capture probabilities after day 1. This will cause difficulty in selecting
the correct model.

9. Seven tests of assumptions about capture probabilities are presented in Table 3.13. A mathematical
model selection procedure based on the tests produces eight normalized selection criteria. At least one
criterion will be equal to 1, thereby indicating the appropriate model for the data.

10. If the selected model has no estimator, then there is apparently no valid estimator for those data. One
can, however, select the most appropriate remaining model that has an estimator and use it to estimate N.
The result is likely to be a biased estimate.

11. The estimator for Model M, (the Jackkmfe Nh) is the most robust of the five estimators, followed by
Nons Ny Ny, and N,. Also, in practice N, always can be used, rather than N,

12. The full-blown procedure of doing all seven tests, and then selecting the model leads to a robust
estimation procedure for good capture-recapture data on closed populations.

13. A valid test of closure cannot be devised because behavioral responses and time trends in capture
probabilities cannot be distinguished from failure of closure.

Questions and Exercises

1. Is equal probability of capture usually attainable in field studies, if enough traps are available and
trapping is done for at least 4 days?

2. Are most capture-recapture and removal models used to estimate N sensitive (not robust) to failure of
assumptions regarding capture probabilities?

3. If you get no recaptures in a live-trapping study, can you estimate N using a capture-recapture
method?

4. Are capture-recapture. methods useful for very small populations such as condors or whooping
cranes? »

5. Can N be estimated if the study is conducted for only one trapping occasion; that is, if t = 1?

6. ‘Are testing and model selection possible if t = 27

7. If you mark animals by trapping and “recapture” them by hunting (t = 2), what model is likely to
apply? Is this a reasonable type of study?

8. The daily capture probability of an individual animal may be refated to which of the following: home
range size, social dominance, innate activeness of the animal, trap spacing, or number of days of
trapping?



10.

11.
12.
13.

14.

. If you trap within the same fixed area with 100 traps on days 1, 2, and 3, then with 150 traps on days 4,

5, and 6, and finally with 200 traps on days 7, 8, and 9, can Model M, fit the data? Can Model M., M,,
or M, fit the data?

The capture probability p (say, in Model M) is which of the following?

a. The probability that a trap will catch an animal,

b. The probability that an individual animal will be caught on a given trapping occasion,

¢. The probability that an individual animal will be caught at least once during the study.

Will ML estimators of N be developed for Models M,,, M,,, and M,,,,?

Is Model M, robust in trap-shy populations?

If the model selection criteria are the same for Models M, and M,, why do we recommend selecting
Model M, as the basis for estimating N?

Is it just a matter of time until a general, completely valid test for closure is developed?
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This deer mouse (Peromyscus maniculatus) is about to be
captured in a Sherman live trap. (Photograph by Gary White.)

House mice (Mus musculus) should be handled with gloves to
protect the investigator and the animal. Improper handling of
the captured animals can change recapture probabilities due to
injuries or behavioral response. (Photograph courtesy of
Harry Coulombe.)
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Plastic bags provide an easy method to handle small mam-
mals, as long as they are not left in the bag too long. The
animal is dumped from the trap directly into the bag.

(Photograph by Gary White.)

Nail clippers are convenient for marking the toes of small
mammals. Note how the animal has been grasped by the scruff
of the neck through the plastic bag. (Photograph courtesy of
David Mclnroy.)



