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Chapter 7. Analysis of Experiments Where Banding is Done Twice a Year

7.1 Introduction

The models introduced in this section relate to the specific experimental situation where adults are banded
twice a year, both before and after the hunting season. These models are of interest because they show how twice-
a-year banding studies are likely to provide more information about the effects of exploitation and environmental
conditions on survival than do once-a-year banding studies.

These models allow a partition of the annual survival rate into a survival rate for the period between pre- and
postseason bandings (which includes the hunting season), and a survival rate for the period following postseason
banding (which includes the nesting season). If there is a tendency for natural mortality to be “compensatory,”
then survival during the postseason period should be high following a season when hunting pressure was high,
and lower following a season when hunting was light. On the other hand, there may be situations when increased
survival in the postseason or nesting period cannot compensate fully for the depletion of the population during
the preceding hunting season, resulting in a lower annual survival rate. For example, this may occur when the
population has been severely depleted by being very heavily hunted, or when environmental conditions prevailing
during the nesting season are extremely adverse. The models of this section thus provide a method for obtaining
information about the effects of hunting and environmental factors on survival by permitting estimation of “semi”-
annual survival rates and recovery rates.

The models presented here are for data from adult birds only but analogous models could be developed for the
situation of Chapter 3 when data from young birds are available. Use of the models is also restricted largely to
data from resident species such as grouse, quail, and pheasant. Only resident species are considered because migra-
tory species may migrate to very different areas so that pre- and post-season bandings may be carried out on dif-
ferent population segments which may be characterized by different parameters. Exceptions to this are certain
species of geese which breed and winter in well-defined regions (e.g., dusky Canada goose).

Tagging twice a year (i.e., spring and fall) is a common practice in many studies on fish populations and often
the data obtained usually include both live recaptures and dead recoveries. The analysis of only the dead recov-
eries by the methods here would not be efficient because the live recaptures would not be used. This is discussed
in Section 8.2.

Data for which the models of this chapter are appropriate do not seem to be commonly available; consequently,
analyses are illustrated with artificial data. However, the potential of these models for providing information
about the effects of the environment and/or hunting on survival motivates their being in¢luded here.

Notation and Definitions

In the two-age-class situation of Chapter 3, recoveries are obtained from two classes of banded birds, adult or
young, both banded at the same time. In this chapter we consider banding twice a year (adults only) and recov-
eries are obtained from two classes of banded birds depending on whether banding was done pre- or post-season.
These two types of bandings and recoveries are distinguished in this chapter using a notation similar to that of
Chapter 3 with the appropriate interpretation.

We consider only experiments where band recoveries do not continue beyond the year of the last or £ preseason
release. Thus =/ and s=0 in this chapter.

A year of the experiment is the period between consecutive preseason bandings. That is, the i** year of the experi-
ment is the period between the i"* and (i+ 1) preseason bandings, i=1,...,k— 1, and the k* or last year is the year
following the % preseason banding. Banding should occur at the same times each year. For example, a possible
program for pheasants would be preseason banding in mid-August and postseason banding in mid-December
each year.

We make the following definitions:

Ni=the number of adults banded and released in the i preseason banding,i=1,...,k.

M;=the number of adults banded and released in the it postseason banding, i=1,... k—1.

R;;=the number of bands returned in year j from the i preseasonrelease,j=1i,...,k,i=1,... k.
Q;;=the number of bands returned in year j from the i postseason release,j=i+1,...,ki=1,... ,k—1.

Note that @; is not defined as there can be no recoveries in the it” hunting season from the " postseason release,
i=1,... .k
The data for a 4-year study (i.e., k = 4) are represented as in Table 7.1 below.
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Table 7.1. Representation of data for a 4-year study with banding twice a year.

Year of recovery
Year and time Number Row
of banding banded 1 2 3 4 totals

i 1 T
preseason N; T Lliu_ ______ :}313 ______ 1 BE...._....J'_R_I.“____ R]
postseason M, ! Tle T Qs : Qs Q@
preseason N, :_Rzz : Ro; | Ra4 R,

Tz ———————— TA-———— -

postseason M, | Q2 : Q24 Q@
preseason N, T {_ Ry ___\Ru R
postseason M; 8 -|r Qs Qs
4 preseason N, : R R,

1

Column totals (o C. Cs Ci=T,

Subtotals which are used in calculating estimates are indicated in Table 7.1 and are defined below:

Row totals: Ri=3% Ry i=1,...,k,
j=1i
k .
Q= X @y ,i=1,...,k—1
j=i+1
Column totals: Ci=R,
j j-1
q: 2 le+ 2 QU ,j:2,...,k.
i=1 i=1
The outlined block totals: Ti=R,,
Ti=Ri+Qi-1+Ti-—Ci_, ,i=2,...,k,
(Ty=Cx) .

Numerical illustrations in this chapter, including calculation of the above subtotals, are all obtained using the
synthetic data set shown in Table 7.2.

Table 7.2. Synthetic data for a 5-year study (k=25), showing calculation of subtotals.

Year of recovery
Year and time Number Row
of banding banded 1 2 3 4 5 totals
| Preseason 550 63 31 17 18 10 139
postseason 350 30 19 12 6 67
o Preseason 500 48 24 24 11 107
postseason 400 27 22 12 61
3 preseason 500 41 30 20 91
postseason 800 70 33 103
4 preseason 400 44 21 65
postseason 500 37 37
5 preseason 500 ’ 42 42
Column totals C; 63 109 128 220 192 712

Block totals T; 139 250 293 333 192
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The two models presented in this chapter are analogous to Models 1 and 0 of Chapter 2. As in Chapter 2, f rep-
resents the annual band recovery rate, but S, the annual survival rate, is represented as the product of two “semi-
annual” survival rates. Thus S; = h;n;, where

h;=the survival rate during the period between the i** pre- and post-season bandings, (i.e., the period
including the i hunting season), i=1,...,k—1,

n; =the survival rate during the period between the i postseason and the (i + 1)
preseason bandings, i = Lk—1.

7.2 The Model Under H;

The first model we consider is analogous to Model 1 of Chapter 2, and is called the model under H;. The assump-
tions of H; are:

(1) Annual recovery rates (f;) and “semi-annual” survival rates (h and n;) are year-specific but independent of

age; and

(2) reporting rates are independent of the time of release.
The parameters of the model under H; are h;, n;, and f;, where h; and n; are defined above and f, = the recovery rate
in year i, for all banded adults alive at the start of year i, i.e., after the i" preseason release, i=1,... k.

For this model the expected or average numbers of band recoveries can be expressed in terms of N;, M;, f;, hi, and
n; and presented in the same way that the data are presented in Tables 7.1 and 7.2. Table 7.3 gives the model

structure under H; for k=4.

Table 7.3. Expected numbers of band recoveries for a 4-year study for the model under H;.

Year of recovery

Year and time Number
of release banded 1 2 3 4
preseason N, Nifi Nihnf Nihsnihareofs Nihinihons hansfs
postseason M, Min.f; M, nihenofs Minhans hynafs
preseason N, Ngﬁ Nyh n_»ﬁ N, hfgnzh;: n:lﬂ
postseason M, Monofs Manyhsnsfs
preseason N; Nafs Nshsnaf
postseason M; M;nsf;
4 preseason N N.ifs

Estimation of Parameters

ML estimators of f;, h; and n; are

~ Ri G

IfNI_ ) :I"'lv ’k;
7 Rl Cl MI ETI_Cx Ml
hrf_l (1—?1) a_ﬁ;T_z ,i=1,...,k—1,
. QN B

U R ,i=1,...,k—1,

where R;, @:, C;, and T’ are the subtotals defined in Section 7.1.
These estimators are easily evaluated for data sets where % is not too large. The synthetic data of Table 7.2

give, fori=2,

» RyxC. 107x109
> Nox T, 500x 250

=0.0933,
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R X (To=Co) x My _ 107 (250~ 109) x 400
T NexTex@  500x250x 61

.~ @xN, 61x500
" M, xR, 400x91

S, = hs 1= (0.7914) x (0.8379) = 0.6631 .

=0.7914,

=0.8379,
and

A slight modification of the estimators A and 7; will reduce their bias, giving the bias-adjusted ML estimators

il*& (Ti-C;) Mi+1

; N; T; Qi+1 Lok

o Q N+l = -

nl_Mi Rivi+1 bkl
For example, for i =2,

= BX (T C) X (Mo +D)_107X (250~ 109)x 401 _ o 000

NoxTox(@+1) 500 x 250 x 62

- @x(N;+1) 61x501
T Myx(Ry+1) 400%92

=0.8305.

Sampling Variances, Standard Errors, and Confidence Intervals

The procedure for obtaining confidence intervals for the above estimators is the same as that in earlier chapters.
Estimatgrs of sampling variances of the various parameter estimates are given below (e.g., the sampling var-
iance of f; is estimated by var(f;) ):

var(f) = ()2 [R%—NH%-%] i=1,.. 0k,

Var(iu)=(izi)2 %—%’+é—;—£ Tli—C,—%] ,i=1,...,k—1,
var(h;) = (h;)? %—%+é—%+ﬁ—%] Ji=1,... k-1,
var(h) = (A :%—;4—'&&1“-1\,}“] i1, k-1,
var(m) = (71)? :&‘ﬁ%,-lﬂ_zvil] im1,.. k-1

Estimates of the corresponding standard errors are given by, for example, se( f} ) = \/\Ta?(fj .
For example, using the data of Table 7.2,

N A 1 1 1 1 1 1 1 1
S =(f)2 | —— == 2|~ — 4 - = |
var(fy) =(f) [R2 N2+C2 Tz] (0.0933) {107 500+109 250] 0.00010899

se(f) = \/0.00010899 = 0.0104 ,

1.96 x se(f;) = 0.0204

and the estimated 95% confidence interval for £ is (0.0933-0.0204, 0.0933 +0.0204) or (0.0729, 0.1137). As in pre-
vious chapters these are only approximate 95% confidence intervals, valid for “large” sample sizes N; and M,.

The data of Table 7.2 are used to evaluate all the estimators fi» i, and 7;, and to obtain estimates of the corre-
sponding confidence intervals as described above, and the results are presented in Table 7.4.
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If required, the ML estimator of the annual survival rate is

AhARTCIIH

i i1y N, T, Rivs ,l:l, .,k—l,
with sampling variance estimated by
- - 1 1 1 1 1 1
Si)=(8)? | 5>——=+ -
var($) =57 |-yt g NG 7]

We note the bias-adjusted estimator is

,§- _ & Ti C N 1 +1 + 1
""Ni  T. Ri.+1’°
which is not the same as ;7.

The large confidence intervals in Table 7.4 indicate that if the annual recovery rate is approximately 10% (or
less), then values of N; and M, of about 400-500 are too small to provide reliable estimates of semiannual sur-
vival rates.

Table 7.4. Parameter estimates from the data of Table 7.2, obtained by the model under H;.

Estimate Standard 95% Confidence Estimate Standard 95% Confidence Estimate Standard 95% Confidence
fi error interval hi error interval i error interval

0.1145 0.0136 0.0878-0.1412 0.7133 0.1091 0.4995-0.9271 0.8880 0.1237 0.6455-1.1305
0.0933 0.0104 0.0729-0.1137 0.7806 0.1218 0.5418-1.0193 0.8305 0.1256 0.5843-1.0767
0.0795 0.0092 0.0615-0.0975 0.7894 0.1119 0.5701-1.0087 0.7823 0.1143 0.5583-1.0063
0.1074 0.0129 0.0821-0.1327 0.7270 0.1521 0.4289-1.0251 0.8622 0.1866 0.4965-1.2279
0.0840 0.0124 0.0597-0.1083 - - - - - - — -

[,

[S280 VI

Sampling Covariances and Correlations

For large N; and M; estimators of the nonzero or non-negligible covariances between f, h; and n; are

1 1 .

cov(fhl) th [ﬁ—ﬁ_ﬁ] ,i=1,...,k—1,
(hi;n)=—hi mi F—i} i=1,... k1

CoV! ;n/t - n; Qi Mi :li PR El
i [l
Covifiv 1,/ =—fi+ 114 Riv: Niis SU=1,0.00, s
A T S I S J i=1,...,k=2
cov(hi s 1,n) == his l:Ri+1 N =1, .

Estimates of covariances involving the estimators n; and hi are obtained by substituting »; and hi for n; and hi in
the above formulae.

Correlations are estimated by using the above covariance and variance estimators as described in Chapter 2.
Thus, for example, the estimate of the correlation between £ and #; is

cov(ﬁjzi)

corr(fi,hi) = se(f;) se(h:)

For i1=2,
cov(fs,foa) = fie [— o —} (0.0933) (0.7806) [— > ——] —~0.000244
2
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and -
cov(fi,he) 0.000244

se(f:) se(hz) =70.0104) (0.1218) _ *193-

corr(f;jbz) =

Covariances and correlations, estimated in this way using the data of Table 7.2, are presented in Table 7.5.

Table 7.5. Estimated covariances and correlations for the example under H.

CovarAia~nce Correlation Covariance Correlation
cov(fi,hi) corr(fi,h:) cov(hi,ny) corr(hi,n;)
i=1 —0.000148 -0.100 —0.007644 —0.566
2 0.000244 0.193 —0.009007 —0.589
3 0.000350 0.340 —-0.005224 —0.408
4 0.000772 0.393 -0.015687 —0.553
cov(fiy 1,m) corr(f; + 1,m) cov(hi s 1,m:) corr(hy 4 1,m)
i=1 —0.000609 -0.473 —0.005092 —-0.338
2 —0.000593 —-0.514 —0.005893 -0.419
3 —0.001083 -0.735 —-0.007328 —0.422
4 —0.001580 -0.683 — —

These estimated correlations are discussed further in Section 7.5.

7.3 The Model Under Hg

The second model considered in this chapter is analogous to Model 0 of Chapter 2, and is called the model under
H;. The assumptions of Hs are similar to those of H; except that the reporting rate for newly released birds is as-
sumed to differ from that for survivors of earlier releases. Recall that in Model O dispersion due to migration was
thought to contribute to this difference in the reporting rate for new releases, whereas the methods of this chapter
are applicable mainly to resident species. Even without migration, however, dispersion after banding may be
sufficient to cause a difference in the reporting rate for new releases and the model under Hjs is there-
fore included here.

The assumptions of Hy are:

(1) Annual recovery rates and semiannual survival rates are year-specific but independent of age; and

(2) in any year, the reporting rate for just-released birds is different from that for survivors of previous releases

(and hence the recovery rates are different also). ‘
The parameters are: h;and n; (i=1,...,k—1), as defined in Section 7.1, and
f¥ =recovery rate in year i for banded adults released at the i preseason banding, i=1,...,k,
fi=recovery rate in year i for banded adults alive at the start of year i, but released before the
i*" preseason banding, i=2,... k.

The structure of the model under H; is reflected in the expected numbers of band returns expressed in terms of

N, M,, .5, ki, and n; as presented, for example, in Table 7.6 for a 4-year study.

Table 7.6. Expected numbers of band recoveries for a 4-year study for the model under Hs.

Year of recovery
Year and time Number
of banding banded 1 2 3 4
preseason N Nifi Nihinifo Nihinhanofs Nihumhanohsnsfa
postseason M, Minfe Minihanofy Minihanaohsnsfi
preseason N, Nof5 Nohynofs N:hone hznsfy
postseason M, M:nsfs ) Mn;hsnsfs
preseason N, NofF Nshsnsfs
postseason M, M;nsf;

4 preseason N; N.f¥




STATISTICAL INFERENCE FROM BAND RECOVERY DATA

Note that the parameters n; and f; are not separately identifiable.

Estimation of Parameters

ML estimators of the recovery rates are
f“lsk:%: ,i=1,...,k,
;:Ri;,iRif Tl--}g::lcii;Rﬁ =2, k=1
Bias-adjusted ML estimators of semi annual survival rates are
po- Rl M el ke,
. Q Niii+1 (Tnx—REil—_‘?};iRH““) i=1,... k-2

ni=—
' Mi Ri+1_Ri+1,i+1+1

The corresponding unadjusted ML estimators are

};__Ri_Rii%
i— Ni Qi .
;l':& Ni+1 (Ti+l*Ri+1—Ci+1+Ri+l,i+1>
' MRi+1_Ri+1,i+1 Ti+1_Ri+1
Finally
T hie et
kh — 1[Ik Mk—1 .

For example, for the data of Table 7.2,
~ Ry 41
=—=—=0.0820,
A N; 500 0
(91—-41)x (128 —-41) —0.0757,

p_ (R3— Ry3) X (C35— Ra3) _
Nyx(T5—R;—Cs+Rs;) 500 x (293 —91 — 128 +41)

fi
(R3—Rys) X (M +1) — (91—41) x 801 =0.7702,

ha =

¢ Nyx (@;+1)

- _ng(N4+1)><(T4—R4—C4+R44)_103><401 X (333 —65—220+44)
T 800x%(65—44+1)x(333—-65)

M;X(Rs— R+ 1) x(Ts—R4)

n; =

Sampling Variances, Standard Errors, and Confidence Intervals

Estimators of the sampling variances of £*, f;, & and i, for large N; and M; are

var(f*) = f*(1~f*) | N;
1 ___1_+ 1 + 1 ]
Ri-R; N; Ti-Ri-Ci+Ri Ci—Ry
- - 1 1 1 1
N =(h.)2 ==
var(h)=(h) [Ri_Rii Ni+Qi M]
1 1+ 1 _ 1 + 1 _ 1
M Ri+1_Ri+1,i+1 M+1' Ti+1—'Ri+1—Ci+1+Ri+1,i+1 Ti+1“Ri+1

var(n) = (ny)? [Q

var(f) = ()2 [

165

500 x 104
=0.8056 .

] it...
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Variance estimators for 4 and 7; are obtained by substituting A and 7; for 4; and 7, in the appropriate expres-
sions.

These variance estimators are used to obtain estimates of the standard errors and 95% confidence intervals as
described in Section 7.2. For example,

1 01 1 1
}::«10757? [56——566—%113—+§?]=4100021885,

1 1 1
— =+ +
R;—Rss N; T5~R;—C3+Rs Ci— T

var(f;) = (fz)z [
and

se(f;) = V/0.00021885 = 0.0148 .

To compute the 95% confidence interval for f; first compute 1.96 X se( }@)20.0290, then the desired interval is
(0.0757 —0.0290, 0.0757 +0.0290) or (0.0467, 0.1047).

Estimates of parameters, their standard errors, and confidence intervals under H; from the data in Table 7.2
are given in Table 7.7.

Table 7.7. Parameter estimates from the data of Table 7.2, obtained by the model under Hy.

Estimate Standard 95% Confidence Estimate Standard 95% Confidence
i fi error interval i error interval
1 — - - 0.1145 0.0136 0.0878-0.1412
2 0.0878 0.0183 0.0519-0.1237 0.0960 0.0132 0.0701-0.1219
3 0.0757 0.0148 0.0467-0.1047 0.0820 0.0123 0.0579-0.1061
4 0.1004 0.0249 0.0516-0.1492 0.1100 0.0156 0.0794-0.1406
5 - — — 0.0840 0.0124 0.0597-0.1083
Estimate Standard 95% Confidence Estimate Standard 95% Confidence
i error interval i error interval
1 0.6945 0.1063 0.4862-0.9028 0.9296 0.1666 0.6031-1.2561
2 0.7632 0.1296 0.5092-1.0172 0.8529 0.1601 0.5391-1.1667
3 0.7702 0.1253 0.5246-1.0158 0.8056 0.1985 0.4165-1.1947
4 0.6922 0.1833 0.3329-1.0515 - - -

Comparison of Tables 7.4 and 7.7 shows that precision is lost by using the H; estimators, especially in the case
of n;, and the confidence intervals for the survival rates are practically useless. The discussion at the end of Section
2.5 concerning choosing between Models 1 and 0 with a goal of minimizing bias and maximizing precision applies
equally to the problem of choosing between the H; and Hy models, with the additional consideration that assump-
tion 2 of Hg is less likely to be necessary for resident species. |

Sampling Covariances and Correlations

Forlarge N; and M;, estimators of the nonzero or non-negligible covariances under Hy are

cov(f* f) =—f* fiI N; =2 k-1,
cov(f hi) =—f* hi | Ni yi=1,.,k—1,
cov(f v =f 1 1/ Ni o i=1,...,k—2,
iyl 1 _li o B
cov{ﬁ,h,)vﬁhf-LRi_R” N ,i=2,...,k—1,

N - P 1 1 .
Covlfic i) ==firam [Ri+1_Ri+l,i+1_Ni+1] i=l. k=2,
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cov(hum) =— a1 [%—

wl
M;

1 1 ]
_Ri+1,i+1 Ni+1

Rii1
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The corresponding correlations are then estimated in the usual way, for example,

cov(s,hs) =fihs

corr(ﬁ;,iz@,) = —=

[R —Rss
cov(, ﬁ,,h@ )

N;] (0.0757) x(0.7702) [

0.001049

se(fz) se(hs)

=0.566.

(0.0148) x(0.1253)

50 500]

,i=1,...,k—2,
,i=1,...,k—2
0.001049,

Table 7.8 gives all the nonnegligible covariances and correlations for the example data of Table 7.2 under H.
Note that the estimators f and h; are positively correlated, and once again we emphasize that this is a property
of the estimators themselves and is not indicative of a similar relationship between the parameters f; and A;. This
should be clear in this instance, because we would expect the parameters f; and A, if correlated, to be negatively
s0, i.e., we would expect survival during the hunting season to be low when hunting pressure is high, and vice versa.

Table 7.8. Estimates of covariances and correlations between the
H; estimators, evaluated from the data of Table 7.2.

Covariance Correlation Covariance Correlation
i cov(fi* ti) corr(fi* f;) cov(fi*,hi) corr(fi*,h;)
1 - - —0.000145 —-0.100
2 —0.000017 -0.070 -0.000147 —0.086
3 - —0.000012 -0.066 —0.000126 —0.082
4 —0.000028 —-0.072 —0.000190 —0.066
cov(F% 1) corr(f* ,ni) cov(f,hi) corr(f,h)
1 0.000178 0.081 — —
2 0.000125 0.078 0.001002 0.422
3 0.000212 0.108 0.001049 0.566
4 0.000116 0.051 0.003136 0.687
cov(, f: ) corr( f. . 1,0) cov(hi,ni) corr(hi,ni)
1 —0.001220 -0.400 —0.007286 —-0.411
2 —0.001162 —-0.490 —0.009044 —0.436
3 —0.003649 —0.738 —0.005248 -0.211
cov(hiy 1) corr(hi + 1,ni)
1 —0.010606 -0.491
2 —0.011824 —-0.589
3 —0.025160 -0.691

7.4 Tests of the Models

Goodness of Fit Tests

Goodness of fit tests to the models under H; and Hs can be computed in the conventional way, as described, for
example, in Section 2.2 in relation to testing fit to Model 1. For the model under H-, the E;/’s, or estimated expected
values, are obtained from entries in Table 7.3 by substituting the H; unadjusted ML estimates £, #;, and #; for the
unknown parameters. These expected values are compared with the observed data values (O;’s) and the familiar
chi-square statistic is obtained as

(0y—Ey)?
N

i

If no pooling of expected values is required, this statistic has k*— 3k + 2 degrees of freedom.
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X F:or the model under Hy the expected values are obtained by substituting the Hs unadjusted ML estimates ﬁ*,
£, hi, and 7 for the unknown parameters in the expectations in Table 7.6. If the assumptions of Hy hold, the test
statistic
(0;—Ey)?
2_y v Y U
X3 E;
is chi-square distributed with k2 — 4%+ 4 degrees of freedom (in the absence of pooling).

An alternative method for testing fit to the models under H; and Hy is described in Brownie (1973).

Testing Between the Models

A test of the model under H; against the alternative of the more general model under H; essentially tests the
assumption that recovery rates are the same for new releases and survivors of earlier releases.

The test statistic is computed as the sum of the £ —2 single degrees of freedom chi-square statistics obtained
from the 2 by 2 contingency tables

Ci—R; : T:—R;—Ci+Ri Ti—R;
——————— R it 1=2,...,k—1
Rii { Rl_Rii Rl
1
T:

If the assumptions of H; hold, the test statistic is chi-square distributed with 2 — 2 degrees of freedom. “Large”
values of the statistic are taken to indicate that assumption 2 of H; is invalid, and the model under H; is rejected
in favor of the model under Hs.

This is illustrated in Table 7.9 using the data of Table 7.2.

Table 7.9. The test of H; vs. Hs with the data of

Table 7.2.
Contingency Table Chi-square value
61 : 82
i=2 --ZB—-I—-gg—— 0.12
]
_.87 ;115
1=3 5] : 50 0.10
) La76_1_92_
i=4 447721 0.10
]

Total chi-square value with 3 dfis 0.32. On the basis of this result there is no reason to reject H; in favor of H.

7.5 Summary

As stated earlier, the model under H; is likely to be the more useful of the two models proposed here. However,
there is a need for the development of related models, particularly those that will allow for the live recaptures
common in fish studies, and also models that will allow for age-dependence of parameters.

We discuss here one way in which estimates might be used to study relationships between unknown parameters,
and the importance of the correlation structure between estimators in so doing.
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Suppose it is desired to relate hunting pressure during the season to postseason survival, e.g., it may be postu-
lated that these two parameters are positively correlated. The first problem is that we have no estimate of hunting
pressure (H;), but if we can assume that reporting rates are fairly constant, then variations in recovery rates (f;)
will be largely due to variations in hunting pressure. Thus, if postseason survival (n;) is in fact positively corre-
lated with hunting pressure, and we have accurate and precise estimates, then we may expect to detect this
relationship if we plot n; against }5, However, the problem is not so simple, because such a plot may be influenced
to a larger extent by relationships between the sampling distributions of the estimators than by a relationship
between the unknown parameters. In this regard we note that the H; estimators f and n; are uncorrelated (in fact
they are stochastically independent), but f; . ; and 7; are substantially correlated (see Table 7.5). As all other rele-
vant correlations are negligible for large N; and M; (see Table 7.5), a possible solution is to use pairs of estimates
from every other year (e.g., fi, 7u, 3, A3, ...) in plotting graphs. This, too, has practical problems as only rarely would
enough data be available for this procedure to be useful.

We emphasize that in order to make use of such a procedure N; and M; must be large enough to provide estimates
with high precision. Finally, the use of reward bands (Sections 2.1, 9.2) in conjunction with such a procedure may
provide valuable information. Reward band studies are discussed by Henny and Burnham (1976).



