CHAPTER 4
REMOVAL METHODS

When our goal is to estimate population size, it is logical to want to do a one-time only, 100% count of
the population. In theory, a 100% count can be achieved by a removal study; that is, as each individual is
caught it is removed from the population, either permanently or for the duration of the study. Thus,
additional captures must represent different individuals. By extending the capture effort until no more
individuals are caught, we should obtain a 100% count. Unfortunately, there are practical problems with
this approach, just as there are with the capture-recapture method. In this chapter we discuss the
modeling, data analysis, and advantages and disadvantages of the constant-effort removal method.

Electrofishing in ponds, small lakes, or small streams with a flow of only 0.1 to 1 cubic meters per
second is the most common example of the removal method. For an introduction to the literature on this
subject see Friedman (1974), and Seber (1982). Usually, the fish are not killed; rather, they are removed
when they are caught, held until the end of the several removal passes, and then returned to the pond,
lake, or stream. One removal occasion usually consists of a complete pass, going first upstream and then
downstream in the study area. At least two such passes should be made, and we maintain that three or
more are necessary unless the efficiency of the gear is very high-—that is, unless the capture probability is
0.8 or more on each pass. Equal effort is required on each pass for the models presented here. In the
optimal situation, 100% of the fish are removed in the first pass; the second pass is made to verify that all
fish have been counted. In practice, capture probabilities as high as 0.8 are uncommon (although this may
be a reflection of the electrofishing gear in use), and significant numbers of fish will be caught on the
second and subsequent passes.

Removal sampling of small mammals is usually accomplished with snap traps. However, simply
removing live-trapped animals from the area would suffice. In fact, neither removal from the area nor kill
trapping is necessary to apply removal analysis methods to trapping data for small mammals. Initially, all
animals in the population at risk of capture are unmarked, or their marks are known to be from an earlier
trapping effort. Animals can be captured, marked, and released, and we can think of them as removed
from the unmarked population segment; Seber (1973:323) has referred to this approach as “removal by
marking.” Thus, by using only first captures in a live-trapping study, we can analyze the data as a
removal study.

The removal method circumvents any behavioral response to trapping during the study. (We define
behavioral response as a change in capture probability after, and as a result of, first capture.) In fact, as
mentioned in Chapter 3, the data from capture-recapture models M, and M,, are properly analyzed as
removal studies because of this dominant behavior effect. If killing the animal is tolerable, a removal
study on small mammals is quicker and cheaper than a live-trapping study. No tags are needed, kill traps
are cheaper, handling the animals is easier, and on successive occasions fewer animals are caught so less
field time is required. :

The immediate and major disadvantage of physically removing the animals is that geographic closure
is usually violated—after a few days, individuals originally too far from the grid to have been caught will
start moving into the area vacated by the removals. Also, there is the obvious disruption of the local
population, so the method is not suitable for studies to be repeated in the near future.
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Electrofishing in a Virginia stream. Notice the generator in the boat and the lead to an electrode. (Photograph courtesy of R. F.
Raleigh.)

A net is used to close off the lower end of the sampled stream
Working the two electrodes during electrofishing in a Virginia during electrofishing in a Virginia stream. (Photograph
stream. (Photograph courtesy of R. F. Raleigh.) courtesy of R. F. Raleigh.)
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The Removal Model, Assuming Constant Capture Probability

The Model and Its Assumptions. In the simplest removal model, every individual has an equal
and constant probability of capture on all removal, or capture, occasions. This is the model most often
encountered in the literature (Hayne 1949a; Moran 1951; Zippin 1956, 1958; Seber and Whale 1970,
Otis et al. 1978:28-32, 107-108; and Seber 1982). To illustrate the model, we consider a population of
size N = 625, with every individual having an independent, unchanging probability of capture of p = 0.4.
On the first capture occasion, the expected number of captures is 250 (= 625 X 0.4), which leaves 60% of
the population (375) uncaught. On the second occasion, the expected number of captures is 40% of the
remaining 375 animals, or 150 (= 375 X 0.4). The expected (average) data from four capture occasions
shown in Table 4.1 continue the argument. Even after four occasions, we can expect an average of 81
individuals to remain uncaught.

This model has only two parameters: population size N and capture probability p. The only data from
removal sampling are the numbers of captures on each of t capture occasions; we let u,, ..., u, represent
these data. If E(u;), j = 1, .. ., t represents the expected (average) number of captures on occasion j, the
constant-effort removal model for E(u, ) is

E(y;) = N(1 —p)'p, i=1 ...t

Thus, E(u,) = Np for occasion 1; E(u,) = N(1 — p)p for occasion 2; and E(u,) = N(1 — p)*'p for the final
occasion. Our understanding of this model can be tested by computing the elements of Table 4.1. For
example, E(u,) = 625(1 — 0.4)*0.4) = 625 X 0.216 X 0.4 = 54.

The contributions made to removal sampling and analy-
sis methods by P. A. P. Moran were somewhat fortuitous.
After World War II, he worked at the Institute of Statistics
at Oxford. The Institute was housed in the same quarters
as the Bureau of Animal Population under Charles Elton.
Moran, through friendships with both Elton and P. H.
Leslie, became interested in animal populations and esti-
mation in removal experiments.

Moran was born in 1917 and educated at the Univer-
sities of Sydney and Cambridge. His interests over the past
30 years have turned in other directions. He is currently in
the Statistics Department at the Australian National
University, Canberra, Australian Capital Territory. (Re-
cent photograph.)

P. A. P. Moran
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TABLE 4.1. . Expected (average) results of a removal
study on a population of size N = 625 with equal,
independent capture probability of p = 0.4 for all
individuals and t = 4 removal occasions.

Removal  Population Number
Occasion, Size AtStart Expected Number Not Yet
j Of Occasion Captured, E(j) Caught

1 625 250 375
2 375 150 225
3 225 90 135
4 135 54 81

The assumption of equal effort is necessary if the capture probability is to be the same on every capture
occasion. In electrofishing studies, the equal effort requirement demands the use of a standardized
technique on each occasion. It is especially important to prevent a letdown of effort after the first pass. In
trapping small mammals, the same number of operating traps is required on each occasion, and the same
length of time must intervene between setting the traps and checking them on each occasion.

~The usual assumption for removal studies does not allow heterogeneity of capture probabilities. That
is, there can be no innate differences in capture probabilities. However, the assumption fails to some
extent in electrofishing because capture probabilities are related to the size of the fish. In trapping small
mammals, capture probabilities may vary by species, age, or sex of animals. In both types of studies, a
solution to the problem is to separate the data by size-class of fish (within broad limits) or by species, age,
or sex of animal and to analyze each data subset separately. An example showing a partitioning of data
by the sex of the animal appears in Chapter 6.

Some Simulated Data. In real applications, the data are subject to sampling variations; therefore,
the numbers of animals captured will not decrease as smoothly as those shown in Table 4.1. An actual
application is more likely to produce results like those shown in Table 4.2, where simulated data are
given, based on the same model as Table 4.1 (N = 625 and p = 0.4). The numbers caught are not
calculated in a deterministic manner; rather, they are the realization of a random process. For example,
on the first occasion the number caught is a random (binomial) variable with an expected value of 250
(= N X p) and a sampling variance of 150 [N X p X (1 — p)]. Hence, the captures on the first occasion
have a sampling standard deviation of 12.2 (= 4/150). Thus, for reasons rooted in mathematical
statistics, we expect the number of individuals caught on the first occasion to fall between about 225 and

TABLE 4.2. A simulated instance of removal dataona
population of N = 625 with equal, independent capture
probability of p.= 0.4 for all individuals andt = 4 removal

occasions.

Removal  Population Number Number

Occasion, Size At Start Captured, Not Yet
j Of Occasion Y Caught
1 625 260 365
2 365 141 224
3 224 97 127
4 127 50 77




275. With a more detailed analysis of this statistical model, we can predict the properties of the data for
any values of N, p, and t.

Estimation for the Case t = 2. Given removal data like those shown in Table 4.2, we need an
estimator of N. An acceptable, simple,' closed-form estimator is available only for data from two t=2)
occasions; it is not, however, the maximum likelihood (ML) estimator. For three or more occasions,
efficient estimation becomes more complicated. We recommend using the exact ML estimator of N for
any value of t. We also strongly recommend at least three sampling occasions, because the model’s basic
assumption (equal capture probability on every occasion) cannot be tested if t = 2. Of course, if capture
probabilities are around 0.95, or even 0.9, two occasions will suffice, but such high capture probabilities
are rarely achieved.

Because the ML estimator does not exist in closed form, numerical iterative techniques are required to
compute it, even for t = 2. Program CAPTURE is available to perform these computations; we
recommend that biologists use it to obtain the exact ML estimates for use with removal data.

For t = 2, a good approximation to the exact ML estimator is

U,y

N=—u0=="
1 — (u,/u,)

@.1)

Using the “data” of Table 4.1 to illustrate this formula, we have u, = 250, u, = 150, and hence

250
1 — (150/250)

250

N =

= e

04
=625

In this example we obtain the exact result of 625 because the data are the expected (average) numbers
of removals under the model with N = 625 and p = 0.4. That is, they are not real data, subject to random
variation. Using the simulated data of Table 4.2, we have u, = 260, u, = 141, and hence

260
1 — (141/260)

260
1 — 0.542
260

T 0.458

N =

= 568 .

A formula for estimating the sampling variance of the estimator in Eq. (4.1) is given in Ofis et al.
(1978:108). This estimate is computed automatically by program CAPTURE for t > 2. For the above
example, the estimated sampling variance of Nis 2687.2 [= ¥ar(N)]. The estimated standard error of N is
thus $e(N) = 51.8 (= /2 687.2). Finally, for this example, an approximate 95% confidence interval on
the true population size N is 568 + 1.96 X 51.8, or 466 to 670. The parameter p also has a simple
estimator for the case t = 2. In fact, p = 1 — (u,/u,); thus, in the above example, p = 0.458.
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Figure 4.1 shows part of the output from program CAPTURE, giving the ML estimate for the same
example with t = 2. In the figure, the ML estimates are p = 0.463605 and N = 562. (Two significant
digits suffice in reporting such results.) These results are only slightly different from those of the
closed-form formulas (Eq. 4.1). In the same figure, the estimated sampling standard error of the ML
estimate of N is 50.0; in comparison, the estimated sampling error of the estimate of N derived from Eq.
(4.1) is 51.8. The same formula is used to estimate the standard errors of both the N given by Eq. (4.1)
and the ML estimate of N computed by CAPTURE. These sampling variance estimates are different only
because the estimates of N and p differ slightly when the exact ML estimate is used instead of the
closed-form formula.

We do not deal with the instance of only two removals in greater detail because we recommend using
three or more capture occasions for two reasons: (1) three or more occasions are required to test the
assumption of constant capture probability (that is, to perform a goodness of fit test of the model), and (2)
a large gain in precision is achieved by making the extra effort of one or two additional passes. The case
of two removals has been studied in considerable detail (see for example, Seber and Whale 1970; Seber
1982).

Estimation and Goodness of Fit Testing for Three or More Capture Occasions

We can recommend no closed-form estimators of N and p for t > 3. Figure 4.2 presents output from
CAPTURE giving the ML estimates for the complete removal data of Table 4.2; that is, t = 4 rather than
t = 2. In Fig. 4.2, p = 0.413609, N = 621, and the estimated standard error for N is 16.9401. Contrast
these results with those for t = 2 in Fig. 4.1, especially the substantial improvement in premsxon whent =
4. From Fig. 4.1, we see that $e(N) = 49.95 for t = 2, whereas from Fig. 4.2, we find that se(N) = 16.94
for t = 4. This change is a threefold improvement in precision of the estimate of N and is apparent in the
point estimates of N. The true value of N is 625. For t = 2, N = 562 and the error is —63, but for t = 4,
N = 621 and the error is only —4. In both examples, the approximate 95% confidence interval includes
the true value of 625. The gain in precision with four capture occasions is substantial when capture
probability is less than (about) 0.7, as this example illustrates.

If three or more capture occasions are used, there is a goodness of fit test for this constant capture
probability model. It is a chi-square test of form (Observed — Expected)’/Expected, and Program
CAPTURE computes this test. For the full data of Table 4.2, the test statistic value is 1.568 (based on 2
df); if the model is true, the probability of a value this large or larger is 0.4567. We conclude that the
constant capture probability model fits the data of Table 4.2.

OCCASION J= 12

TOTAL CAUGHT  M(J)= 0 260 40i . .

NEWLY CAUGHT  UtJ)= 260 141 Fig. 4.1. Exact ML estimate of N as computed by
CAPTU ing th W ions i

ESTIMATED PROBABILITY OF CAPTURE, P-HAT = - 0.463605 RE by using ¢ © first two capture occastons n
Table 4.2. The data are simulated from a true population

. of size N = 625 and p = 0.4.

POPULAT [ON ESTIMATE IS 562 WITH STANDARD ERROR  49.9536

APPROXIMATE 95 PERCENT CONFIDENCE INTERVALS ue4 TO 660

OCCASION J= 12 3 u

TOTAL CAUGHT  M(J)= 0 260 01 498 548

NEHLY CAUGHT . UlJ)= 260 141 87 50 Fig. 4.2. Exact ML estimate of N as computed by using

ESTIMATED PROBABILITY OF CAPTURE, P-HAT =  0.413609 all four capture occasions in Table 4.2. The data are
simulated from a true population of size N = 625 and p=
0.4.

POPULATION ESTIMATE 1S 621 WITH STANDARD ERROR  16.9401

APPROXIMATE 95 PERCENT CONFIDENCE INTERVALS 587 10 655



Given the output of Fig. 4.2, we can compute the goodness of fit test on a hand calculator; we illustrate
the computation as follows. First, we compute the estimated expected number of captures on each
occasion; the formula is

E(ul) = Nf’
and
E() = N(1 - p)Hp, forj>1,

where N and p are the ML estimates of N and p. From Fig. 4.2, N = 621 and p = 0.414. (Three-digit
accuracy is sufficient for these computations.) For this example,

E(u,) = 621 X 0.414 = 257.1,

E(u,) = 621 X (1 — 0.414) X 0.414 = 150.7,

E(u;) = 621 X (1 — 0.414)* X 0.414 = 88.3,
and

E(u,) = 621 x (1 — 0.414)° X 0414 = 51.7,

The quantity [u; — E(uj)]z/ﬁ(uj) is then computed for each capture occasion (j = 1, 2, 3, 4 in this
example). For example, for j = 1 we have (260 — 257.1)’/257.1 = 0.0327. For j=2,3, and 4 the
corresponding results are 0.6244, 0.8572, and 0.0559. The sum of these four values is the goodness of fit
test statistic. For this example, the sum is 1.570. The test statistic is printed by CAPTURE, along with
other information, as part of the “generalized removal method” discussed below, for reasons related to
the overall structure and logic of program CAPTURE.

If the constant capture probability model fits the data perfectly, the test statistic value will be zero. The
poorer the fit of the model to the data, the larger the test statistic value. To judge the fit or lack of fit, we
need to know the probability that the test statistic value will be as large as, or larger than, the observed
value (such as 1.570) given that the constant capture probability model is true. This observed
“significance level” is computed by program CAPTURE (see Fig. 2.9). In the example given above from
Fig. 4.2, the probability of an observed test statistic value exceeding 1.570 is 0.4567. Thus, this test
statistic is not unusually large, and we conclude that the model adequately fits the data. For philosophical
reasons, we do not conclude that the model is a true representation of the real world underlying this
study, only that the model fits the data.

Another Simulation Example

To illustrate the sampling variability of data and parameter estimates under even this simple, constant
capture probability model, we generated 10 independent replications for the situation N = 200, p = 0.20,
and t = 5. Table 4.3 shows the actual captures, the resultant ML estimates of N and p, and the
(approximate) 95% confidence interval limits.

Table 4.3 shows that the estimates of N are quite variable (as are the actual removals from replicate to
replicate): N ranges from 169 to 249. The average N from these 10 replications is 206, which is close to
the true value of N = 200. Of the 10 confidence intervals, only the one for replicate 9 does not cover the
true value of N. These results illustrate the variable nature of the data and estimators, even when the
underlying model is known to be true.
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TABLE 4.3. Resuits of 10 independent replications of the constant capture probability
removal model withN = 200,p = 0.20,andt = 5. Notice that N varies from 169 to 249;
this sampling variation is to be expected under this model. Notice also that all the
confidence intervals except replicate 9 cover the true value of N.

95% Confidence
Replicate  u, u, u, U, u, N(se(N)) p Interval Limits

1 37 36 31 15 18 200(30.7) 0.205 139 261
2 38 29 31 22 20 249(61.1) 0.152 129 369
3 43 33 30 20 18  209(30.6) 0.208 149 269
4 33 29 34 18 16 215(46.2) 0.169 124 306
5 48 34 25 21 22 219(31.9) 0.206 156 282
6 45 36 28 19 16 191(20.2) 0.243 149 233
7 37 25 32 23 14 209(41.4) 0.178 127 291
8 42 25 31 19 20 220(42.9) 0177 135 305
9 55 30 29 15 15 179(12.6) 0.300 154 204
10 39 26 27 14 16 169(23.0) 0.225 123 215
Averages 417 30.3 298 186 17,5 206.0 0.206 137.9 272.9

In practice there is only one repetition. It is important to recognize that innate sampling variability will
occur and that the results of any study are just one of many possible outcomes. Thus the computed
estimate N cannot be expected. to equal the true N. The sampling variability of N must be recognized and
estimated. Moreover, it is also important to present a confidence interval on N that will express a likely
range of values for the true population size.

There is another point to be made. In this example, we used a capture probability of 0.2. This value is
at the low end of the scale of acceptable capture probabilities required to get precise and unbiased
population estimates from removal studies. The larger the capture probability, the more precise will be N;
that is, the lower will be the sampling variability. We recommend p > 0.4 for really good results in the
typical removal study, having N of a few hundred and t = 3 to 6.

Failure of Removal Experiments

The basis for estimating population size in removal experiments is that the population size is reduced
significantly on each sampling occasion. The number of animals caught should tend to diminish: u, > u,
> u,, and so on. If no depletion is realized, the experiment is said to “fail”’; that is, unless the number
caught tends to decrease, the model parameters cannot be estimated. Seber and Whale (1970) showed
that N and p can be estimated from data when the following “failure criterion” is satisfied:

t

Z(t+1—2_,)uj>0

=1

If the criterion is just barely satisfied, the point estimators and their sampling variance will have very poor
properties. Failure of removal experiments can be avoided by conducting the sampling so that p is as
large as possible.



Generalized Removal Method

The Basic Idea. The constant capture probability model does not always fit removal data. An
example from Otis et al. (1978:46-48) illustrates the problem. The removal data, given in Fig. 4.3, are
from Andrezejewski and Jezierski (1966). They were estimating population densities of the European
hare by using drive trapping. From Fig. 4.3 we see that u; = 722, then u, drops off sharply to 191. After
that, the drop-off in removals is much less severe. The pattern suggests that the constant capture
probability model does not fit these data. The chi-square goodness of fit test confirms this suspicion; from
Fig. 4.3 the goodness of fit test value for the constant capture probability model is 13.150, with a
significance level of 0.0014. This significance level means that there is only a probability of 0.0014 that a
chi-square test statistic value this large, or larger, would result if in fact the constant capture probability
model were the true model for these data. Therefore, we are justified in rejecting this model and
concluding that it is not valid for these data.

Having rejected the constant capture probability model as providing a good fit, we must either base the
estimate of population size on a different model or accept the estimate from a model that does not fit.
Sometimes the point estimate of N is useful, even when the model does not fit, but we should never feel
comfortable in those circumstances. The sampling variance will be poor and usually will be
underestimated. ‘

If the constant capture probability model does not fit, we must generalize it—that is, make it more
flexible by allowing some degree of unequal capture probabilities. The most general removal model would
allow a different (average) capture probability to apply to the uncaught animals still in the population on
each capture occasion. Such a model would have t + | parameters: N = population size and p; = capture
probability applicable to the N — (u, +... + u,_,;) remaining individuals at the start of occasion j for j =
1 to t. However, with only t pieces of data (u,, ..., u) we cannot estimate t + 1 parameters. This model
is too general to be of any use. Some reduction in the number of parameters is necessary—for example,
by assuming a relation between the capture probabilities p,, . . ., p.. The constant capture probability
model assumes p, =p, =...=p, =p.

The two possible generic sources of variation in the capture probabilities p,, . . ., p, are variation
associated with time (or capture occasion) and variation intrinsic in the capture probabilities of
individuals. The latter source we call “heterogeneity” (Chapter 1). Both types have been discussed with
reference to capture-recapture studies (Chapter 3). Note that in a removal study, there can be no
behavioral variation in capture probabilities of the type defined and discussed in Chapter 3. If the capture
probabilities vary because of heterogeneity, a generalized removal model is pogsible; however, we know
of no way to deal with time variation in a removal study. Therefore, we must conduct the study so as to
minimize any time variation in capture probabilities. In electrofishing studies, a standardized method

OCCASION J= 1 2 3 4
TOTAL CAUGHT MU= 0 722 913 982 1018
NEWLY CAUGHT utJdy= 722 191 69 36

K N-HAT SE(N) CHI-SQ. PROB. ESTIMATED P-BAR(J) ,J=1,..., 4

! 1028.21 3.789703 13.150 0.0014% 0.6806 0.6806 0.6806 0.6806
2 1039.10 7.658751 1.528 G.2164 0.8948 0.5916 0.5916 0.58186
POPULATION ESTIMATE IS 1039 WITH STANDARD ERROR 7.6588
APPROXIMATE 95 PERCENT CONF IDENCE "INTERVAL 1083 10 1055

Fig. 4.3. Removal data on hares from Andrezejewski and Jezierski (1966). The data are from an actual field study with four
removal occasions; true N is not known. The generalized removal estimator has been applied. For k = I removal occasions,
the model is the constant capture probability model. In the generalized removal method, k represents the number of
different capture probability parameters in the model. '
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In electrofishing, larger fish have greater capture probabilities.

must be used on each occasion. In small-mammal trapping, the method must be standardized and
trapping must be done during constant environmental conditions.

Intrinsic variation in capture probabilities has been demonstrated for electrofishing by Cross and Scott
(1975) and Bohlin and Sundstrom (1977). This means that capture probabilities vary even within size or
age classes of fish. Intrinsic variation also is well documented in trapping studies of small mammals.

As an extreme, hypothetical example of heterogeneity, imagine a population of 200 in which 50
individuals have a capture probability of 1.0, and 150 individuals have a capture probability of 0.5. On
the first occasion, all 50 individuals with a capture probability of 1.0 will be caught, that is, removed.
Also, on the average, 75 of the 150 individuals with a capture probability of 0.5 will be caught, leaving 75
individuals each with a capture probability of 0.5. Thus, on and after occasion 2, the constant capture
probability model becomes valid. But on the first occasion the average capture probability for the
population is 0.625 [= (1 X 50 + 0.5 X 150)/200]. If the constant capture probability model is applied to
removal data from such a population, N will be underestimated. (Numerous empirical studies of the
removal method on ponds and small lakes have shown that N usually is underestimated.)

If heterogeneity is present, there is a tendency for the individuals with higher capture probabilities to be
caught before the individuals with lower capture probabilities. This tendency causes a decrease in
successive capture probabilities. Thus, we expect that p, > p, > p; > . .. > D, In the above extreme
example, p, = 0.6250, but p, = p, =. .. = p, = 0.5. A less extreme example is a population size of 200,
composed of four 50-member subpopulations, with the respective capture probabilities 0.8, 0.6, 0.4, and
0.2. For five removal occasions, we would have p, = 0.5000, p, = 0.4000, p; = 0.3333, p, = 0.2920, and
ps = 0.2655. This example illustrates the expected sequence of removal probabilities applicable to each
occasion under the assumption of heterogeneity within the population. The p;’s decrease, but tend to level
off. Thus, although the difference between p, and p, is 0.1, the difference between p, and p; is only
0.0265. In the absence of specific information about the values of these capture probabilities, a logical



modeling approach is to allow the first few py’s to differ, but thereafter to assume that P1 =Djpr=...=

P In so doing, we seek only an adequate fit to the data, not a perfect model, and we make no
assumptions about how the p;’s decrease.

Examples of the Generalized Removal Model. Otis er al. (1978:44-50) presented a
generalized removal method that implements the ideas presented here (see also Skalski and Robson
1979). The method involves fitting successively more general removal models, starting with the constant
capture probability model, until an adequate fit to the data is found. (The method has some similarities to
step-wise regression.) The second model of the sequence allows the capture probability for the first
capture occasion to differ from the capture probabilities on the second and subsequent occasions. Thus,
the parameters for the second model are N, p,, and p(=p, =...= py- Specifically, this model has two
capture probability parameters.

The results of the second model are presented in Fig. 4.3 in the k = 2 row, and the results for the
constant capture probability model are presented in the k = 1 row. (The value of k is the number of
different capture probability parameters in the model.) For k = I, the constant capture probability model
does not fit (P = 0.0014), but for k = 2 the chi-square goodness of fit statistic is 1.528, with P = 0.2164.
We judge that the second model fits these data adequately, and hence we use it as the basis for estimating
N. Consequently, we take N = 1039, with a standard error of 7.66 and a confidence interval of 1023 to
1055.

The estimator of N used with this generalized removal model (k = 2 in the above example) is the ML
estimator. Details of its theory and computation are found in Otis et al. (1978:40-43,45-50, 112-1 14).

Douglas Robson has been interested in capture-recap-
ture and removal sampling since the early 1950s and has
published more than 20 papers on many aspects in this
area. Born in North Dakota, he took a B.S. degree in
statistics from Iowa State University, received M.S. and
Ph.D. degrees from Cornell University in statistics, and
has had professional experience at the University of
Washington, Princeton University, and Colorado State
University. He has been Professor of Biological Statistics
at Cornell since 1963.

Robson’s  contributions to capture-recapture have
ranged from fairly theoretical to very applied work, for
example, sample size estimation. His most recent interests
lie in the estimation of survival rates in open-population
models and in removal experiments. Robson certainly has
been one of the leading contributors to the development of
testing and estimation techniques in capture-type studies.
He has worked with a host of other people contributing to
the general theory, including C. Brownie, D. G. Chapman,
R. M. Cormack, G. J. Paulik, K. H. Pollock, and H. A.
Reiger. (Recent photograph.)

Douglas S. Robson
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Two types of traps can be used at the same station to catch
small mouse-sized mammals (left trap), and larger chipmunk-
sized mammals (right trap). (Photograph courtesy of Robert
Streeter.)

Larger mammals can be captured in wire live traps such as the
one shown. (Photograph courtesy of Raymond Greenwood
and Alan Sargeant.)

The basic assumption behind this generalized removal model is that of heterogeneity of capture
probabilities in the sampled population. This should result in p, being less than p;. Program CAPTURE
prints the ML estimator of the distinct capture probabilities in each generalized removal model. From Fig.
4.3 for row k = 1, there is only one distinct capture probability, thus p, = p, = p; = p, = p = 0.6806.
However, for the next more general model (on row k = 2), p, = 0.6948 and p, = p, = p, = p =0.5916.
Thus, after the first capture occasion the estimated average capture probability of hares still uncaught is
0.6, rather than 0.7. We interpret this change to be a result of an innate heterogeneity existing in the
population and the tendency for more catchable animals to be caught first.

To demonstrate the generalized removal method further, we present more real data, this time from the
use of removal sampling to estimate stream bottom benthos (see Carle 1976; Carle and Strube 1978).
Figure 4.4 presents the numbers of Ephemerellidae found in five removals from one site on the Cache la
Poudre River in Colorado;* the field methodology was essentially that of Carle (1976). Just alook at the
removal data (310, 26, 14, 7, 6) shows that the constant capture probability model does not fit. Indeed,
the goodness of fit test to that model has a chi-square test statistic value of 77.118; taken to four decimal
places, the probability of a value this large, if the constant probability model is true, is 0.0000. In Fig. 4.4,
rows k = 2 and k = 3 show the results of fitting the two- and three-parameter generalized removal
models. The two point estimators of N hardly differ because apparently almost all individuals were
caught.

From Fig. 4.4, we see that the model with two capture parameters (k = 2) provides an adequate fit to
these data. For that model, N = 368, with a standard error of 4.2. Perhaps more interesting are the
estimates of capture probabilities. For the two-parameter model, f;, = 0.8425 and the subsequent
estimated capture probabilities are p = 0.4460. The drop in capture probabilities is dramatic. It is
consistent with a model in which the capture probabilities are fairly high for most individuals, but are
moderate to low for a few individuals.

The generalized removal model with three parameters also fits the data of Fig. 4.4 (row k = 3), as it
should if the less general model with two parameters fits. In this model, the three capture probabilities are
P, Dy and p, = p, = ps = p. We see that p, = 0.8418 is almost the same as p, = 0.8425 for the two-
parameter model. Also, p, = 0.4464 and p, = p, = ps = p = 0.4375 are only slightly different from the

*This information was provided by R. F. Raleigh, US Fish and Wildlife Service, Ft. Collins, CO 80526.



QCCASION J= 1 2 3 4 5

TOTAL CAUGH™ M) = o 310 336 350 357 363
NEHWLY CAUGHT utdy= 310 26 14 7 6
K N-HAT SE (N3 CHI-SQ. PROB. ESTIMATED P-BAR(J) ,J=1,..., S
1 363.00 0.4118718 77.118 0.0000 0.7857 0.7857 0.7857 0.7857 0.7857
2 367.96 4.208816 0.703 0.7035 0.8425 0.4460 0.4460 0.4460 0.4460
3 368.24 6.008348 0.640 0.4237 0.8418 0.4484 0.4375 0.4375 0.4375
POPULATION ESTIMATE IS 368 WITH STANDARD ERROR 4.2089
APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 359 10 377

Fig. 4.4. Removal data on stream bottom benthos, Ephemerellidae, from one site on the Cache la Poudre River, Colorado.
The circular depletion sampler described in Carle (1976) and Carle and Strube (1978) was used to obtain these data.

?g?:ﬁlg':u@m e é 31§ 338 Fig. 4.5. Application of the removal estimator
NEWLY CAUGHT  utd)= 310 26 to only the first two occasions of the stream
ESTIMATED PROBABILITY OF CAPTURE, P-HAT =  0.319746 bottom benthos data shown in Fig. 4.4. Of
necessity, the constant capture probability
model is used here. The results are misleading;
POPULATION ESTIMATE IS 338 WITH STANDARD ERROR 17371 compare them with those in Fig. 4.4 for the
APPROXIMATE 95 PERCENT CONFIDENCE INTERVALS 334 TO 3ue entire data set (t = 5).

two-parameter model values. Again, the result is consistent with the adequacy of the two-parameter
model for these data.

What if only two capture occasions had been used for the example in Fig. 4.4? The results would be
those shown in Fig. 4.5. First, because no goodness of fit test is possible, we have no clue that the
constant capture probability model does not fit. The estimated capture probability of 0.92 is not only
grossly in error, but is also misleading, because it suggests that virtually all individuals have been caught
after two removals. The estimate of N is 338, with an estimated approximate 95% confidence interval of
336 to 342. Remember that if the computed lower limit is less than the total number of individuals seen,
the lower limit should be replaced by the number of individuals actually seen. In fact, at least 363
organisms were present; thus the estimate of 338 is clearly too small. More than two removals are
required to detect such problems as these.

Such comparisons are also interesting for the data on hares presented in Fig. 4.3. Figure 4.6 presents
the results of analyzing. only the first two removals of the Andrezejewksi and Jezierski (1966) data.
Again, there is no clue that the point estimate of N = 980 is biased low. The computed confidence interval
has an upper limit of 1009, which is less than the 1010 hares removed on four occasions.

Finally, we return to the simulated data first given in Table 4.2. Applying the generalized removal
method to these data, we get the results shown in Fig. 4.7. As discussed above, this goodness of fit test
shows that the model fits, so N is taken as 621. Note that for the model in which p, is allowed to differ
from p, = p; = p, = p, we get p, = 0.4132 and p = 0.3952, which is to be expected because all p, are the
same (0.4). ‘

An Example Using Fish Removal Data. The constant capture probability model does not fit all
fish removal data. Figure 4.8 is an example of data from a major study of the removal method applied to
fish in small streams (Mahon 1980). Mahon conducted more than a dozen removal experiments; he
obtained well over 100 data sets, with the data partitioned by fish species and size. After each experiment,
consisting of 4 to 8 removal occasions, he collected the fish remaining in the stream segment by using
rotenone. Thus, he knew the true population sizes. We illustrate the generalized removal method for fish
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OCCASION J= i a2

TOTAL gAug:r mj§= 722 Zga 913 Fig. 4.6. Application of the removal estimator to
NEWLY CAUGHT urdy= 1 .
only the first two removal occasions of the Andreze-
ESTIMATED PROBAGILITY OF CAPTURE, P-HAT =  0.737208 jewski and Jezierski (1966) study shown in Fig. 4.3.
Of necessity, the constant capture probability model
is used here. The results are again misleading;
POPULATION ESTIMATE 1S 980 WITH STANDARD ERROR  14.6068 . -
compare them with those in Fig. 4.3.
APPROXIMATE 9% PERCENT CONFIDENCE INTERVALS 951 TO 1008
OCCASION J= - S
TOTAL CAUGHT  M(J)= 0 260 401 498 548
NEWLY CAUGHT  U(J)= 280 141 97 SO
K N-HAT SE(N) CHI-SQ.  PROB. ESTIMATED P-BAR(J) ,J=1,..., "
1 620.98 16.94006 1.568  0.4567 0.4136 0.4136 0.4136 0.4136
2 629.28 26.25738 1.246  0.2643 0.4132 0.3952 0.3952 0.3952
POPULATION ESTIMATE 1S 621 WITH STANDARD ERROR  16.9401
APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 587 TO 655

Fig. 4.7. Results of applying the generalized removal method to the simulated data given in Table 4.2. With four removal
occasions, the first two removal models are fitted to the data; k = 1 is the constant capture probability model. Fork = 2, p,
is allowed to be different from p, = p; =p, = p. Because the constant capture probability model fits the data, the
results, p, = 0.4132 and p = 0.3952 for k = 2 are very close both to each other and to the true value, p = 0.4. Compare
these results with those in Fig. 4.2.

with data from one of Mahon’s study stations. The data are for fantail darter (Etheostoma flabellare)
longer than 35 mm. The true population size for individuals of this species and size was N = 1151.

Figure 4.8 shows the removals for the seven sampling occasions (t = 7) used at this station. The 666
fantail darters caught were only 58% of the true population. We see from the figure that the constant
capture probability model produced an estimate of N = 900(+48). The chi-square goodness of fit test
statistic for this model was 9.071, which has an observed significance level of P = 0.106. We reject a
removal model, for lack of fit, if this observed significance level is less than 0.20 because we believe it is
better to sacrifice some precision to minimize bias. This example illustrates such a tradeoff. The
generalized removal model with k = 2 produces N = 1025, with an estimated standard error of 105. The
(approximate) 95% confidence interval on N is 819 to 1231; it covers N (= 1151). By contrast, fork =1
(the constant capture probability model), the interval of 805 to 995 does not come close to covering the
true value of N.

Regression, or Catch Per Unit Effort Methods

The wildlife and fisheries literature presents several methods for estimation of N based on the constant
capture probability removal model. These methods are of two types: (1) regression methods or (2) the
maximum likelihood method and its modifications or approximations (see Zippin 1956, Carle and Strube
1978). The regression methods often are referred to as methods based on “catch per unit effort” (CPUE).
This acronym derives from the fisheries literature, especially concerning commercial fisheries, where
fishing provides catch statistics but where units of fishing effort vary in each time period. In wildlife
studies, effort usually can be nearly equal on each capture occasion. In removal trapping, keeping the
same number of traps working on each occasion is considered to provide equal effort. In electrofishing,
standardization of the technique provides equal effort. We do not deal here with CPUE methods for
varying effort on each occasion, but both Ricker (1975) and Seber (1982) give an introduction to the
methodology.



OCCASION J= 1 2 3 4 5 6 7

TOTAL CAUGHT M(J)= 0 180 @295 389 473 548 606 666

NEWLY CAUGHT Utdr= 180 115 94 84 75 88 60
K N-HAT SE(N) CHI-SQ. PROB. ESTIMATED P-BAR(J),J=1I,..., 7
1 900.40 48.45878 9.071 0.1063 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747
2 1025.38  104.7211 i1.148 0.8869 0.1755 0.1327 0.1327 0.1327 0.1327 0.1327 0.1327
3 1062.05 154.990! 0.909 0.8234 0.1695 0.1304 0.1237 0.1237 0.1237 0.1237 0.1237
4 1041.35  194.3479 0.922 0.6308 0.1728 0.1335 0.1259 0.1289 0.1289 0.1283 0.1289
8 1038.21 292.5283 0.927 0.3357 0.173% 0.1340 0.1265 0.1294 0.1297 0.1297 0.1297

POPULATION ESTIMATE IS 1025 WITH STANDARD ERROR 1o4.7211

APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 819 TO 1231

HISTOGRAM OF Ul

FREQUENCY 180 115 94 84 75 58 B0
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Fig. 4.8. Results of applying the generalized removal method to data on fantail darters longer than 35 mm (from Mahon
1980). The true value of N = 1151 was known because after the seven removals, rotenone was used to collect the remaining
fish.

Under the model of constant capture probability, all regression-based CPUE methods are inferior to
the ML estimation method. We will discuss one regression-based method primarily because it appears so
frequently in the literature. First, however, we must define another symbol in addition to u;: M = the
number of individuals marked and hence removed from the population before the j™™ capture occasion.
Thus M, = 0, because before the first capture occasion no individuals have been marked and removed
from the population. Before the second capture occasion u, individuals have been marked and removed,
hence M, = u,. After the second capture occasion, u, + u, individuals have been marked and removed,
so that My = u; + u,. In general, My =u, + ... + u; ;. Also defined (but not used in the regression
method) is My, , = u; + u, + .. . + u,, which is the total number of individuals marked and removed and
hence known to be in the population. Any admissible estimator of N must be at least as large as M, ;.

Under the constant capture probability model, a linear structural relation between the two variables
E(u;) and E(M)) is, specifically,

E(u) = pN — PEM) 4.2)
or, equivalently,

E(M,) = N — -pl E(u,) . 4.3)

Based on Eq. (4.2), Hayne (1949a) published the following regression method of estimating N: regress u,
onM;,j=1, ...t to get an estimate of p (as the slope of the regression equation) and an estimate of
—pN (the intercept of the regression equation). Symbolically, the fitted regression is

u=4+bM, j=1 ...t (4.4)
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where & = ;;I:I and b = —p, so that

=N. (4.5)

Basing the regression on Eq. (4.3) rather than on Eq. (4.4) has statistical (theoretical) advantages, but
commonly it has been based on the form of Egs. (4.2) and (4.4) in conjunction with a plot of the data as
u; (on the y-axis) versus M, (on the x-axis). In such a plot, the point where the line intercepts the x-axis is
the estimate of N, the mathematical equivalent to Eq. (4.5).

From Fig. 4.2 we have the pair of variables u; and M;, as

_j_ u M
1 260 0
2 141 260
3 97 401
4

50 498

A plot of these data and the results of applying the simple linear regression of u; on M;, using Eq.
(4.4), are shown in Fig. 4.9; & and b are explained above, and r is the correlation coefficient of u; and M.
From this regression, the estimate of p is p = —b = 0.41488 and the estimate of N is N =(257.2/0.42488)
— 620. Note also that M = 620 is the intercept of the line with the x-axis.

These point estimates of N and p compare well with the ML estimates in Fig. 4.2. However, it is very
difficult to obtain a valid estimate of the sampling variance of this regression estimator of N, Even if we
could obtain a valid variance estimate, statistical theory assures us that the ML estimate of N has a
smaller sampling variance under the assumed model and hence is the better estimator.

The usual model for simple linear regression (for a sample size of n pairs of variables yj, x;) is,
symbolically,

y; = a+bx; +¢, i=1 ...,n

under the assumption that the n pairs of variables (y;, x;) are independent of each other. An alternative
expression of this is that the “errors” ¢, . . ., &, are assumed to be independent. Moreover, it is assumed
that the sampling variance of ¢g; is a constant, say o, forallj=1, ...,n

These usual assumptions of simple linear regression are violated severely by the application in Eq.
(4.4). Specifically, the different pairs of the variables (u;, M) are highly correlated, so that the assumption
of independence of the errors is violated. Also, the sampling variances of the errors are not equal; instead,
they are proportional to u;. Consequently, the usual formulas for the sampling variances of & and b are
invalid.

For the simulated data that fit the constant capture probability model, the correlation of M, and u;is r
= —0.99761. Applied to the hare data of Andrezejewski and Jezierski (1966), this same regression
method produces r = —0.99926, which is a stronger correlation (Fig. 4.10). Yet we know from the results
in Fig. 4.3 that the hare data do not fit the constant capture probability model. The disparity
demonstrates that the correlation coefficient is useless as a measure of how well this model fits the data.
Similarly, visual examination of the plotted data, as in Figs. 4.9 and 4.10, does not serve as a goodness of
fit test of the model to the data. Only the chi-square goodness of fit test provides an adequate test of the
model fit.

The regression method can, and often does, produce estimates of N below the total numbers of animals
caught. For example, when we applied the regression method to the hare data of Fig. 4.3 (Fig. 4.10), we
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Fig. 4.9. A plot of the u;, M; data shown in Table 4.2
3 150 and used in Fig. 4.2. The fitted regression line, Eq.
(4.4), also is shown. Notice that the intercept of the
line and the x-axis is N = 620.
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r=—0.9993 Fig. 4.10. The regression estimator applied to the
hare data of Andrezejewski and Jezierski (1966). The
correlation is very high, r = —-0.99926, and the plotted
data apparently are linear, yet these removal data do
not fit the constant capture probability model. (See
Fig. 4.3.)
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obtained N = 717.7/0.70830 = 1014, even though the total number of hares caught was 1018. Of course,
such an estimate is ridiculous. The problem is not hypothetical. Andrezejewski and Jeziewski (1966) used
exactly this regression method and reported in their paper the point estimate of 1010. They got this
number rather than 1014 by rounding the slope estimate to 0.71, computing N = 717.7/0.7 1, and
truncating the result to 1010. Their variance estimate is also quite invalid; they estimated §e(I§I) = 38.

In contrast, the generalized removal method applied to the hare data of Fig. 4.3 produced N = 1039
with $e(N) = 7.7. Thus, an approximate 95% confidence interval N is 1023 to 1055.

Summary

1. In true removal sampling, each animal is caught only once. The most common applications are snap
trapping of small mammals and electrofishing in small streams. In snap trapping the animals are killed. In
electrofishing the captured fish usually are held in buckets until the removal passes have been completed,
and then the fish are returned to the stream.

2. The assumption of closure is critical to the results of a removal study. If closure is violated, the
estimate of (original) population size will be biased—often badly so. If closure fails drastically, the study
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becomes a total waste of time and money. If animals leave the study area between capture occasions, the
population size N will be underestimated. If they enter the area, N will be overestimated—possibly badly
$O.

3. Removal studies require a minimum of two capture occasions, and even two occasions do not allow
a test of the constant capture probability assumption. If all animals have an average capture probability
of at least 0.8, two occasions will suffice because failure of constant capture probability will not matter.

4. The common model for analysis of removal data assumes an equal and constant capture probability
(p) for all individuals.

5. If the assumption of equal and constant capture probability is to be tested, there must be at least
three capture occasions.

6. To obtain useful results with the removal method, capture probabilities should be at least 0.2, and if
they are as low as 0.2, even six capture occasions will give only marginally reliable resuits.

7. The removal method is not suitable for populations exceeding a few thousand individuals.

8. The removal method will fail to give reliable results unless there is an obvious decrease in number of
animals caught over the t capture occasions.

9. We recommend use of the ML estimator of N, although it does not exist in closed form. Its sampling
variance is smaller than those of other estimators under the constant p or the generalized removal model.
[n particular, we note that the ML estimator of N will never be less than M,, , (the number of individuals
removed). All commonly used regression methods are based on the same assumptions as the ML
estimator, and their estimators of N can be less than M, , even when the assumptions are true.

10. The assumption of constant capture probability can be relaxed to allow for some degree of
heterogeneity. The assumption of heterogeneity leads to the generalized removal method, which fits
successively more general models to the data until an acceptable fit is found. For example, the first more
general model allows one capture probability, p,, on occasion 1 and different (but equal) capture
probabilities on occasions 2, 3, .. ., t. If this generalized model fits the data, it often does so with just two
parameters.

11. Common sources of differences in capture probabilities (heterogeneity) are differences by species,
sex, or age. In electrofishing, fish size (within wide limits) influences capture probability—smaller fish are
less catchable. If the data are sufficient, we recommend partitioning all data by species and sex, and
electrofishing data by two or three broad categories of size.

12. Although some degree of heterogeneity can be allowed for, time variation in capture probabilities
totally destroys the usefulness of the removal method. No estimator is possible for a removal study with
time variation in the capture probabilities, unless the number of capture occasions is extended until all
animals are caught.

13. The estimator of N under the generalized removal is the ML method. It does not exist in closed form.

Questions and Exercises

. Would you accept a removal study with only one (t = 1) capture occasion?

. What are the potential defects of removal studies with t = 2 occasions?

. Can you have an open-model removal study?

Can you use removal estimation methods on live-trapping data?

. In general, do capture-recapture studies yield more information about N than removal studies?

Would you accept, as a point estimate of N, a value less than M ,, the total number of animals

removed?

. Why is kill trapping over a long time period likely to give a poor estimate of N?

8. A biologist, asked to estimate the population size of the endangered lion snail, suggests a removal
study over five occasions. Assess his proposal.

9. Are the following removal data useful? u, = 100, u, = 99, u, = 105, u, = 98, and u, = 95, W|th t=5.
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10. A snap trap study of small mammais conducted for 4 days gives

11.

12.

13.

14.

15.

16.
17.

u, =68, u, =41, u, =25, and u, = 15.

a. Describe the X matrix.

b. Was the study acceptable; that is, do you expect a reasonable estimate-of N to result?

c. Give a rough estimate of N, then if possible, use program CAPTURE to obtain the exact ML
estimate.

if true population size is N = 100 and a three-occasion removal study has the constant capture
probability p = 0.05, will the results be useful? Compute the expected numbers removed on the
study’s three occasions.

In studies of small populations (N of at most 200), what capture probability should you have to achieve
reliable results if t = 47

You conduct a removal study, with carefully controlled equal effort, and find u, = 20, u,= 15, u;= 8, u,
=17, ug = 29, and u, = 36. What is happening?

You assess your experimental situation and conciude that closure will be violated significantly; you
decide to try a removal study anyway. What can be said about N as an estimate of N?

Let p, be the average capture probability on removal occasion j. What does p, mean? Why do the p,
decrease under model M,,?

What sources of heterogeneity are likely to be present in electrofishing? In kill trapping?
What happens in a removal study if equal effort fails to be true?
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