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method was discussed in conjunction
with estimation in Model M,. The con-
text here, however, is different since an-
imals are not reintroduced into the pop-
ulation after initial capture. Zippin (1956)
showed that the joint distribution of
{u,u,,...,u}, where u; represents the
number of animals removed on the j* oc-
casion, can be written as

P[{u17u27 .. .,Ut}] =
NI

[H wl (N = M)

pMH-L

N=S(t-j+ Dy

‘I-p) = ,

where p is the probability of removal of
any animal on any trapping occasion.
Because the parameter space is 2 di-
mensional (N and p are the only param-
eters) and the minimal sufficient statistic

t
{MH—I’ Zjuj}
=

is 2 dimensional, both parameters are
identifiable and may be estimated by
maximum likelihood. Such estimators are
derived in Appendix D, and are the same
as those used to estimate N and p in
Model M,

An estimator of population size N
based on the above model will clearly be
unsatisfactory if all animals present do
not have an equal probability of removal
on a given trapping occasion. In removal
experiments, unequal capture probabili-
ties can be caused by time variation or
heterogeneity or both. Behavioral varia-
tion is nonexistent since members of the
population are removed after first cap-
ture. We maintain that proper planning
and design of the removal experiment
can be used to control or reduce time
variation (see STUDY DESIGN). Thus, the
main problem lies in dealing with het-
erogeneity of capture (removal) probabil-
ities. In the following development, it is
argued that the estimation procedure pre-
viously proposed for Model My, is also
appropriate for estimation in removal
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models. Such a procedure represents a
generalization of Moran’s (1951) and Zip-
pin’s (1956, 1958) constant probability re-
moval model to the case in which heter-
ogeneous probability of removal exists. If
the set of removal probabilities p;, i =
1,2,... N, is assumed to be a random
sample of size N from some probability
distribution G(p; 8) parameterized by 6
and defined on [0, 1], then the distri-
bution of the vector of removals
{up,u,, .. .,u; can be written as

Pl{u,u,, ...
N!

[.ljuj!](N = Mg,)!

,ut}] =

{Elpl}*{E[1 - p)p]}*

-{E[1 — p)"'pl}= {E[(1 — p)}N-Me,
where
EL(1 ~ pp=ipl = [ (1~ p)'p 4G (p:0),
.] = > * )t’
E[(1 -p)l1=1- Y E[l - p)J'p]

This distribution is identical to the dis-
tribution of the removals {uju,,...u
under the conditions discussed in the
section on Model My,. Thus, it is easily
argued (cf. Appendix J) that the general-
ized removal method developed for Mod-
el My, is also appropriate for estimation
in removal models in which it is assumed
that heterogeneity of first capture proba-
bility exists. Details of this estimation
technique are given in Appendix H,
along with an estimator of the asymptotlc
variance of the populatlon estimator Ny
(the R stands for “removal,” but we note
that Ng is mathematlcally the same as
Nun) and a “failure” criterion that must
not hold if parameters are to be validly
estimated. This criterion ensures that a
sufficient decline in the population is
being effected by the successive remov-
als.

As explained in the material on esti-
mation of N in the section on Model M,
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our procedure is to look at a sequence of
removal models. These correspond to a
sequence of assumptions as follows: all
13] are equal, or p; # P, but Dy, = D3
= =Dy, Or P;#* Dy # P3, but Dy =Dy
= = Py, and so forth. The most general
model allows all p; to be different, but
this most general model does not allow
estimation of N. We define the specific
removal model Mgy as the model in
which the last t — k + 1 values of p; are
the same, and for k> 1, the first p; to Py
are different.

The estimation procedure is to test the
goodness of fit of the removal models se-
quentially from Mg, to Mg 5. Thus, we
are first testing whether the constant
probability model fits. If it does, we use
the corresponding maximum likelihood
estimator of N. If this simple model is
rejected by the chi-square test (at the
20% significance level in program CAP-
TURE), we then examine the case (mod-
el Mg,) of p; # D, bUt P2=pPs="""= D¢
The estimator of N, N, used in this gen-
eralized removal approach is taken as the
ML estimator of N for the selected re-
moval model.

Simulation Results
Bias and Confidence Intervals

A discussion of the bias of the estimator
of N associated with the generalized re-
moval method and of the usefulness of its
associated confidence intervals was pre-
sented in the material on Model My,
Briefly, the simulation study revealed
that the bias of the estimator of N was in
most cases not serious, but that confi-
dence intervals achieved only 50 percent
coverage on the average. Although the
results and discussion of that section
were presented in the context of a cap-
ture—-recapture experiment, all the mate-
rial is directly applicable here. Because
the 2 estimation procedures are identical,
the relevant data in both cases involve
only the removal statistics from popula-
tions with heterogeneous probabilities of
first  capture. Denoting the estimator of N
as Ny is intended to remind the reader
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that this section deals with strict removal
data.

Robustness

In the context of removal experiments,
the generalized removal method repre-
sents a significant step forward with re-
spect to robust estimation of population
size. It should be emphasized, however,
that the procedure is designed to be ro-
bust to failure of the assumption that all
animals have the same probability of first
capture, and not to failure of the assump-
tion that sampling effort is uniform over
trapping occasions. There is some indi-
cation in the simulation results that the
method performs adequately when there
is no heterogeneity of capture probability
but there is nonuniformity in sampling
rates over time. The method performs
very poorly, however, when both heter-
ogeneity and nonuniform sampling rates
are present. First, the percentage of ex-
periments which “fail,” as determined by
the failure criterion, can be very high.
For instance, in the population defined
by Trial 1 of Model My, the experiment
failed in every one of 100 simulations.
Secondly, when the experiment does
succeed, bias is usually significant. Some
simulated examples are given in Table 11
which help to substantiate these remarks.
Complete simulation results are given in
Table N.6.b of Appendix N.

" Example

Andrzejewski and Jezierski (1966) re-
ported the results of a study designed to
estimate population density of European
hare Lepus europaeus on experimental
hunting grotnds in Poland. Hares were
captured and removed by driving them
into nets surrounding the area. Results of
the application of the generalized remov-
al method to the data resulting from the
4 drives (removal occasions) are given in
Fig. 9. When k =1 (i.e., all animals are
assumed to have the same probability of
removal), a poor fit to the data results
(chi-square goodness of fit value is 13.5,
2 df, and p = 0.0014). For k=2, how-
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OCCASION J= 1 e 3 4

TOTAL CAUGHT M(J) = 0 722 913 88e 1018

NEWLY CAUGHT utdi=  7e2 191 69 36
K N-HAT SE (N) CHI-SQ. PROB. ESTIMATED P-BAR(J) ,J=1,..., 4
i 1028.21 3.789703 13.150 L0014 .6806 .6806 .6806 .6806
e 1039.10 7.658751 -1.528 2164 .6948 .5916 .5816 .5816

POPULATION ESTIMATE 1S 1039 WITH STANDARD ERROR 7.6588

APPROXIMATE 95 PERCENT CONF IDENCE INTERVAL 1023 T0 1055

HISTOGRAM OF U(J)

FREQUENCY 722 181 69 36

EACH * EQUALS 73 POINTS

730
657
584
511
438
365
292
219
146

73

-

w % % * & * x & * %

- *

FIG. 9. Example of population estimation under the variable probability removal model with data on
European hare from Andrzejewski and Jezierski (1966).

ever, an acceptable fit results (p = 0.2164) Ny = 1,039 + 7.66 seems much prefera-
and, therefore, the point and interval es- ble to the estimate. of 1,010 that results
timates corresponding to Model Mg, are from-ithe (commonly used) regression
chosen. In particular, the point estimate method used by Andrzejewski and Je-

TABLE 11.—COMPUTER SIMULATION RESULTS ILLUSTRATING THE ROBUSTNESS OF THE GENERALIZED
REMOVAL ESTIMATOR Ny USING DATA GENERATED UNDER OTHER MODELS (ALSO SEE APPENDIX N,
TaBLES N.2.b, AND N.5.b)

Percent Population Number Number of
relative bias size of reps occasions
RB Ave[Ng] N R t Data model
— 32 387.1 400 100 10 M,, Trial 61
- 9.0 364.1 400 100 7 M,, Trial 7
2.6 410.3 400 100 7 M,, Trial 9
- 0.2 199.7 200 100 5 M,, Trial 10
-19 272.6 400 100 5 M, Trial 2
22.3 489.1 400 100 5 M, Trial 4
-10.3 1794 200 100 7 My, Trial 5

1 For example, data generated under Model M, were used to estimate N, using the generalized removal method Np.
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OCCASION J= 1 4 3 4 5
TOTAL CAUGHT M(J)= 0 181 192 196 201 204
NEWLY CAUGHT U= 181 11 Y S 3
K N-HAT SE (N) CHI-SQ. PROB. ESTIMATED P-BAR(J),J=1,..., 5
1 204.00 .2094765 70.820 0.0000 .8160 .8160 .8160 .8160 .8160
=4 206.77 3.697937 1.555 4596 .8754 4029 .4029 .4029 .4029
3 208.43 B8.365668 1.0e1 L3124 .8684 4010 .3306 .3308 .33086
POPULATION ESTIMATE IS 207 WITH STANDARD ERROR 3.6979
APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 199 TO 215

HISTOGRAM OF U(J)

FREQUENCY 181 11 4 5 3

EACH * EQUALS 19 POINTS
190
171
152
133
114
95
76
57
38
18

* ® & ® ¥ x % & ¥ ¥

F1G. 10. Example of population estimation under the variable probability removal model with aquatic
insect data from R. F. Raleigh (pers. comm.).

zierski, because the number of hares actu-
ally removed was 1,018. The estimated cap-
ture probabilities for Model Mg, are p; =
0.6948, and p, = p3 = p. = 0.5916, a re-
sult that supports the idea that hetero-
geneity is operating.

Example

R. F. Raleigh (pers. comm.) provided
some results of a removal experiment in-
volving a species of mayfly Ephemerop-
tera. Mayflies were sampled from 10 ran-
domly placed 0.25-m? areas in a section
of the Poudre River streambed near Fort
Collins, Colorado, with 5 removal occa-
sions at each site. A special benthic
aquatic sampler was used in the study.
Because these are true removal data, the

generalized removal estimation proce-
dure was used to produce point and in-
terval estimates for N (Fig. 10). As in the
previous example, there is a poor fit for
the simple model with constant capture
probability (k = 1). When k = 2, how-
ever, a good fit to the data results and an
estimate Ny = 207, corresponding to
Model My, is produced. Note the differ-
ence between p,=0.8754 and p =
0.4029, indicating that a significant het-
erogeneity in removal probabilities may
exist. The computed confidence interval
is somewhat unsatisfactory because its
lower limit is less than the number of an-
imals actually seen, and reminds one that
in removal and livetrapping experiments,
conditions necessary for construction of
normal theory confidence intervals are
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OCCASION J= 1 e 3 4 s B8 7
TOTAL CAUGHT M{iN) = 4] a5 51 66 79 81 104 . 109
NEWLY CAUGHT UtJ)= 25 26 15 13 12 13 S
K N-HAT SE (N) CHI-SQ. PROB. ESTIMATED P-BAR(J) ,J=i,..., 7
1 138.07 14.67843 3.879 .5670 . 1980 .1980 . 1880 .1980 . 1980 .1980 . 1980
e 132.46 13.64926 3.623 4584 .1887 2218 .e218 .e218 .e218 .e218 .e218
3 141.63 25.85191 2.754 A311 . 1765 .eee9 .1829 . 1829 .1828 . 1829 .1829
Y4 136.96 20.14541 2.688 .2608 . 1809 2454 . 1876 .2339 .e339 .2339 .2339
S 118.54 10.21073 2.133 L 1wy .2109 2779 .eeel R-Crl) 3875 .3675 .3675
POPULATION ESTIMATE IS 138 WITH STANDARD ERROR 14.6794
APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 109 1O 167

HISTOGRAM OF U(J)

FREQUENCY e5 26 15 13 ie 13 S

EACH * EQUALS 3 POINTS
a7
4
21
18
15
1e
9
6
3
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FI1G. 11. Example of population estimation under the variable probability removal model with whitefish
data from Ricker (1958:150).

not satisfied. In this case, one should trun-
cate the lower limit to the actual number
removed, rather than using a lower limit
less than M,.,.

Example.

Ricker (1958:150) removed whitefish
Coregonus clupeaformis from Shake-
speare Island Lake in Ontario, Canada,
on 7 successive occasions by means of

gillnetting. Members of whitefish re-

moved in the 13- to 14-inch (3.3-3.6 cm)
length class are shown in Fig. 11, with
the results of the generalized removal
method. Notice that a good fit to the re-
movals is achieved for k = 1, so that Zip-
pin’s (1956, 1958) constant probability re-
moval model seems appropriate for
estimating N. The population estimate of
Ny = 138 is in close agreement with
Ricker’s estimate of 136 which was ob-
tained by using DeLury’s (1947) regres-

sion method assuming equal effort. (We
wish to reemphasize that on theoretical
grounds the ML estimation procedure is
superior to the various regression tech-
niques often used with removal studies.)
The 95 percent confidence interval esti-
mate of [109, 167] is very informative.
Moreover, the true confidence level of
the interval probably is close to the stated
level of 0.95, since the estimated proba-
bility of removal is nearly 0.20.

Discussion

Conducting a removal experiment for
purposes of estimating population size
may sometimes prove more feasible than
a capture-recapture approach (refer to
STUDY DESIGN for further discussion). In
such cases, the experimenter has avail-
able 2 classes of estimation procedures,
the catch—effort techniques usually asso-
ciated with Leslie and Davis (1939) and
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DeLury (1947) or the ‘“removal” tech-
niques first introduced by Moran (1951),
refined by Zippin (1956, 1958), and gen-
eralized here. It is felt that catch—effort
techniques are often not appropriate,
either because of the assumptions in-
volved or because the concept of effort
may be meaningless in many experimen-
tal situations. In those frequent situa-
tions, we believe the generalized remov-
al method provides the best approach to
estimating population size. The operat-
ing characteristics of this method are by
no means completely satisfactory, in
view of the results concerning confi-
dence interval coverage and the failure
of the experiment in some situations.
However, the fact that the method fails
in a given experiment does at least pre-
vent the use of wildly inaccurate esti-
mates in practice and helps to inform the
experimenter that the assumptions of
the method are not met and the quality
of the experiment needs to be upgraded
or the design altered, or both. Neverthe-
less, the method is the most general now
available in the literature that is capable
of providing useful results and, with fur-
ther research, improvements in the meth-
od: should be forthcoming.

TESTS OF MODEL ASSUMPTIONS

In preceding sections, we have recog-
nized 3 distinct sources of variation in
capture probabilities, and have given 8
models corresponding to presence or ab-
sence of specific types of variability. No
estimator of population size has been de-
rived from 3 of those models (My,, My,
Myn). Consequently, we have introduced
only 5 estimators that are identified be-
low, along with the models where they
should be used. The main purpose of this
section is to give a strategy for selecting
one of the estimation procedures based
on tests of the various underlying as-
sumptions.

Philosophy of the Approach

Our philosophy is that one should first
present the most general model structure

(i.e., assumptions) possible for the given
data. Then a series of specific alternative
models should be developed based on
specific assumptions that cover the var-
ious cases of realistic or theoretical inter-
est. Those alternative models form the
basis for both testing of assumptions and
estimating parameters. Under FUNDA-
MENTAL CONCEPTS, we gave the general
model framework considered here: pop-
ulation closure is assumed and captures
are assumed to be independent events
with capture probabilities

puj=1,..,ti=1,...N.

Such a model structure is useful only as
a conceptual starting point because none
of the parameters are estimable. Next, we
recognized 3 different sources of varia-
tion acting on these capture probabili-
ties: (1) variation over time, (2) behavior-
al variation as a result of first capture (trap
response), and (3) variation over individ-
uals (heterogeneity). We also recognized
the various possible combinations of
these sources of variation.

An almost infinite variety of very spe-
cific models could be constructed. We
examined 8 models likely to be generally
useful for estimation or testing purposes.
Those models can all be expressed in
terms of the assumptions about variation
in the capture probabilities. If each of the
8 models introduced had its own unique
estimation procedure, then selection of
an estimator would be synonymous with
selection of a model. Such is not the case
with only 5 estimators and 8 models. Our
strategy is to present a testing sequence
designed to lead to selection of the most
appropriate model. We define “appropri-
ate model” as the simplest model that
“fits” the data. When that selection gives
a model such as My, for which there is no
theoretically appropriate estimator, we
recommend (in some instances) using the
next best fitting model for which an es-
timator exists. It will occasionally be nec-
essary to conclude that no estimate of N
can legitimately be calculated from the
data.

It is important to recognize that we do
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not claim this model selection procedure
results in the “true” model. By true mod-
el for a capture study we mean that the
stated model is an exact representation of
the true capture probability structure for
that study. Any model is a simplification
that can realistically represent only the
more predominant features of the study.
Also, we must recognize that the most
appropriate model will depend upon the
amount of data we have. With good data
(large grids, many occasions) one might
be able to show, for example, that Model
My, was necessary. Yet, if the same study
used a much smaller grid, and fewer
days, it might be impossible to demon-
strate heterogeneity from the data them-
selves and Model M, might be indicated
as appropriate.

The conceptual goal of our model se-
lection procedure is to achieve an ac-
ceptable trade-off between precision and
bias. If one uses too simple a model, the
estimated population size is likely to be
severely biased yet have a deceptively
small sampling variance. If the model is
complex, but still the wrong one, then
estimators are again of uncertain bias. If
a model is chosen that is too general, the
risk of bias is much reduced, or negligi-
ble, but the sampling variance is larger
than it needs to be (i.e., we lose preci-
sion). Of those 2 cases, the safer one in
our opinion is to choose the more general
model in hopes of minimizing biases. We
state this as our conceptual goal because,
not knowing the true model, we can nev-
er be certain when analyzing real data
that we have made the best choice: of a
model.

This model selection procedure is

based on tests of assumptions of 2 types:

(1) tests between specific models, and (2)
general goodness of fit tests to specific
models. Before discussing these tests we
summarize the primary models and as-
sociated estimators.

Summary of Models and Estimators

Capture—Recapture Models

Because these models have been de-
scribed in detail, only a summary is given

below, in terms of assumptions and cor-
responding capture probabilities.

MODEL MOI Pis = P.

Comment: This is the most restrictive
model because capture probabilities
are assumed to be constant.

Estimation: We recommend the ML
estimator (see Appendix B); it does

not exist in closed form except fort =
2.

MODEL Mti Py = pj,j = 1, .. .,t.

Comment: Capture probabilities vary
only with time. This is the model
most frequently assumed (often im-
plicitly) in the literature.

Estimation: We recommend the ML
estimator (see Appendix C), it does
not exist in closed form, except for
t =2 (in which case it is the Lin- .
coln estimator). The Schnabel esti-
mator, or variations thereof, is often
used with this model, but is only an
approximation to the ML estimator.

MODEL M :’p~ _ [p for first capture,
be Fii ¢ for recapture.

Comment: This is the simplest model
of behavioral (trap) response and it
has been recognized in the literature
(Tanaka 1956).

Estimation: The ML estimator, which
is recommended (Appendix D), is a
special case of the generalized re-
moval estimator. Zippin's removal
model is equivalent to Model M, for
purposes of estimating N, but his
suggested estimator is only a close
approximation to the true ML esti-
mator. ‘

MODEL M;: py=p;,i=1, ..., N.

Comment: This model allows hetero-
geneity of capture probabilities over
animals, but allows no variation in
capture probabilities over time.

Estimation: The jackknife estimator
(Appendix E) is recommended when
M, is the underlying model; that es-
timator was derived specifically for
this model. Note, however, that there
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is no way to derive an optimal esti-
mator for Model My, if nothing is
known about how the capture prob-
abilities vary.

p; for any first cap-
ture, j=1,...t
¢; for any recapture,
ji=2,...t
Comment: This model allows variation
in capture probabilities due to both
time and behavior (trap response).
Estimation: Population size N is not
estimable under this model. There-
fore, there is no satisfactory estima-
tion procedure associated with this
model.

MODEL Mtb: P =

MODEL Mthi Pii = PiPj, _] = 1, .

1,...N

Comment: This is useful as a concep-
tual model of how time and hetero-
geneity might operate as a simple
product. No estimator can be derived
from this model.

Estimation: Population size N is not
estimable under this model if
straightforward methods are used.
Therefore, there is no satisfactory es-
timation procedure associated with
this model

Lo 1=

... _ [p; for first capture,
MODEL My: py = {ci for all recaptures,

i=1,...,N.

Comment: This model assumes heter-
ogeneity with trap respense, bt no
time variation as such in the capture
probabilities.

Estimation: The generalized removal
estimator should perform well here
(Appendix H). However, if none of
the generalized removal models fit,
no estimate can be produced using
this model.

py; for first capture,
¢;; for all recaptures,

i=1,...t
i=1,...N.
Comment: This is a conceptually use-
ful model because it represents the

MODEL Mtbh: Pis =

WILDLIFE MONOGRAPHS

TABLE 12.—MODELS AND SUGGESTED ESTIMATED
PROCEDURES

Theoretically

Model appropriate estimator

M, Null (K,)

M, Darroch (N,)

M, Zippin (Nb)

M, Jackknife (Ny)

My, (none)

My, (none)

M Generalized removal (Ny,).
M (none)

case in which all 3 sources of varia-
tion operate.

Estimation: Population size N is not
estimable under this model using
straightforward methods. Therefore,
there is no satisfactory estimation
procedure associated with this mod-
el.

Relationships Between Models

Table 12 summarizes some of the
above information. It is important to un-
derstand the relationship of the models
to one another in order to understand
testing between models. One can only
truly test one model against another
when one model is a special case of the
other. For example, Model M, is a special
case of each of the 3 models M;, My,, and
M,. But those 3 models are not related to
each other in any simple manner that al-
lows one to choose or test between them
with any simple statistical tests.

The relationships among these models
is shown in Fig. 12 using an arrow be-

“tween 2 models to indicate that one is a

special case of the other. For example,
M, < M; means Model M, is a special
case of Model M,, because if Model M, is
restricted by the assumption p; = p,
=+ = p, = p, Model M, results.

The selection of an appropriate cap-
ture-recapture model is neither simple
nor straightforward and there is, in fact, no
optimal or rigorous statistical theory to
guide this selection. The jumble of ar-
rows in Fig. 12 is indicative of the diffi-
culty.




STATISTICAL INFERENCE FROM CAPTURE DATA—Otis et al.

Specific Tests to Perform

Before we can give our strategy for
model, hence estimator, selection, it is
necessary to discuss exactly what hypoth-
esis can be tested concerning variations
in capture probabilities. Two types of
tests are made:

(1) Specific tests of one model versus a
more general model. For example,
testing Model M, vs. Model M, tests
for time variation in average daily
capture probabilities;

(2) General goodness of fit tests of a giv-
en model to the data. For example,
testing whether Model M, fits the
data amounts to testing whether time
variation is the only source of varia-
tion in capture probabilities.

There is a basic difference in the nature
of the hypotheses associated with those
2 different classes of tests. The objective
of the first class of tests is to establish
whether or not the more general model
produces a significantly better fit to the
data than the more restrictive model. On
the other hand, the goodness of fit tests
of the second class test whether or not the
data might reasonably have arisen from
the specified model.

Table 13 gives the 7 specific tests we
have used in the model selection proce-
dure. The reader should study Table 13
before proceeding. Program CAPTURE

_has been used to produce an example of
the tests. Results are presented in Fig. 13,
that is based on simulated data under
Model M, with parameters N =100, p =
0.50, and t = 5. The first 3 tests of the
model selection procedure separately test
each of the simple models M, My, M;
against Model M,. These are all chi-
square tests (see Appendix K for details).
The significance level of the tests is given
by the program. For example, in Fig. 13
under the test of Model M, vs. Model M,
(test 1) we have a chi-square test statistic
of 5.007 (3 degrees of freedom) and the
significance level (labeled PROBABILITY
OF LARGER VALUE) is 0.17127. Thus, that
test is not significant, and we have no

53
M:bh
M1><Mﬂ><Mbh
M, \Mb My,
M

F1G. 12. Relationships among models: arrows in-
dicate that one model is an immediate special
case of another model.

basis to believe there is any heterogeneity
of capture probabilities.

Similarly, the simple tests for behav-
ioral variation (Model M, vs. Model My,
test 2) and for time variation (Model M,
vs. Model M;, test 3) are not significant in
Fig. 13. Those tests had significance
levels of 0.98056 and 0.31935, respective-
ly. Based on only these results, we would
(correctly, in this case) conclude the ap-
propriate model is Model M,. When a
model more complex than M, is the ap-
propriate one, additional tests are needed.

In the second part of the model selec-
tion procedure, 4 more tests are pre-
sented. The first 3 are simple goodness
of fit tests to models My, M,, and M,. The
seventh is a test for behavioral response
in the presence of heterogeneity; hence
this test helps make a choice between M,
and M. That last test is included here
because we have an estimator for Model
Mbh.

The goodness of fit test of Model My,
(test 4) in Fig. 13 results in a chi-square
value of 4.556 (4 df) and has a significance
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OCCASION J= 1 2 3 4 S
ANIMALS CAUGHT N(J)= 56 47 54 60 48
TOTAL CAUGHT M(J)= 0 55 75 88 96 98
NEWLY CAUGHT Utd)= 55 20 13 8 2
FREQUENCIES Fl)= 10 38 26 20 4

1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(O) VS. ALTERNATE HYPOTHESIS OF MODEL M(H)

CHI-SQUARE VALUE = 5,007 DEGREES OF FREEDOM = 3 PROBABILITY OF LARGER VALUE = .1ne7

2. TEST FOR BEMAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(O) VS. ALTERNATE HYPOTHESIS OF MODEL M(B)

CHI-SQUARE VALUE = .001 DEGREES OF FREEDOM = 1 PROBABILITY OF LARGER VALUE =  .98056
3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)
CHI-SQUARE VALUE =  4.701 DEGREES OF FREEDOM = 4  PROBABILITY OF LARGER VALUE =  .31935
“. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)
CHI-SQUARE VALUE =  Y4.556 DEGREES OF FREEDOM = 4 PROBABILITY OF LARGER VALUE =  .33801
TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)
NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY
1 5.000 Y .28730
2 1.208 Y .86167
3 1.949 4 74519
4 5.500 u .23973
5. GOODNESS OF FIT TEST OF MODEL M(B) |
NULL HYPOTHESIS OF MODEL M(B) V5. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)
CHI-SQUARE VALUE =  5.183 DEGREES OF FREEDOM = 6 PROBABILITY OF LARGER VALUE =  .52053
SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBABILITY ACROSS TIME
CHI-SQUARE VALUE =  2.459 DEGREES OF FREEDOM = 3 ~ PROBABILITY OF LARGER VALUE =  .48276
5B. CONTRIBUTION OF TEST OF HOMOGENEITY OF RECAPTURE PROBABILITIES ACROSS TIME
CHI-SQUARE VALUE =  2.784 DEGREES OF FREEDOM = 3  PROBABILITY OF LARGER VALUE =  .43610
6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)
CHI-SQUARE VALUE = 50.465 DEGREES OF FREEDOM = S+  PROBABILITY OF LARGER VALUE =  .28338
7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY. )
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL "M(BH)
CHI-SQUARE VALUE =  7.471 DEGREES OF FREEDOM = 10 PROBABILITY OF LARGER VALUE =  .68036

MOOEL SELECTION CRITERIA. MODEL SELECTED HAS MAXIMUM VALUE.

MODEL M(O) M(H) M(B) M(BH) M(T) M(TH) M(TB) M(TBH)
CRITERIA 1.00 .96 .26 .51 0.00 S .33 .B4
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TABLE 13.—SPECIFIC TESTS OF ASSUMPTIONS USED IN THE MODEL SELECTION PROCEDURE

Test Source of variation
number tested for Null hypothesis Alternative hypothesis Comments
1. Heterogeneity Model M, fits Model M, fits This test examines the capture
the data the data frequencies to see if there is
evidence of variability among
individual capture probabilities

2. Trap response after Model M, fits Model M, fits This is a test for gross behavior
first capture the data the data effects on capture probabilities

3. Time variation in Model M, fits Model M, fits This tests for variation in aver-
capture probabilities  the data the data age daily capture probabilities.

Unfortunately the actual test is
also sensitive to Model M,

4. Trap response and/or Model M}, fits Model M, fails to  If M,, is the true model we ex-
time variation given  the data fit the data pect this. test not to reject. We
heterogeneity would also expect test 1 to re-

ject Model M, in favor of M

4a.  As above As above As above These tests are a specific form
of test 4, where for each sig-
nificantly large capture fre-
quency an individual test can be
made for trap response or time
variation or both

5. Heterogeneity and/or Model M,, fits Model M, fails to  If M, is the true model we ex-
time variation given  the data fit the data pect this test not to reject. We
trap response also would expect test 2 to re-

ject Model M, in favor of M,.
This goodness of fit test can be
partitioned into two specific
tests, useful in their own right
(5a, 5b)

5a. Heterogeneity and/or First capture prob- First capture prob- This testis identical to the good-
time variation using  abilities are abilities vary by ness of fit test for the simple re-
first capture only constant time and/or movel model

animals

5b. Heterogeneity and/or Recapture prob- Recapture prob- If M, is true then this null hy-
time variation using  abilities are all abilities vary by pothesis should not be rejected
only recaptures. constant time and/or

animals

6. Trap response and/or Model M, fits’ Model M, fails to  If M; is the model, then we ex-
heterogeneity given  the data fit the data pect this test to fail to reject,
time variation and we expect Model M, to be

rejected in favor of M,
7. Trap response given  Model M, fits Model My, fits This test is useful because if we
heterogeneity the data the data reject My, in favor of My, the
estimator to use is the gen-
eralized removal method
—

F1G. 13. Example of the model selection procedure tests with simulated data. True model is M, with
parameters N = 100, t = 5, and p = 0.5. Appropriate model is M,. Suggested estimator is Null.
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level of 0.33601. Thus, in this example
Model My, fits the data. This is expected
because Model M, is a special case of
Model M,,, and hence the tests should not
reject.

When individual capture frequencies
are large enough (we have used the cri-
teria f; > 2t) we have computed a good-
ness of fit test of Model M;, based on the
data for animals captured exactly f; times.
Theoretically, this can be done for all fre-
quencies f, ..., , that are large enough.

The goodness of fit test of Model M,
(test 5) can also be partitioned into 2 com-
ponents. Test 5a is actually the goodness
of fit test to Zippin's removal model, i.e.,
it tests whether the probability of first cap-
ture is constant over time. In Fig. 13, the
test statistic value is 2.459 with signifi-
cance level 048276. Thus, in this case
there is no evidence of variation in first
capture probability over time. The second
component of the test of Model M, (test
5b) examines for time variation in recap-
ture probabilities. In Fig. 13, the test sta-
tistic value is 2.724. The goodness of fit
test statistic for Model M, is the sum of
those 2 chi-square values. In Fig. 13, the
value is 5.183 (6 df) with significance level
0.52053. Thus, we conclude Model M, fits
the data. Again, we point out that Model
M, is a special case of M, so the result
is not surprising.

The final goodness of fit test is for Mod-
el M, (test 6). In Fig. 13, the test statistic
value of 59.465 (54 df) is not significant
(P = 0.28338). :

An alternate way of thinking of these
tests is as follows. The test of Model M,
vs. My tests whether there is heteroge-
neity of capture probabilities while the
goodness of fit test of Model M, tests
whether there is any additional source of
variation in capture probabilities due
either to behavior or time or both. If we
rejected Model M, in favor of M, and the
goodness of fit test to My, indicates My, fits
the data, we could conclude Model M,
was appropriate.

Similarly, the tests of Model M, vs. M,,
test for whether there is behavioral vari-
ation in capture probabilities, while the
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goodness of fit tests to Model M, exam-
ine whether any other source of varia-
tion is operating.

The 7 tests have been simulated to
study their size and power, and the re-
sults are presented in Appendix N. In
general, all the tests have good size prop-
erties, i.e., they tend not to reject when
the null hypothesis is true. However,
most of the tests lack power, i.e., they do
not always reject when they should. This
is particularly true for tests of heteroge-
neity (M, vs. M}, and the goodness of fit
test of My).

On the Need for an Objective
Selection Procedure

The above discussion and Fig. 13 il-
lustrate the general model selection ap-
proach. Conceptually, we examine the
results of the 7 tests of assumptions, and
on the basis of the results choose the ap-
propriate model. In the example used
(Fig. 13), the selection was not difficult.
However, for other models, and for much
real data we have seen, the judgemental
selection of an appropriate estimator can
be very difficult because (1) the tests are
not independent, in particular if behav-
ioral variation in capture probabilities is
present this can strongly affect the test
for time and heterogeneity effects; and
(2) for real data all 3 sources of variability
probably are present in varying degrees,
so all we can hope to do is select the most
appropriate model (the one that best de-
scribes the data). With respect to the first
point, consider what happens if Model
My is true. For example, assume 7 trap-
ping occasions with My, as the true model,
and p = 0.40, ¢ = 0.20. That is, prior to
being captured animals have a 0.40 cap-
ture probability, but due to behavioral
response (trap avoidance' in this case)
their capture probabilities drop to only
0.20 after first capture. The expected dai-
ly capture probability is given by

E(n;
P = 1(\11)’
These are constant only if the expected

i=1,...7.
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daily captures are constant. But as trap-
ping progresses the average daily capture
probability decreases as more and more
animals “shift” their capture probability
from 0.40 to 0.20 as a result of trap re-
sponse. A formula for p; in this case is

p=1=-A-pe+d - pip*
' 1-(1-p) ’
i=2, ...t

(p; =p). For the case above, we have

b;
0.400
0.275
0.237
0.220
0.211
0.207
0.204

When Model M, is true, the test for time
variation in capture probabilities (Model
M, vs. My will tend to reject Model M,
because the behavioral response does in-
deed “cause” time variation to be present
also.

The same sort of argument shows that
behavioral response “causes” heteroge-
neity on any given day. Consequently,
when Model M, is true, there is a strong
tendency for all of the simple tests to re-
ject Model M,, making selection of the
correct model difficult.

In the final analysis, selection of a mod-
el involves examining a point in a 7-di-
mensional space and trying to classify it
into 1 of 8 categories. We have not been
successful ourselves in providing a set of
simple rules for this choice and believe
that field biologists without rigorous sta-
tistical training might have great difficul-
ty arriving at a proper choice.

\loam»hwm»—l|=.

An Objective Model
Selection Procedure

The problem identified in the previous
section falls in the realm of multivariate
statistics, specifically classification of an
unknown entity into one of several dif-
ferent known populations. In the classi-
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cal version of this problem, one has a
sample of measurements from each
known population, and from those data a
mathematical rule is constructed for clas-
sifying future cases based on their mea-
surements. In our case, the “measure-
ments” are the significance levels from
the 7 tests. The “populations” are the 8
models. What is unknown is what model
best fits any capture data at hand. Given
this conceptualization, we chose to use
discriminant function analyses to con-
struct the classification function (see
Cooley and Lohnes 1962). The objective
of the discriminant analysis is to weight
and linearly combine the significance
levels of the 7 tests in some fashion so
that the models are forced to be as statis-
tically distinct as possible.

The model classification function was
derived from simulated data where the
true model is known. The capture prob-
ability structure of these simulated data
is presented in Table 14. These parame-
ter values were chosen because they are,
in our opinion, representative of many
real capture studies. For each population,
100 replications were generated, giving
a total of 1,600 cases. The probability
levels from each of the 7 tests were then
used to construct the classification func-
tion. In addition to the 7 probabilities, 9
additional variables were constructed by
taking all possible products between
probability levels from tests 1-3 and tests
4-6, i.e. by taking the 9 pairwise prod-
ucts of the probabilities from the 3 spe-
cific tests against Model M, and the 3
goodness of fit tests. This provides a
total of 16 variables that were transformed
by X = log(P + 0.01). That transformation
tends to weight the smaller probability
levels more heavily than the larger values”
close to 1. The classification rule result-
ing from that series of transformations was
one of many rules examined; this par-
ticular rule was chosen because it had
the best performance.

The transformed variables were then
used to compute a classification function
using the SPSS discriminant procedure
(Nie et al. 1975) . The classification func-
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TABLE 14 —CAPTURE PROBABILITY STRUCTURE FOR THE SIMULATED DATA USED TO GENERATE THE
CLASSIFICATION FUNCTION. ONE HUNDRED REPLICATIONS OF EACH TYPE WERE GENERATED, GIVING
A TOTAL SAMPLE SIZE OF 1,600

Model Probability Structure
LARGE POPULATION (N = 400, t = 7)

M, p = 0.30.
M, p=015i= 1,100; p; = 0.25, i = 101,200; p; = 0.35, i = 201,300; p; = 0.45, i = 301,400.
M, p=02;¢c=0.5.
My pi=0.15, ¢, = 0.375, i = 1,100; p; = 0.25, ¢, = 0.625, i = 101,300; p, = 0.35, ¢; = 0.875,
i = 301,400.
M, p: = 0.15; p, = 0.45; p; = 0.35; p, = 0.25; p; = 0.30; ps = 0.20; p, = 0.40.
Mu  py=pi'ps b = 045, i = 1,100; p;, = 0.55, i = 101,200; p, = 0.65, i = 201,300; p; = 0.75,
i = 301,400; p, = 0.65; p, = 0.75; p; = 0.55; p, = 0.35; p; = 0.60; p; = 0.50; p, = 0.80.
My  ps=pyrg ¢ =2.50; p, = 0.05; p, = 0.35; p; = 0.25; p, = 0.15; ps = 0.20; ps = 0.10; p, = 0.30.
Man Py = PP B = 0.15, i = 1,100; p; = 0.25, i = 101,200; p; = 0.35, i = 201,300; p, = 0.45,
1= 301,400; ¢ = 2.50; p, = 0.65; p, = 0.75; p; = 0.55; p, = 0.45; p; = 0.60; ps = 0.50,
p; = 0.70.

SMALL POPULATION (N = 100, t = 5)

M, p = 0.10.

My p;=0051= 125 p; =0.15 i = 26,50; p; = 0.25, i = 51,75; p, = 0.35, i = 76,100.

M, p=040;c= 020

My, p= 015, ¢; = 0.075, i = 1,33; p; = 0.25, ¢; = 0.125, i =.34,66; p, = 0.35, ¢, = 0.175, i = 67,100.

M, p; = 0.15; p, = 0.45; p; = 0.35; p, = 0.25; p, = 0.30. :

Ma by =pirps o= 035, i = 1,25; p; = 045, i = 26,50; p, = 0.55, i = 51,75; p, = 0.65, i = 76,100;
p: = 0.65; p, = 0.75; p; = 0.55; p, = 0.35; p, = 0.60.

Mp  py=ps-c; ¢ =0.5; p; = 0.35; p, = 0.25; p; = 0.15; p, = 0.20; ps = 0.30.

Mun Dy =pi'py-c; b = 0.15,i = 1,25; p; = 025, i = 26,50; p; = 0.35, i = 51,75; p, = 0.45, i = 76,100;
¢ = 0.75; p, = 0.65; p, = 0.75; p; = 0.55; p, = 0.45; p; = 0.60. )

tion consists of 8 sets of coeflicients (1 set  centroids for the transformed probability
for each of the 8 models) that are used to  levels. The i™ function has the form
form linear combinations of the 16 vari- -

. . . Ci = Cjp + Cﬂ'Xl + Cig'Xz
ables plus an intercept. The classification e
equations are derived from the pooled ' e 16
within-model covariance matrix and the The 136 classification coefficients are

TABLE 15.—CLASSIFICATION FUNCTION COEFFICIENTS USED IN THE MODEL SELECTION PROCEDURE

Coefficient M(O) M(H) M(B) M(BH) M(T) M(TH) M(TB) M(TBH)
Co —8.09154 —14.33446 —25.69392 —17.15981 -31.90722 -23.20432 —26.11839 —15.07368
Cl 2.44865 1.55835 2.41361 2.09104 4.85352 4.52842 4.58145 1.01685
C2 0.01513 0.76894 0.34328 —0.30063 4.19868 3.36253 -—-1.18146 —0.78482
C3 5.60627 7.61750 4.45155 2.65005 -3.83028 —4.33794 3.81010 1.97090
C4 2.31654 2.43157 -~1.90418 1.85727 4.11214 3.84041 0.07484 5.00658
C5 0.39009 0.24251 2.57294 2.95937 -0.37644 —0.30277 -0.73170 -1.36695
Cé6 1.59847 1.50362 5.40943 0.82379 3.29315 2.76447 4.77294 0.91642
Cc7 —1.07536 —0.75833 -1.39342 —0.92010 -1.87794 047319 -146921 -0.87191
C8 —-0.95870 -2.99247 -0.29576 0.83512 -1.39938 —1.28509 -1.44532 —2.06608
C9 —-4.23372  -5.76230 -1.30645 -3.97856 —4.93318 —4.85310 -3.75607 —7.44977

C10 0.73672 2.16608 1.71422 —-0.11956 1.32575 2.28866 1.74703 2.68257
Cl1 -0.90843 -0.51321 0.06944 —-2.67855 -2.69316 —2.01668 —1.73071 1.08225
Cl2 1.54069 2.72345 -4.56388 -2.53049 -5.55330 —2.64194 0.53878 2.03048
Cl13 —549376 -6.30792 -2.38615 -2.14175  4.38634 —0.03381 —2.06993 '—5.17029
Cl4 —3.30107 —2.40404 -—5.13204 -2.38473 -3.79996 -4.33330 -4.76823 -—2.41632
C15 —0.19891 142895 —-2.26381 —0.48135 0.35309 -2.42112 -1.92578 -0.09665
C16 ~2.04687 -3.46579 -4.06512 —1.73548 —4.64956 —1.59132 -3.89432 —-1.80314
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TABLE 16.—CAPTURE PROBABILITY STRUCTURE USED TO SIMULATE GOOD, MEDIUM, AND POOR DATA TO
STUDY THE OPERATING CHARACTERISTICS OF THE MODEL SELECTION. PROCEDURE. A POPULATION OF 400
WAS TRAPPED 7 OCCASIONS FOR 200 CASES

Model

Probability Structure

GOOD DATA (Average p = 0.35)

M, p=035

M, pi=0.5,i=1100;p =04,i=101200; p,=03,i=201300;p =02,i= 301,400.

M, p=05c=02

p: = 0.35, ¢; = 0.50, i = 301,400.

pi = 0.65, ¢; = 0.10, i = 1,100; p; = 0.55, ¢; = 0.15, i = 101,200; p; = 0.45, ¢; = 0.10, i = 201,300;

M, p: = 0.35, py = 0.45, p; = 0.25, p, = 0.35, p; = 0.20, pe = 0.50, p; = 0.35.

Py =Py Py = 0.9, i = 1,100; p; = 0.8, i = 101,200; p; = 0.7, i = 201,300; p; = 0.6, i = 301,400,

p: = 0.5; p. = 0.6; p; = 0.4; p, = 0.5; ps = 0.35; ps = 0.65; p; = 0.5.

Pu= D¢ ¢ = L5; p, = 0.3; p, = 0.45; py = 0.15; ps = 0.3; p; = 0.2; pg = 0.4; p, = 0.3.
Py =pPi'pyrep =05,1=1100;p = 04,i= 101,200; p; = 0.3,i = 201,300; p; = 0.2, i = 301,400;

c=15p, =0.7;p,=07; ps = 04; ps = 0.4; p; = 0.7, pe = 0.9; p; = 0.87.
MEDIUM DATA (Average p = 0.20)

M, p = 0.20.

M, p=03,i=1100; p; = 06.25, i = 101,200; p; = 0.15, i = 201,300; p; = 0.10, i = 301,400.

M, p=0.15c=0.03.

p; = 0.25, ¢; = 0.2, i = 301,400.

pi = 0.35, ¢; = 0.05, i = 1,100; p, = 0.4, ¢; = 0.1, i =101,200; p; = 02, ¢; = 0.05, i = 201,300;

M; Py = 0.02; p, = 0.35; p; = 0.05; p, = 0.2; ps = 0.1; ps = 0.3; py = 0.2.

Py = DD by = 0.7, 1 = 1,100; p, = 0.55,1 = 101,200; p, = 0.45, i = 201,300; p, = 0.3, i = 301,400;

Py = py-c; ¢ = 0.33; p, = 0.30; p, = 045; p; = 0.15; p, = 0.30; ps = 0.20; ps = 0.40; p, = 0.30.
Py = PPy b = 0.3, i = 1,100; p; = 0.25, i = 101,200; p; = 0.15, i = 201,300; p; = 0.10,

i = 301,400; ¢ = 2.00; p; = 0.50; p, = 0.65; p; = 0.35; p, = 0.50; ps = 0.40; pe = 0.70;

POOR DATA (Average p =~ 0.05)

My
p. = 0.4; p, = 0.55; p; = 0.25; py = 0.4; ps = 0.3; pe = 0.5; p; = 0.4.
My,
Mipn
p; = 0.50.
M, p=0.05

My, = 0.09,i=1,100; p; = 0.05, i = 101,300; p, = 0.10, i = 301,400.

M, p=0.075;c=0.01.

p. = 0.07, ¢ = 0.03, i = 1,100; p; = 0.03, ¢; = 0.08, i = 101,300; p; = 0.01, ¢; = 0.09, i = 301,400.

M, p: = 0.05; p, = 0.01; p; = 0.09; p, = 0.05; p; = 0.07; ps = 0.03; p, = 0.05.

Dy = pi'Dy; pi = 020, i = 1,100; p, = 0.25; i = 101,200; p; = 0.05, i = 201,300; p; = 0.10,

i = 301,400; p, = 0.33; p, = 0.10; ps = 0.10; p, = 0.333; p; = 0.50; ps = 0.50; p, = 0.33.

Py = py-c; ¢ = 0.10; p; = 0.10; p, = 0.15; p; = 0.053; ps = 0.10; p; = 0.19; ps = 0.01; p; = 0.10.
Py = py' Dy ¢ py = 0.20, i ='1,100; p; = 0.25, i = 101,200; p; = 0.05,i = 201,300; p; = 0.10,

i = 301,400; ¢ = 2.00; p, = 0.20; p, = 0.15; p; = 0.20; p, = 0.05; p; = 0.05; ps = 0.15;

pr = 0.37.

given in Table 15. The 8 C; values are
then standardized over the interval 0 to
1 to give the model selection criteria.
These standardized “model selection cri-
teria” are printed by program CAPTURE
right after the 7 tests (cf. Fig. 13).

Given the classification functions, an
evaluation of their usefulness must be
made. Again, data are required where the
underlying models are known; this is only
possible with simulated data. Hence, we
simulated 3 additional data sets: 200 repli-
cations each of good, medium, and poor
data for each model. In all cases, we used

N = 400 and t = 7. The good data had an
approximate overall average capture
probability p of 0.35, medium p was ap-
proximately 0.20, and poor p was approx-
imately 0.05. The capture probability
structure of these data is given in Table
16.

We analyzed each data set and selected
a model based on the classification func-
tion described above. This allows an
evaluation of the selection procedure,
i.e., how often a wrong model is chosen,
and which models tend to be confused.
These results are given in Tables 17-19
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TABLE 17.—PERFORMANCE OF THE MODEL SELECTION PROCEDURE WITH GOOD DATA. THE TRUE MODEL

FROM WHICH THE DATA WERE GENERATED IS'AT THE TOP, AND THE MODEL SELECTED BY THE CLASSIFICA-

TION FUNCTION ON THE SIDE. THE ENTRIES ARE THE PERCENTAGE OF TIMES THE MODEL WAS SELECTED,
THE AVE(N), AND THE 95% CONFIDENCE INTERVAL COVERAGE

Data generated from model

Model All
selected M, M, M, My M, My, M, Mipn data
70.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 9.1
M, 399.7 382.2 - - - - - - 399.1
0.957 0.200 - - - - - - 0.931
21.5 93.5 0.0 0.0 0.0 0.0 0.0 0.0 14.4
M, 414.0 427 .4 - - - - - - 424.9
0.349 0.059 — - — — - - 0.113
0.0 0.0 90.0 0.0 0.0 0.0 0.0 0.0 11.3
M, - - 399.7 - - - - - 399.7
- - 0.922 - - - - - 0.922
6.5 1.5 0.5 93.0 0.0 0.0 0.0 0.0 12,7
Myn 394.2 396.3 399.0 396.6 - — - - 396.4
0.692 1.00 1.00 0.575 - - - - 0.591
1.0 0.0 0.0 0.0 82.0 58.5 2.0 0.0 17.9
M, 404.0 - — - 399.8 396.3 372.0 - 398.0
1.00 — — - 0.951 0.829 0.0 - 0.888
0.0 1.0 0.0 0.0 6.5 39.5 0.5 0.0 5.9
M - - - - - - - - -
0.0 0.5 9.5 0.0 11.0 2.0 95.0 37.0 194
Mtb - - - - - - - - -
1.0 1.0 0.0 7.0 0.5 0.0 2.5 63.0 9.4
Mtbh - - - - - - - - -
Mean population
estimate 402.5 425.8 399.7 396.6 399.8 396.3 372.0 -
Coverage 0.808 0.077 0.923 0.575 0.951 0.829 0.0 -

for the 3 types of data. However, our in-
terest in these simulated data does not
stop with the results of the model selec-
tion. Even more informative is how well
the estimator performed when the wrong
model was selected (we know that esti-
mator performance usually is acceptable
when the correct model is used). Infor-
mation on the Ave(N) and confidence in-
terval coverage is also given in Tables
17-19 for all estimators. The tables also
provide summaries by model selection
and by data type.

Those tables again emphasize the im-
portance of high capture probabilities.
The estimates and coverage coefficients
drastically decline in usefulness as the
capture probabilities decline. In addi-

tion, the correct model is much less likely
to be selected for poor data. Note that in
Table 19 (the poor data case), Model M,
is selected 34.7 percent of the time
(whereas it is the true model only 12.5%
of the time), and that Ave(N,) is 745.5.
For good data, such a discrimination
procedure will do quite well in selecting
the appropriate model. We suggest that
users knowledgeable in statistics and ex-
perienced in analysis of capture data may
sometimes be able to render an improved
judgement about the approrpriate model
for real data. However, the field biologist
should probably accept the model rec- -
ommended by the model selection algo-
rithm. The primary reason for this is the
problems with dependence among tests



STATISTICAL INFERENCE FROM CAPTURE DATA—Otis et al. 61

TABLE 18—PERFORMANCE OF THE MODEL SELECTION PROCEDURE WITH MEDIUM DATA. THE TRUE

MODEL FROM WHICH THE DATA WERE GENERATED IS AT THE TOP, AND THE MODEL SELECTED BY THE

CLASSIFICATION FUNCTION ON THE SIDE. THE ENTRIES ARE THE PERCENTAGE OF TIMES THE MODEL
WAS SELECTED, THE AVE(N), AND THE 95% CONFIDENCE INTERVAL COVERAGE

Data generated from model

Model All

selected M, M, M, Mon M, My My, Mun data
68.0 28.0 0.0 0.0 0.0 0.0 0.0 0.5 12.1
M, 400.8 361.1 - - - - — 234.0 388.4
0.971 0.089 - - - - - 0.000 0.710
18.5 66.5 0.5 0.0 0.0 0.0 0.0 0.0 10.7
M, 484.7 449.7 890.4 - - - - - 459.9
0.000 0.399 0.000 - - - - - 0.310
1.0 0.0 81.0 58.0 0.0 0.0 0.0 1.5 17.7
M, 427.0 - 397.2 388.4 - - - 783.0 3979
0.500 - 0.951 0.681 - - — 1.000 0.837
7.5 3.0 9.0 32.0 0.0 0.0 0.0 3.5 6.9
Mun 409.3 382.0 471.8 390.1 - - - 467.1 410.6
0.667 0.333 0.949 0.688 - - - 1.000 0.727
1.0 0.0 0.0 0.0 57.5 67.5 0.0 1.5 15.9
M, 405.0 - - - 400.3 3779 - 251.3 386.7
1.000 - - - 0.974 0.593 - 0.000 0.761
3.0 2.0 0.0 0.0 10.5 25.5 0.0 115 6.6

Mg — - - - - - - — -
0.0 0.0 8.5 8.5 31.5 6.5 98.0 65.0 27.2

My, - - - - - - - - -
1.0 0.5 1.0 1.5 0.5 0.5 2.0 16.5 2.9

M - - - - - - - - -

Mean population
estimate 418.0 4222 407 .4 389.0 400.3 377.9 — 471.9
Coverage 0.755 0.308 0.945 0.683 0.974 0.593 - 0.714

and the fact that with real data it is highly
unlikely that any of these § models will
be exactly “true.

Estimation in Alternative Models

When the model selection procedure
described above has classified a model as
the best one for a given set of data, 2
problems may still arise. First, the model
may not have an associated estimation
procedure for estimating N. Second, the
model with the largest selection value
(always 1.0) may not really fit the data,
even though it is the “best” model avail-
able. In the first case, the investigator
should scan for a large selection value
(say 0.90) corresponding to a model hav-

ing an estimator. If such a model is found,
and if the relevant tests of model as-
sumptions suggest that the goodness of
fit of the model is adequate, the corre-
sponding estimator can be used with
some confidence. We would caution,
however, against using models with se-
lection values less than 0.75 to produce
estimates of N, especially if there is a
poor fit of the model to the data. In the
second case, none of the models with cor-
responding estimation procedures seems
to fit the data well; where fit is judged by
the model selection procedure and in-
spection of individual tests, then we can
see no justification for granting statistical
validity to any calculated population es-
timate.
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TABLE 19.—PERFORMANCE OF THE MODEL SELECTION PROCEDURE WITH POOR DATA. THE TRUE MODEL

FROM WHICH THE DATA WERE GENERATED IS AT THE TOP, AND THE MODEL SELECTED BY THE CLASSIFICA-

TION FUNCTION ON THE SIDE. THE ENTRIES ARE THE PERCENTAGE OF TIMES THE MODEL WAS SELECTED,
THE AVE(N), AND THE 95% CONFIDENCE INTERVAL COVERAGE

Data generated from model

Maodel i All
selected M, M, M, % M, My, My, Mn data
79.0 74.0 39.5 83.0 0.0 1.0 0.0 1.0 34.7
M, 417.5 316.3 3,229.7 270.2 - 342.5 - 146.5 745.5
0.949 0.547 0.557 0.386 - 0.500 - 0.000 0.615
13.0 18.5 4.5 11.0 1.0 9.0 0.0 5.0 7.8
M, 377.7 336.5 612.2 255.6 374.6 347.1 - 210.5 342.8
' 0.923 0.514 0.000 0.000 1.000 0.611 - 0.000 0.452
0.5 1.0 14.0 0.0 0.0 0.0 0.0 0.0 1.9
M, 158.0 156.0 272.8 - - - - - 261.6
0.000 0.000 0.250 - - - - - 0.226
3.0 4.0 33.0 2.0 0.0 0.0 0.0 0.0 5.3
M, 174.7 172.1 359.5 123.3 - - - - 317.2
0.000 0.000 0.924 0.000 - - - - 0.726
1.0 0.5 0.0 1.5 83.5 24.5 2.0 68.0 22.6
M, 366.5 246.0 - 216.7 406.7 325.9 2,983.0 164.5 331.0
1.000 0.000 - 0.000 0.940 0.653 0.000 0.059 0.550
1.5 0.5 0.5 1.5 5.0 5.0 0.0 0.5 1.8
M - - - - - - - - -
0.5 0.0 4.5 0.0 1.0 0.0 92.5 0.0 12.3
My, - - - - - - - - -
_ 1.5 1.5 4.0 1.0 9.5 60.5 5.5 25.5 13.6
Mipn - - - - - - - - -
Mean population
estimate 402.7 312.2 1,604.5 264.7 406.3 3319 2,983.0 167.4
Coverage 0.912 0.510 0.615 0.328 0.941 0.638 0.000 0.054

Additional Examples of
Model Selection

As part of a population ecology study
on salt marsh rodents, Coulombe (1965,
unpublished master’s thesis, University
of California, Los Angeles, California),
conducted a livetrapping study on an out-
break of feral house mice Mus musculus
in a salt marsh in mid-December 1962, at
Ballana Creek, Los Angeles County, Cal-
ifornia. A square 10 X 10 grid was used
with traps spaced 3 m apart and trapping

was done twice daily, morning and eve-
ning, for 5 days. Thus there are 10 trap-
. ping occasions, but we can expect time
variation in capture probabilities: be-
tween morning and night occasions. The
entire data set of 173 distinct individuals
captured included young and adult, and
male and female. Thus, we might also
expect some heterogeneity of capture
probabilities.
From the model selection procedure
(Fig. 14), there is clear evidence of time

—

F1G. 14. Example of the model selection procedure applied to Coulombe’s (unpublished thesis) full
data set. Appropriate model probably is M. No estimator results from the model.
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OCCASION = 1 2 3
ANIMALS CAUGHT N(J)= 68 61 62
TOTAL CAUGHT M(D= 0 68 102
NEWLY CAUGHT = 68 34 @6
FREQUENCIES Flh= e B4 40

1. TEST FOR HETEROGENEITY OF TRAPPING
NULL HYPOTHESIS OF MODEL M(Q) VS,

CHI-SQUARE VALUE = 48.576

2. TEST FOR BEHAVIORAL RESPONSE AFTER

4 5 6 7 8 9 10
B2 T4 41 % 3% 76 39
128 140 156 159 171 171 173 173
12 16 3 te ¢ e 0
31 16 13 s 1 0 1

PROBABILITIES IN POPULATION.
ALTERNATE HYPOTHESIS OF MODEL M{H)

DEGREES OF FREEDOM = 6  PROBABILITY OF LARGER VALUE = 0.00000

INITIAL CAPTURE.

NULL HYPOTHESIS OF MODEL M(O} VS. ALTERNATE HYPOTHESIS OF MODEL M(B)

MODEL SELECTION CRITERIA. MODEL SELECTED HAS MAXIMUM VALUE.

MODEL M(0) M(H) MB) M(BH) M(T) M(TH)
CRITERIA .15 .24 .03 .e2 .26 1.00

CHI-SQUARE VALUE = 1.848 ~ DEGREES OF FREEDOM = 1 PROBABILITY OF LARGER VALUE = . 17400
3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(0)' VS. ALTERNATE HYPOTHESIS OF MODEL M(T)
CHI-SOUARE VALUE = 62.246 DEGREES OF FREEDOM = 9  PROBABILITY OF LARGER VALUE = 0.00000
4. GOODNESS OF FIT TEST OF MODEL M(H) )
NULL HYPOTHESIS OF MODEL M(H)} VS. ALTERNATE HYPOTHESIS OF NOT MODEL M{H)
CHI-SQUARE VALUE = 57.151 DEGREES OF FREEDOM = 9  PROBABILITY OF LARGER VALUE = ©.00000
TEST OF MODEL M(H} BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)
NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY
2 : t4.027 9 .12136
3 6.857 9 .65199
Y4 27.387 9 .00121
5. GOODNESS OF F1T TEST OF MODEL M(B}
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)
CHI-SQUARE VALUE = 68.087 DEGREES OF FREEDOM = 15 PROBABILITY OF LARGER VALUE = 0.00000
SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBABILITY ACROSS TIME
CHI-SQUARE VALUE = 24.780 DEGREES OF FREEDOM = 7  PROBABILITY OF LARGER VALUE = .00083
5B. .CONTRIBUTION OF TEST OF HOMOGENEITY OF RECAPTURE PROBABILITIES ACROSS TIME
CHI-SQUARE VALUE = 43,307 DEGREES OF FREEDOM = 8 PROBABILITY OF LARGER VALUE = .00000
6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)
CHI-SQUARE VALUE = 162.329 DEGREES OF FREEDOM = 125 PROBABILITY OF LARGER VALUE = .01386
7. TEST FOR BEHAVIORAL RESPONSE [N PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H} VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)
CHI-SQUARE VALUE =  31.439 DEGREES OF FREEDOM = 24+ PROBABILITY OF LARGER VALUE = . 14153
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and heterogeneity variation, but little in-
dication of behavioral variation. Note
also that none of the simple models (M,
M,, My) fit the data. The model selection
criteria strongly suggest Model My, as ap-
propriate, but there is no estimator asso-
ciated with this model. To obtain an es-
timator, we can look for the next most
likely model, which is My, (selection cri-
teria = 0.66); however, there is no esti-
mator for that model either. In fact, to get
a model allowing estimation we would
have to use either M, M;,, or My;,. Unfor-
tunately, the value of the selection cri-
teria corresponding to those models is too
low to allow legitimate choice of one of
the models for estimation purposes.
Therefore, the investigator must realize
that none of the models can be used to
estimate population size with the data in
the present form.

One alternative is to simply take the
total number seen (M,.,) as the best es-
timate. Given good data, M,, will be
nearly equal to N. Also with good data
one will tend to reject the simpler
models. The real measure, however, of
good data comes from such things as t, n./
M;,,, the pattern of the new captures (the
u;’s) and the apparent average capture
probability (average p is 0.3 here using
N = 173 = Myy). In good data, very few
new animals will be caught by the last
few occasions; in Coulombe’s data, only 2
new animals were caught after the sev-
enth occasion. Similarly, the capture fre-
quency data should show many animals
caught 2, 3, 4, or more times and there
should not be a strong spike at f; (cap-
tured once only). By all these measures,
Coulombe’s data suggest that almost all

the population was caught. Thus, here-

we would suggest taking 173 as the esti-
mated population size.

Under those circumstances, we would
also expect the point estimate of N from

WILDLIFE MONOGRAPHS

all 5 possible estimators to be in close
agreement with the value of 173. In fact
the results for Coulombe’s full data set
are:

) Standard
Estimator Value error
N, 176 1.8
N 175 1.6
Ny 174 1.6
Nn 175 1.8
Ny 173 0.2

These are all very similar and precise.
Note that in general it is not appropriate
to compute all estimates. We recommend
it only when there is strong evidence all
animals were captured, in which case it
provides an additional check.

As a further example, Fig. 15 shows the
model selection results using only the
morning capture data from Coulombe’s
(unpublished thesis) study (i.e., pretend-
ing the evening captures never oc-
curred). Presumably, this would elimi-
nate most of the time variation, but not
heterogeneity. The selection criteria ver-
ify this conjecture.

Model selection

Model criteria
M, 0.99
M, 1.00
M, 0.58
Mun 0.74
M, 0.00
M 0.46
Mg, 0.53
M sn 0.80

When the criteria value for 2 or more
models exceed 0.95, the program does
not just suggest 1, but names the 2
models that have the highest criteria.
Thus, in this case the choice between
models M, and M, is not clear cut. As a
standard operating procedure, we rec-

— .

F1c. 15. Example of the model selection procedure applied to Coulombe’s (unpublished thesis)
morning trapping occasions (Occasions 1, 3, 5, 7, 9). Appropriate model probably is M, or M,
Suggested estimator is jackknife.
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OCCASION J= 1 e 3 4 5
ANIMALS CAUGHT N(J= 68 B2 ™ 6 76
TOTAL CAUGHT M(J)= 0 68 103 127 153
NEWLY CAUGHT Uthr= 68 3B 24 26 7
FREQUENCIES F(d)= 45 59 36 15 o)
1. TEST FOR HETEROGENEITY OF TRAPPING
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE
CHI-SQUARE VALUE = 5.051

2. TEST FOR BEHAVIORAL RESPONSE AFTER

HYPOTHESIS OF MODEL M(0) VS.
CHI-SQUARE VALUE = 2.271

3. TEST

NULL HYPOTHESIS OF MODEL M(O}

CHI-SQUARE VALUE = 3.667

4. GOODNESS OF FIT TEST OF MODEL M(H)

DEGREES OF FREEDOM = 3

DEGREES OF FREEDOM = 1

DEGREES OF FREEDOM = 4

160

PROBABILITIES IN POPULATION.

HYPOTHESIS OF MODEL M(H)

PROBABILITY OF LARGER VALUE

INITIAL CAPTURE.
ALTERNATE HYPOTHESIS OF MODEL M(B)

PROBABILITY OF LARGER VALUE

FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
VS. ALTERNATE HYPOTHESIS OF MODEL M(T)

PROBABILITY OF LARGER VALUE

NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL. M(H)

CHI-SQUARE VALUE = 3.674

DEGREES OF FREEDOM = 4

PROBABILITY OF LARGER VALUE

TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)

NUMBER OF CAPTURES CHI-SQUARE D.F.

PROBABILITY

1 3.333
=4 4.362
3 3.07%
4 2.667
5. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE

£ £ £ £

CHI-SQUARE VALUE = 10.240 = DEGREES

SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF

CHI-SQUARE VALUE = 7.735  DEGREES

58. CONTRIBUTION OF TEST OF HOMOGENEITY OF

CHI-SQUARE VALUE = 2.505 DEGREES

6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE
CHI-SQUARE VALUE =

115.230 DEGREES

.50367
.35928
54551
.61506

HYPOTHESIS OF NOT MODEL M(B)
OF FREEDOM = 6  PROBABILITY OF LARGER VALUE
FIRST CAPTURE PROBABILITY ACROSS TIME

OF FREEDOM = 3  PROBABILITY OF LARGER VALUE
RECAPTURE PROBABILITIES ACROSS TIME

OF FREEDOM = 3 PROBABILITY OF LARGER VALUE
HYPOTHESIS OF NOT MODEL M(T)

OF FREEDOM = 101 PROBABILITY OF LARGER VALUE

7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.

NULL HYPOTHESIS OF MODEL M(H)

CHI-SQUARE VALUE = 16.497

MODEL. SELECTION CRITERIA.

M(B)
.58

MODEL
CRITERIA

MO)
.99

M(H)
1.00

DEGREES

M(BH)
ST

VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)

OF FREEDOM = 10 PROBABILITY OF LARGER VALUE

MODEL SELECTED HAS MAXIMUM VALUE.

M)
0.00

M(TH)
46

M(TB)
.53

M(TBH)
.80

L]

[
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.16813

. 13184

.45295

.45191

. 11492

.05183

L47440

.157686

. 08626
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OVERALL TEST RESULTS --
Z-VALUE
PROBABILITY OF A SMALLER VALUE

-.403
. 34362

TEST OF CLOSURE BY FREQUENCY OF CAPTURE.
(FREQUENCIES LESS THAN 10 ARE NOT COMPUTED.)

NUMBER OF CAPTURES Z-VALUE PROBABILITY

2 -.660 .25477
3 -.322 .37360
4 -.066 47356
] -1 . 75607
6 -1.085 . 13906

F1G. 16. Example of the test for closure procedure
with feral house mouse data from Coulombe (un-
published thesis).

ommend using the jackknife estimator in
such cases because it is robust to heter-
ogeneity and will tend to do well even if
a competing model is true. For the morn-
ing data, the estimate of N from the jack-
knife estimator w as 194 + 7.6, while that
from the null estimator was 171 + 4.1,
Hence, both choices given by the model
selection procedure provided similar es-
timates.

As a final check on whether time vari-
ation exists in the form of morning and
evening differences, note that there were
more captures in the mornings {occasions
1, 3, 5, 7, 9) than in the evening (occa-
sions 2, 4, 6, 8, 10)." ,

A Test for Closure

Throughout this monograph our phi-
losophy has been that assumptions
should be tested. One of the most critical
assumptions behind this entire work is
that of population closure. Although it is
desirable to test closure, there are no tru-
ly suitable tests for this assumption. Clo-
sure is difficult to test for, because some
types of variations in capture probabili-
ties (especially behavioral) are difficult to
distinguish from a failure of closure.

Burnham and Overton (pers. comm.)
suggest a closure test based on Model M,
(cf. Appendix K). Fig. 16 gives an exam-
ple produced by program CAPTURE of
this closure test applied to Coulombe’s
(unpublished thesis) full data set. The

test statistic value (z-value) is —0.403,
and the significance level of the test is
0.34362. Thus, for Coulombe’s data, clo-
sure is not rejected.

If individual capture frequencies are
10 or more, program CAPTURE also
computes and prints a partitioned version
of the closure test for those frequencies.
For example, from Fig. 16, for animals
caught twice the test value is —0.660 and
is not significant. These partitioned test
cases are of interest, but we emphasize
the overall test is the one to use for the
final judgement on closure.

Failure of closure means that during
the study animals are either entering or
leaving the population at risk of capture,
or both. This could be caused, for exam-
ple, by death, emigration, or the trap grid
itself attracting animals from surrounding
areas (especially likely in removal trap-
ping). In any of those cases, the animals
that enter or leave have zero capture
probabilities during the time they are not
part of the trapped population. The cor-
responding probability model has simi-
larities to our behavioral Models My, My,
M, and Mgy, Indeed, as previously stat-
ed, behavioral responses are extremely
difficult to untangle from true failures of
closure. Our simulation results have
shown the closure test rejects strongly
when Model M, is true, and is not a truly
unbiased test whenever there is strong
behavioral variation in capture probabil-
ities. However, the test does not seem to
be affected by heterogeneity or random
time variations. We have not used other
tests from the literature (e.g., Pollock et
al. 1974) because, to our knowledge,
those tests all are implicitly developed
under the assumption that Model M, is
the true model under the closure as-
sumption. Because we feel Model M,
probably is never acceptable, those tests
will be even more untrustworthy than
our current closure test.

The biologist is advised to look care-
fully at the closure test. If the test statistic
is not significant, this tends to support the
validity of the closure assumption. If that
test rejects closure, before accepting that
result, it is necessary to look at the other
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tests and the indicated model. If strong
behavioral variation is indicated, the clo-
sure test is not valid.

Additional evidence regarding closure
is obtained from a test of average cap-
tures per trap as a function of trap dis-
tance from the edge of the grid. That test
is discussed in the section on DENSITY
ESTIMATION; it tests for whether the grid
attracts animals.

Finally, we mention that the closure
test used here is oriented toward detect-
ing breakdowns in closure only during
the initial and final stages of the experi-
ment. The test is not appropriate, for in-
stance, for identifying situations in which
animals emigrate during the middle of
the study period and then immigrate
back to the study area in the latter stages
of an experiment.

DENSITY ESTIMATION

Introduction

The models discussed to this point in-
volve only population size N as the pa-
rameter of interest. Often, interest may
lie in population density, the number of
animals per unit area (e.g., squirrels/hec-
tare). One could naively take N divided
by the area enclosed by the trapping grid
as an estimate of density. That approach,
however, leads to severe overestimation
as a result of what has been called “edge
effect,” i.e., not all animals have their en-
tire home range within the trapping grid,
but may still be caught because some
traps near the grid boundary are within
their home range. Although biologists
have recognized this problem for de-
cades (Dice 1938, 1941; Stickel 1954),
statisticians concerned with estimation of
population abundance have tended to ig-
nore or have failed to recognize the prob-
lem. This probably is due in part to the
fact that abstract models for capture stud-
ies, such as ball-and-urn models, have no
spatial component, hence do not include
any concept of density as distinct from
numbers of animals.

Three basic approaches are given in
the biological literature to solve this
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problem. Two of them rely on Dice’s
(1938) concept of a boundary strip about
the grid such that the effective trapping
area is the grid area plus this boundary
strip area. Dice assumed the boundary
strip to be one-half the average diameter
of the home range of the population
being trapped. The first 2 approaches at-
tempt to estimate this strip width, W,
from the capture data. These 3 ap-
proaches are given below:

(1) Home range size is estimated from
the locations of different captures for
the same animal and is used to esti-
mate the strip width W. A variety of ap-
proaches have been used; all are ba-
sically ad hoc and subject to numerous
problems, e.g., results depend upon
trap spacing and numbers of recap-
tures (Hayne 1949b, Stickel 1954,
Tanaka 1972). The basic idea can be
developed into an elaborate statistical
estimation problem (Jennrich and
Turner 1969), but as far as we know
estimation of W based on movement
data remains unsatisfactory.

The parameter W is directly estimat-
ed based on data drawn from selected
subgrids (MacLulich 1951, Hansson
1969, Seber 1973:51, Smith et al.
1975). As suggested by Burnham and
Cushwa (pers. comm.) thatidea can be
developed into a procedure allowing
joint estimation of D and W from data
on 1 sufficiently large grid. We dis-
cuss this approach in detail below.
The use of “assessment” lines is the
most complex approach to density es-
timation. It involves designing the
study to specifically estimate the ef-
fective trapping area as well as the
size of the population at risk of cap-
ture. There are numerous variants on
this approach (Smith et al. 1971, 1972,
1975, Swift and Steinhorst 1976,
O’Farrell et al. 1977). We have not
pursued this approach here because
the proper data analysis depends upon
the study design.

(2)

Of those 3 approaches, only the second
seems to be formulated in a rigorous sta-
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F1G. 17. A 17 x 17 trapping grid with 4 nested

subgrids.

tistical fashion without arbitrary assump-
tions. However, even the second ap-
proach cannot be made workable without
some arbitrary ad hoc features.

Problem Formulation

- We will illustrate the problem with
some data from a livetrapping study of
feral house mice Mus musculus in a
southern California coastal salt marsh in
December 1962 by Coulombe (unpub-
lished thesis), that were also used to il-
lustrate the model selection procedure.
Only the basic specifications of the study
will be needed here: 100 Sherman live
traps were laid out in a 10 x 10 square
grid. Morning and evening trapping ses-
sions were conducted for 5 days and pro-
vided 10 trapping occasions, although
only the morning sessions will be used

WILDLIFE MONOGRAPHS
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FIG. 18. A series of 4 nested subgrids with a

boundary strip of width W around each subgrid.

Note the corner of the boundary strip is a quarter
circle of radius W.

in the calculations. Traps were 3 m apart
and the area enclosed by the grid was
0.073 ha. We can delineate subgrids of
smaller size by examining smaller groups
of traps; in particular, we can concep-
tualize a series of nested subgrids (see for
example Fig. 17).

The size of the population at risk of
capture for each grid must be estimated.
The choice of a population estimator
should be based on the model selection
procedures using the data for the entire
grid. Fori=1, 2, .., k, assume that a pop-
ulation estimate N; has been made for the
i™ grid by using data obtained only from
that grid. The naive estimator of density
of the i™ grid is given by

Y. = N/A
=12, ..

1

i

:k’

TABLE 20.—THE INFORMATION NEEDED TO ESTIMATE DENSITY USING THE FOUR NESTED SUBGRIDS AND
THE DATA FROM COULOMBE (UNPUBLISHED THESIS)

Grid Area A N, ( individuals )

No. Size (ha) (individuals) " ha. Se(¥y)
1 4x4 inner grid 0.0081 47 5770.9 607.8
2 6x6 middle inner grid 0.0225 107 4750.7 452.6
3 8x8 middle outer grid 0.0441 166 3768.5 243.4
4 10x 10 entire grid 0.0729 194 2654.4 104.9
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where A, is the size (area) of the i trap-
ping grid. The grid data are given in Ta-
ble 20, Note that the standard error of Y
is Se(N)/A;.

The four Y; values in Table 20 cannot
reasonably be considered each an un-
biased estimate of a single parameter.
The bias is attributed to the phenomenon
of edge effect, wherein the area used by
individuals at risk of capture is not re-
stricted to the area contained within the
trapping grid; rather, there are areas out-
side the trapping grid that are part of the
home ranges of individuals at risk of cap-
ture.

We assume that the population density
is constant in the area of trapping. That
is, there is not a trend in density across
the grid. Under these conditions it is rea-
sonable to think that there is an area of
constant width about the trapping grid
such that the actual area used by the pop-
ulation at risk of capture is the total area
of the trapping grid plus that of the
boundary strip. Let W equal the width of
this strip. This is illustrated for the four
grids in Fig. 18. The concept of a bound-
ary strip goes back at least as far as Dice
(1938). We need not interpret W, but
from the inception of the boundary strip
concept, biologists have considered that
W is related to home range size: (Dice
1938, 1941). In fact they arbitrarily as-
sume W is one-half the maximum linear
dimension of the average home range of
the species.

Statistical Treatment

The approach to density estimation
that we advocate for use with grid trap-
ping is to formulate the problem as one
of joint estimation of D and W, with the
parameter N being a function of D and
W. Then, by having 2 or more grids of
different sizes, we can estimate those
parameters with a weighted nonlinear
least squares procedure.

In what follows, we assume that den-
sity (D) is expressed in individuals per
unit area and strip width (W) in linear
units, such as meters. Consider a layout
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of traps in the shape of a square or rec-
tangle. That is, by connecting the outer-
most traps, a square or rectangle results.
Let P be the measured perimeter of the
grid. Let A be the area within this perim-
eter, and let A(W) equal the area obtained
by adding a boundary strip of constant
width W. Then the fundamental relation-
ships is
A(W) = A+ PW/c + #W?c,

where c is a conversion factor to express
PW or W2 in units of A. For example, to
convert m? to ha, ¢ = 1,000 m*ha.

Let there be k such grids identified.
These may be subgrids of one grid, or
may be physically separate study grids.
Assume a constant density applies for
each grid. Then, for grid i we would ex-
pect to have

N; = D Ay(W) = D[A; + P;W/c
+ 7 W¥c],

where N is the population at risk of cap-
ture with respect to the i grid of traps
only. Conceptually, we should let the ac-
tual numbers of individuals at risk of cap-
ture on grid i be a random variable with
expectation DA(W). Then we would
write E(N;) = DAy(W), and it is really
E(N,) we are estimating for the i™ grid.
Letting i =1, ..., k we obtain structural
equations relating the parameters D, W,
and the induced parameters N;. The area
A,;, and the grid perimeter P; must be
known. Next we redefine the basic struc-
tural equations as

Yi=%= D[ + a,W + bW?]
i=L2 ...k

where

P;
A and b, = Ac
Assume that from the trapping data of
each grid we have estimates of the Nj,
expressed as. Nl, and estimates of their
variances Var(N;). Assume further that
the N; are good estimates in the sense
that they have small bias, so we can write

a; =
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N,
Ay

=Y, = D[l + aW + bW?] + ¢,
i=1,2, ...,k

where ¢ is a random error with E(e) = 0,
and covariance matrix E(e €)= Y. The
small bias of the Nj is a big assumption
that relies heavily on previous sections.
Note that Y; = NyA; is what we would
call the naive estimator of density, D,
from the i™" trapping grid; clearly it can
be significantly biased unless A; is large
relative to (P;W/c + #W2?/c), the area that
is added by assuming a strip width of W.
Note that for a sequence of k subgrids of
increasing size, the most biased estimate
of D is obtained from Y, because A, is
smallest relative to (P,W/c + #W?¥c). On
the other hand, Y, is the best estimate of
D because A, is largest relative to (P,W/
c + #W%c). If we had a very large grid,
say the state of Wyoming, the contribution
of area due to the boundary strip W would
be negligible, and we could ignore the
problem. Because this is not the case, we
use our biased estimates of Y; to find an
unbiased estimate of D.

We assume E(e€’) = $ because in gen-
eral the naive density estimates, Y;, are
not independent from one another if
these subgrids derive from 1 overall grid.
Hence, we must estimate theAcovariance
matrix 2 of the k estimates of Y. A simple
and intuitive procedure is to assume the
correlation between Y; and Y; is just the
proportion of overlapping area between
grid i and grid j including their boundary
strip. Then the covariance of Y; and Y; is
Se(Yy)-Se(Y;):Corr(Y;, Y;). With the re-
sulting covariance matrix, generalized
nonlinear least squares can be performed
to estimate density and strip width as D
and W, respectively. Note that ¥ is a
function of W, because the amount of
overlap between grid i and grid j is a
function of the estimated strip width W.

In the most common situation, there is
one grid such as our example in the Cal-
ifornia salt marsh, and one must choose
a small number of subgrids to use in this
approach. We recommend 4 or more nest-
ed grids. The main concern is to keep the

inner grid large enough so that N, is well
estimated. Other possibilities (not rec-
ommended) are to include subgrids con-
sisting of halves and quarters of the total
grid, or both.

The basic idea behind this procedure
was introduced by MacLulich (1951), but
until recently no method of estimating
the variances of D and W had been given
(Smith et al. 1975).

In Fig. 19, a complete analysis is pre-
sented for the California salt marsh feral
mouse study. First note that we have
computed the matrix of captures per trap
station. That matrix includes the data for
both the morning and evening trapping
sessions, or for all 10 occasions. Multiple
captures per trap cause some entries to
be greater than 10. Visual study of this
matrix (Fig. 19a) does not disclose any
gross trends in mouse density across the
grid. Fig. 19b shows the results of 3 chi-
square goodness of fit tests, where the
capture matrix is first collapsed by rows,
then by columns, and finally by rings.
Those tests generally tend to reject the
null hypothesis of uniform probability of
capture by rows or by columns. How-
ever, we are more concerned in identi-
tying gross irregularities in mouse den-
sity, such as no captures in one corner of
the grid, or a strong trend of decreasing
probability of capture from right to left.
The tests identify a problem of higher
trap success at the grid edges. This is in-
dicated by the test of rows, where a large
portion of the chi-square value is contrib-
uted by the ninth and tenth rows, and by
the ring test, where the outside ring of
traps had much better success than ex-
pected, and the inner ring poorer success
than expected. For large trapping grids,
the problem could be corrected by not
using the data for the outer ring of traps.
This is very wasteful of data, however,
and we will ignore the problem here.

The next 4 pages of output (Figs. 19¢-f)
consist of the population estimates for
the whole grid and each of the 4 subgrids, .
computed with the jackknife estimator
derived from Model M,,. That model was
selected based on the output for the tests
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MATRIX OF CAPTURES PER TRAP STATION.

coomNs 1 2 3 4w 5 8 7 8 9 10

i
Rw 11J9 4« 6 8§ 68 7 5 5 9 6
Rouaina 6 4w 7 2 4 s 2 uw|s
RGIB: wlals 7 v 8 3 3|3}
Rouu; slals]le « v sl72]s]3 Grid
Rouslx 2 lelu s s v 7} 7)els 2

! 3
row s1]sfels]e 3 v ofs|+s 4
RON7: 2leli e 2 3 s)a]z]e
RONB; sls{: s 72 2 v s}ls]s
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ROHID:ID 9 8 8 8 6 5 8 11 9

Fic. 19a. Nested subgrids used in the density

estimation procedure with feral house mouse data

from Coulombe (unpublished thesis). In the matrix,

trap coordinates are rounded to the nearest whole

integer. In goodness of fit tests, trap coordinates

that are not integers and nonrectangular trapping
grids will cause spurious results.

described in the section on model selec-
tion (Fig. 15).

The final page of output (Fig. 19g)
gives the generalized least squares esti-

CHI-SQUARE TEST OF 'UNIFORM DENSITY BY ROWS.

ROW t e 3 4
OBSERVED 63 53 56 ; 63
EXPECTED 58.500 58.500 58.500 68.500
CHI-SQUARE -346 .517 107 .346

TOTAL CHI-SQUARE = 22.26 HWITH

CHI-SQUARE TEST OF UNIFORM DENSITY BY COLUMNS.

COLUMN 1 2 3 . 4
OBSERVED T 73 48 57
EXPECTED 58.500 58.500 58.500 68.500
CHI-SQUARE 3.115 3.594 1.8685 .038

TOTAL CHI-SQUARE = 12.08 HITH

9 DEGREES OF FREEDOOM.
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mates of D and W. The columns headed
NAIVE DENSITY, PERIMETER/AREA, and
PI/AREA correspond to Y;, a;, and by, re-
spectively, and the COVARIANCE MATRIX
corresponds to 3 for the initial value of
W. The number of iterations required to
estimate the parameters is given, and for
this example it is 189. The maximum
number allowed in program CAPTURE
is 300. The approximate number of sig-
nificant digits of D and W is also printed.
A table listing the grid number, the naive
density, and the predicted value is then
given. This allows the investigator to get
a feel for how well the model fits his data.
Note that all the residuals in the example
are negative; this is because they are all
highly correlated, and hence we expect
them to be of the same sign. The multiple
correlation coefficient, R, is also printed
to help assess the fit of the model. The
value of R? is interpreted as the propor-
tion of the variance in the data that is ex-
plained by the model (0 <R?=<1). The
computed values of D and W are highly
negatively correlated, indicating the

CHI-SQUARE TEST OF UNIFORM DENSITY BY RINGS (QUTER RING 1S NUMBER l.).

RING 1 2 3 Y
OBSERVED 247 160 96 65
EXPECTED 210.600 163.800 117.000 70.200
CHI-SQUARE 6.291 .oe8g 3.769 .385

TOTAL' CHI-SQUARE = 12.28 HITH

4 DEGREES OF FREEDOM.

5 8 7 8 ‘ 9 10
59 S0 Yy 43 T4 80
58.500 568.500 58.500 58.500 58.500 58.500
.004% 1.235 3.594 4.107 4.107 7.902
PROBABILITY OF LARGER VALUE = .0081
S 6 7 8 9 10
53 63 62 52 59 66
58.500 58.500 58.500 58.500 58.500 58.500
.517 517 722 .7ee . 004 .862
9 DEGREES OF FREEDOM. PROBABILITY OF LARGER VALUE = .2090
S
17
23.400
1.750
PROBABILITY OF LARGER VALUE = .0154

Fic. 19b. Chi-square tests of uniform density with feral house mouse data from Coulombe (unpublished
thesis).
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NUMBER OF TRAPPING OCCASIONS WAS s
NUMBER OF ANIMALS CAPTURED, M(T+1), WAS 33
TOTAL NUMBER OF CAPTURES, N., HWAS 50

FREQUENCIES OF CAPTURE.F ([}
1= 1 e 3 4 5
Fthi= 18 13 2 o0 9

COMPUTED JACKKNIFE COEFFICIENTS

Nty Ne2) N(3) Ntw) N(Sy
1 1.800 2.400 2.800 3.000 3.000
2 1.000 .550 . 050 -.250 —-.e50
3 1.008 1.000 1.133 1.250 1.250
4 1.000 1.000 1.000 .99z .992
5 1.000 1.000 1.000 1.000 1.000

THE. RESULTS OF THE JACKKNIFE COMPUTATIONS

1 NCI)  sECh) .95 CONF. LIMITS TEST OF N{l+1) VS. NtD)
[} 33 CHI-SQUARE (1 D.F.)

1 w7.u 5.09 37.4 57.4 2.839

2 52.4 7.57 31.5 87.2 .iu8

3 53.3 9.5t .7 72.0 .002

+ 53.3 10.62 2.4 T4.1 0.000

5 53.3 10.62 2.4 ™1 0.000

AVERAGE P-MAT = .2128

INTERPOLATED POPULATION ESTIMATE IS 7 WITH STANDARD ERROR 4.923

APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 37 10 57

HISTOGRAM OF F (1)

FREQUENCY 18 13 2 o o
EACH * EQUALS 2 PGINTS

18

18

I

12

10 L

Fi1c. 19¢. Example of population estimation with

variable probability of capture by animal under

Model M;, with feral house mouse data (Coulombe

(unpublished thesis) from inner inner grid of Fig.
19a (X = 4-7, Y = 4-7).

strong inverse relation between density
and strip width. This negative correlation
makes it difficult to estimate either pa-
rameter with a small standard error, be-
cause other combinations of D and W
also result in almost as good a fit as the
values selected. Finally, a test of whether
W is significantly different from zero is
printed. In that example, the highly sig-
nificant difference of W from zero indi-
cates that the estimate of D is much bet-
ter than the naive estimate based on the
actual grid area.

Discussion

The density estimation problem results
because the grid is an artificial entity in
the environment, and animals trapped
use areas both inside and outside the
grid. A practical problem illustrated in
the example is that the grid can attract

NUMBER OF TRAPPING OCCASIONS WAS 5
NUMBER OF ANIMALS CAPTURED, M(T+1), WAS 87
TOTAL NUMBER OF CAPTURES, N., WAS 110

FREQUENCIES OF CAPTURE .F (1)
1= 1 2 3 4 5
Fthh= 37 21 5 4 ¢

COMPUTED JACKKNIFE COEFF ICIENTS

N N(2] N(3) Ny N(5)
1 1.800 2,400 2.800 3.000 3.000
2 1.000 550 .050 -.850 -.250
3 1.000 1.000 1.133 1.250 1.250
% 1.000 1.000 1.000 .892 .982
5 1.000 t.ooo 1.000 1.009 1.000
THE RESULTS OF THE JACKKNIFE COMPUTATIONS
1 N(IY SECD) .95 CONF. LIMITS TEST OF N(I+1) VS. N(1J
1} 67 CHI-SQUARE (1 D.F.)
1 96.6 7.30 2.3 110.8 10.573
2 109.4 10.91 88.0 130.7 2.231
3 14,3 13.65 87.5 11,1 .789
“ 116.0 15.17 86.2 145.7 0.000
5 116.8 15.17 86.2 45,7 0.000
AVERAGE P-HAT = .2056

INTERPOLATED POPULATION ESTIMATE IS 107 WiTH STANDARD ERROR 10.1827

APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 86 TO 127
HISTOGRAM OF F(1)

FREQUENCY 31 21 5 4 0

EACH * EQUALS 4 POINTS

Fi1G. 19d. Example of population estimation with

variable probability of capture by animal under

Model My, with feral house mouse data (Coulombe

unpublished thesis) from the middle inner grid
of Fig. 19a (X = 3-8, Y = 3-8).

animals, thus “inducing” a higher den-
sity than would otherwise be found. The
problem of the grid attracting animals can
cause severe bias. If attraction occurs
during trapping, then the assumption of
population closure will be violated. With
removal trapping, over a long enough
time the problem is sure to develop. The
problem may still occur in livetrapping
studies. One possible test for this effect
is the “ring” test given in Fig. 19b. Even
with some approach like prebaiting to al-
low this attraction effect to stabilize be-
fore trapping, both methods (recapture
movements, and direct estimation of W
and D) will be invalid if the grid itself
attracts animals. In that case, it appears
assessment lines would have to be used.

If the above method produces a poor.
result, an alternative approach is to base
an estimate of W on animal movements
as determined from recapture locations.
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NUMBER OF TRAPPING OCCASIONS HAS 5
NUMBER OF ANIMALS CAPTURED, M(T+11, WAS 116
TOTAL NUMBER OF CAPTURES. N., WAS 202

FREQUENCIES OF CAPTURE,F(I)
=t 3
Fthi= 55 43 11 7 g

COMPUTED JACKKNIFE COEFF ICIENTS

NOD) N N(3) Nty N(S5)
1 1.800 2.400 2.800 2.000 3.000
2 1.000 .550 .050 -.250 -.250
32 1.000 1.000 1.133 1.250 1.850
4 1.000 1.900 1.000 .992 .98
5 1.000 1.000 1.000 1.000 1.000
THE RESULTS OF THE JACKKNIFE COMPUTATIONS
1 N(D) SECD) .95 CONF. LIMITS TEST OF NCI+1) VS. N(I)
o 18 CHI-SQUARE (1 D.F.)
1 160.0 8.90 142.6 1774 6.866
2 173.7 13.20 147.8 199.5 195
2 175.6 16.84 143.0 208.2 073
4 174.8 18.62 1384 211y 0.000
5 174.8 18.62 138.4 214 0.000
AVERAGE P-HAT = 2434

INTERPOLATED POPULATION ESTIMATE IS 166 WITH STANDARD ERROR 10.7335

APPROXIMATE G5 PERCENT CONFIDENCE INTERVAL 145 T0 188
HISTOGRAM OF F(1)

FREQUENCY 55 43 11 7 0

EACH * EQUALS 6 POINTS

Fic. 19e. Example of population estimation with

variable probability of capture by animal under

Model M, with feral house mouse data (Coulombe

unpublished thesis) from the middle outer grid
of Fig. 192 (X = 2-9, Y = 2-9).

Let W be such an estimate, for example
one-half of the average maximum dis-
tance between trapped locations for all
animals captured at least twice. The stan-
dard error of W, S&(W), can be computed
from the data themselves. The estimator
of density is then

" N
D=——_
AWy
where N is based on all the data (i.e., the
entire grid) and
AWy=A[1 + af + bW?),

for a and b as defined previously in this
section. An_estimator of the sampling
variance of D is given by
Var(D) = _V_a_rfil

[A(W)]

+ (D)2< a+ 2bW

2 . .
m) Var(W),

73

NUMBER OF TRAPPING OCCASIONS WAS 5
NUMBER OF ANIMALS CAPTURED, M(T+11, WAS 160
TOTAL NUMBER OF CAPTURES, N., HAS 356

FREQUENCIES QF CAPTURE,F (1)
I= 1 2 3 4 S5
Ftly= 48 53 36 1§ 3§

COMPUTED JACKKNIFE COEFFICIENTS

N N(2) N(3) NG N(5)
1 1.800 2.400 2.800 3.000 3.000
2 1.000 .550 .0S0 -.250 -.250
3 i.o00 t.000 1,133 1.250 1.250
% 1.000 1.000 t.000 .992 .992
5 1.000 1.000 1.000 1.000 1.000

THE RESULTS OF THE JACKKNIFE COMPUTATIONS

1 N(D SECD) .95 CONF. LIMITS TEST OF N(I+1) VS. NCD)
0 160 CHI-SQUARE(1 D.F.}

1 195.0 8.05 180.2 211.8 .007

2 196.5 11.69 173.5 219.4 2.000

3 189.8 15.15 160.1 219.4 2.847

“ 185.1 17.31 151.2 219.0 0.009

5 185.1 17.31 151.2 219.0 0.000

AVERAGE P-HAT = 3870

INTERPOLATED POPULATION ESTIMATE 1S 194 WITH STANDARC ERROR 7.6485

APPROXIMATE 95 PERCENT CONF IDENCE INTERVAL

178 10 209

HISTOGRAM OF F (1)

FREQUENCY 45 58 3% 15 5

EACH * EQUALS 6 POINTS
60 .
54 .
) .
42
3
20 .
24 .
18 e
12 e .
6 e e s e

Fi1G. 19f. Example of population estimation with

variable probability of capture by animal under

Model My, with feral house mouse data (Coulombe

unpublished thesis) from the entire grid of Fig.
19a (X = 1-10, Y = 1-10).

and the standard error of D is simply

Se(D) = /Var(D).
These variance formulas are valid what-
ever the technique for estimating W from
recapture locations.

In the example of the feral house mice,
W is calculated as 3.63 m with Sé(W) =
0.149, and compares favorably with the
estimated value of W =4.65 from Fig.
19¢. ‘

The methods outlined in this section
require large amounts of data to achieve
satisfactory results. Both a large trapping
grid and a large number of captures are
required. A grid size of 9 X 9 probably
can be considered the minimum; how-
ever, a larger grid such as 15 x 15 is
much better. Good trapping success to
achieve a large number of captures is
necessary to provide a useful population
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STARTING VALUES FOR DENSITY ESTIMATION--
NUMBER OF GRIDS v
TRAP [NTERVAL

UNITS CONVERSION

INITIAL DENSITY ESTIMATE
INITIAL STRIP WIDTH ESTIHATE

3.00
10090.00

5089
882.6797

D NAIVE DENSITY  PERIMETER/AREA PI/AREA
Y A1) B

STARTING COVARIANCE MATRIX

)
|
1 s770.827
2 uIB0.710
3 376952t
4 25402

el .3879€-01 +369€+06

2666687 - 1396E-0) .R73E+06 208406

. T1ENE-02 L1YBE+0B .109€+06 .592€+05
.4309€-02 6256405 YGBE+0S .2E4E+05 .110E+05

1904762
L teg 1481

RESULTS OF [TERATIONS
FUNCTION EVALUATIONS REQUIRED 169
ESTIMATED SIGNIFICANT DIGITS OF PARAMETER VALUES B

FITTED MODEL COMPARED TO THE DATA
GRIDIT) Y Fely
1 5770827
2 4750710
3 ee.521
4 2854402 2611.652

MUALTIPLE CORRELATION COFFICIENT 1S .93181

ESTIMATED OENSITY~ 1408.93%  172.1260
ESTIMATED STRIP WIDTH= 4.653  1.0576

CORRELATION OF ESTIMATORS  -.9471

= 175 STANDARD ERROR
= ITS STANDARD ERROR

TEST OF ESTIMATED STRIP WIDTH GREATER THAN ZERO.
244 %.3998 PROBABILITY OF LARGER VALUE = 0000

FINAL COVARIANCE MATRIX
BEMES06.
1560E+06 20486406

-5396E¢05 .70BSE+0S .SME+DS
1B21E+05 .2127E+05 .1TIBE+05 . 1100E0S

Fi1c. 19g. Example of joint estimation of density
and boundary strip width with feral house mouse
data from Coulombe (unpublished thesis).

estimate for each grid. This becomes a
problem especially with the smaller
grids, where only a fraction of the data
are used to estimate the population. Be-
sides requiring a good population esti-
mate, a good variance estimate for N is
required because that quantity is used in
constructing the estimate of the weight-
ing matrix 3% Poor data result in a poor
weighting matrix, which then results in
poor estimates of D and W.

Possible methods to increase the
amount of data are (1) to place traps close
together to increase recaptures, (2) to
place grids in a uniform habitat so that
discontinuities in density do not occur,
and (3) to increase the number of traps.
To repeat, the method requires large
amounts of data. A carefully designed
study is required to obtain reliable values
of D and W, and only rarely can a typical
capture—recapture study be made to yield
reasonable estimates.

STUDY DESIGN

The objective of this monograph is to
present methods for the thorough analy-
sis of capture data when the target pop-
ulations are closed except for known re-

movals. However, proper planning,
design, and field conduct of such studies
is necessary to obtain meaningful data for
analysis. Many factors must be consid-
ered when planning a capture-recapture
or removal study to estimate animal
abundance. We consider these as falling
into 2 broad categories: statistical design
and data recording considerations, and
field procedures, although the distinction
may sometimes seem a bit arbitrary. Ex-
amples of such considerations include
(but are not limited to) the following:

Statistical considerations
number of capture occasions
time between occasions
size and shape of trapping grid
spacing of traps
number of traps at a point
numbering of traps

Field procedure considerations
live vs. removal captures
choice of trap type
choice of electrofishing gear
method of marking or tagging
method of recapture
use of bait
time of day to check traps
handling the animals

The purpose of this section is to present
some suggestions and cautions regarding
the aspects of study design. The general
themes presented are to conduct the ex-
periment so that (1) assumptions can be
tested, (2) the closure assumption is met,
(3) the simplest possible model is appro-
priate, and (4) the number of animals
captured is maximized (including recap-
tures). We begin by mentioning
livetrapping versus removal methods,
then discuss closure, proceed through
ways of eliminating variation due to time,
behavior, and heterogeneity, and then
discuss sample size considerations such
as grid size and number of traps.

For additional discussion of design
consideration in grid trapping the reader
is referred to Overton and Davis (1969),
Smith et al. (1969, 1971, 1975), Tanaka
(1970), and Hansson (1974).
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It is beyond the intended scope of this
monograph to provide guidance on the
operational aspects of capture studies, al-
though they are important. For example,
if the method of marking (or tagging) is
such that marks are lost, then a basic as-
sumption needed for meaningful results
is violated. When making decisions about
a field study, the scientist should consid-
er the probable effects of the experimen-
tal design on assumptions necessary for
data analysis. For additional discussion
of field procedures the reader is referred
to Davis (1956), Southwood (1966), and
Taber and Cowan (1969).

Livetrapping Versus Removal Methods

As discussed in the previous sections,
removal methods are a special case of
livetrapping methods. That is, the remov-
al estimators can be used on livetrapping
data. Hence, we recommend that live-
trapping methods should be used if pos-
" sible because of the wider array of op-
tions available for the data analysis. A
hazard of removal studies is that they dis-
rupt the population, and as substantial
animals are removed, immigration may
occur; this violates closure.

For livetrapping studies, all possible
precautions should be taken to prevent
deaths of the animals while in the traps,
e.g., shading the traps in summer, or
avoiding periods of extreme cold. Simi-
larly, it is assumed (implicitly) that the
method of marking will not induce mor-
tality. If substantial mortality cannot be
avoided, then one must analyze the study
as a removal experiment.

Closure

For the analysis methods presented
here, the single most important assump-
tion is closure. Closure is very difficult to
test for, yet any violation of this assump-
tion biases the tests and population esti-
mators presented here.

Considerations to help assure closure
include, for example, timing the trapping
to avoid known migration times, and pe-

riods of recuitment (e.g., juveniles be-
coming trappable) or immigration. Also
keep the duration of the experiment as
short as possible. If it is necessary to
study the population at such times, open
population models should be used for
data analysis (Seber 1973, Pollock 1975,
Arnason and Baniuk 1977).

Grids are often thought to attract ani-
mals. For example, when kill traps are
used, animals from the area around the
grid will move onto the grid as local an-
imals are removed (cf. Gentry et al. 1968,
Smith et al. 1975:38). This violates clo-
sure, and the only good solution seems to
be to keep the length of the study (in
days) very short so that the study will end
before significant immigration can occur.

Eliminating Variation Due to Time,
Behavior, and Heterogeneity

Given that closure is satisfactorily
achieved, the next most important con-
sideration is twofold: (1) achieving a
large enough number of captures to ob-
tain reliable results, and (2) achieving a
study for which the best model is the sim-
plest possible one (e.g., Model M, rather
than My, or Model My, rather than My,).
In this section, we discuss methods of
eliminating variation of capture probabil-
ities due to time, behavioral response to
first capture, and heterogeneity of indi-
viduals.

Of the 3 factors that affect capture prob-
abilities, time is the one most easily con-
trolled by the biologist. He can select the
season of the year the studies are to be
conducted, the length of the trapping pe-
riod, and the time of day when trapping
is to be done. In all those decisions, the
objective is to reduce variation in capture
probabilities over time. Among other
things, this means that equal effort
should be expended on each occasion.
For example, use the same number of
traps thoughout, trap at the same time of
day, and if bait is used, use the same type .
and amount on all occasions. The study
should be done when weather conditions
will be as constant as possible, because
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variable weather is likely to cause time
variation in capture probabilities (Getz
1961).

Behavioral response is common in
small mammals, and it is doubtful if
much can be done to avoid it. Apparently
for this reason, many biologists have
studied and used strict removal methods
for small mammal population estimation.
If there is any choice, a method of cap-
ture (for livetrapping) should be used
that will not result in a trap response.
One approach is to use different methods
of capture on each occasion (cf. Overton
and Davis 1969). This is an excellent pro-
cedure, but its application to multiple
capture occasions is severly limited be-
cause one cannot usually find 5 or 10
quite different capture methods. We
note, however, that the use of different
trapping methods probably will result in
time variation (the different methods oc-
cur of necessity at different times). Con-
sequently, there is a trade-off here: re-
duced behavioral variation may result in
increased time variation.

A common source of heterogeneity is
the lack of equal access to traps if traps
are far apart relative to home range
(Eberhardt 1969a). The above phenome-
na are part of the reasoning behind our
recommendation of 4 traps per home
range when we discuss sample size con-
siderations in the next section.

Other sources of heterogeneity are dif-
ferences in activity or catchability related
to measurable characteristics such as
size, age, or sex. Such sources can be re-
moved by stratification if the attributes
are recorded and sample size permits.
Unfortunately, sample sizes are seldom
adequate to allow stratification. Hetero-
geneity may also be due to some unrec-
ognized attribute, and thus cannot be
eliminated by stratification. Different
methods of capture may increase the
number of animals captured in this case,
but will not eliminate the basic problem
of heterogeneity of capture probabilities.

One possible method of eliminating
heterogeneity, and possible trap re-
sponse, is to locate traps randomly on
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each trapping occasion. We are unsure of
the usefulness of the technique, and
would like to see further studies con-
ducted to see if significant reductions in
heterogeneity result. For logistical rea-
sons, the randomization of trap locations
on each occasion probably is not feasible.

A valuable check on the livetrapping
methods presented in this monograph
can be made by using a second method
of estimating the proportion of marked
animals in the population. A common ex-
ample is killtrapping or hunting after the
capture-recapture experiment has been
completed. Then, using the number of
marked animals in the population, M.,
and the ratio of marked to unmarked an-
imals obtained from the killtrapping or
hunting, a second and somewhat inde-
pendent population estimate is made
with Chapman’s (1951) version of the
Lincoln estimate,

(Mg + 1)
-(all animals killtrapped + 1)
(marked animals killtrapped + 1)

N"_"

(cf. Seber 1973). Of course traps are traps,
and kill traps still present a strange object
in the animal’s environment. Another
possibility for small mammals marked by
toe clipping is to use tracks to obtain a
ratio of marked to unmarked animals. Bi-
ologists have used smoked plates (Justice
1961) or dust covered tiles to obtain an
estimate of the proportion of marked an-
imals, and thus a second population es-
timate to compare with that obtained by
livetrapping methods. The use of tracks
has the distinct advantage of being a truly
different method of sampling the popu-
lation. Much confidence in the popula-
tion estimate is obtained when the 2 es-
timates are similar,

In addition to design considerations,
poststratification of the data can be used
to create subsets of data which are more
homogeneous with respect to capture
probabilities. This is nothing more com- .
plex than partitioning the data into sub-
sets on variables such as species, sex,
age, weight, etc. If there are sufficient
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data, such poststratification is a valuable
device. The subsets so created are then
analyzed separately by the methods de-
scribed in this monograph. The only ad-
ditional testing one might do is for ho-
mogeneity among these strata (subsets)
(see White 1975).

Sample Size

To obtain reliable estimates of popu-
lation size, a sufficiently large sample
must be taken. Typical sample size con-
siderations are not applicable here (e.g.,
determining the numbers of plots to sam-
ple). Rather, “sample size” relates to the
number of animals captured. For a live-
trapping study, one must have both a
large enough number of distinct animals
captured and a sufficient number of re-
captures (except for Model M, and M,,,).
The factors' that control expected num-
bers of captures are (1) grid size, in terms
of area covered and numbers of traps
used, (2) capture probabilities, and (3)
number of trapping occasions. We dis-
cuss these 3 factors in relation to the size
of the experiment necessary to achieve
precise population estimates.

The size of the grid is the first decision
to be made. Grid size is a function of trap
spacing, s, and the number of rows, r, and
columns, ¢, of traps. Equal trap spacing
and a systematic grid layout are suggest-
ed. At each grid station there will be one
or more traps. If densities are very high,
we recommend 2 or more traps per sta-
tion to avoid competition for traps. Few
studies have been made comparing 2 or
more traps per station with 1 trap station,
and we suggest further research is re-
quired to see where multiple traps per
station increases the probability of cap-
ture for individual animals.

The objective of grid trapping over a
short time period is to estimate the pop-
ulation size and usually also the density
at the grid site. Because of “edge effect”
(as discussed in the section on density
estimation), it is necessary to estimate
effective trapping area as well as N. In
practice, this means we must be able to

estimate strip width W as well as N. This
requires that the traps be laid out to cover
an area, rather than in a single line. More-
over, we must be able to associate each
trap with an arbitrary X~Y coordinate sys-
tem. For practical reasons, this implies
some sort of regular grid layout (often
square or rectangular) with equal spacing
between traps. This latter aspect of trap
layout is not necessary just for estimation
of N: for example, if trapping was on a
small island, or in an enclosure, knowl-
edge of trap location in a coordinate sys-
tem would not be needed. Finally, for the
density estimate to be meaningful, the
grid should be placed in a homogeneous
habitat type, to assure uniform density
over the grid. ,

For a choice of r and ¢ when the objec-
tive is density estimation, we suggest that
both values be greater than or equal to 5;
as a minimum we recommend r + ¢ = 20.
Examples are a square grid 10 x 10 or a
rectangle 5 x 15. We note much work in
the literature relies on 16 x 16 grids
(Gentry et al. 1968, Smith et al. 1971),
and we suggest that grids should be at
least that large for attempts to use the
density estimation method based on nest-
ed subgrids. We base this recommenda-
tion on the fact that a large number of
captures is required in each subgrid;
hence, the larger the size of the subgrids
the better the chance that large numbers
of captures will be achieved.

The next decision to be made is the
spacing of traps (i.e., the value of s). Most
work with small mammals uses 15-m trap
spacing or less (Barbehenn 1974, Smith
et al. 1975). The rationale, when one is
given, relates to the size of home range.
Let s be the spacing between traps, and
let 2W be the average linear home range
size. Home ranges may rarely be circular,
but assuming for design purposes that
they may be circular, then their radius is
W. We suggest at least 4 traps per home
range. This implies s < (J2)W. For best
results we suggest s = W/2, Clearly, this
implies some knowledge of home range
sizes before a good study can be de-
signed. This is not unreasonable to ask;
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the biologist should have some behavior-
al knowledge of the species being stud-
ied so that sampling decisions can be
made intelligently. In fact, in any statis-
tical sampling problem, a good study can-
not be planned without some prior
knowledge of the population parameters
to be estimated.

The analyses presented in this mono-
graph for estimating population size re-
quire sufficient numbers of captures to
produce satisfactory results. Defining
“sufficient numbers” is an extremely
complicated task. Based on our experi-
ence with both real and simulated data,
however, some crude guidelines may be
stated. For instance, experiments in
which M., is on the order of 10 or 20
animals simply do not provide enough
information for the procedures discussed
here to perform well. The number of dif-
ferent animals captured needs to be sev-
eral times larger, and will depend heavi-
ly on the probabilities of capture of the
population members being studied. That
is, a population in which members have
an “average’ capture probability of 0.40
or 0.50 might only have to be as large as
50 before the estimation and testing tech-
niques become useful, whereas a popu-
lation size of 200 or so might require an
average capture probability of only 0.20.

For most studies, a relatively large num-

ber of recaptures must be realized before
the experiment has a chance to produce
useful results, and this again relates to
the magnitude of the probabilities of cap-
ture involved. In general, the probabili-
ties must be larger for smaller popula-
tions, but in no instance should N be less
than 25 or average capture probabilities
less than 0.10 when trapping small mam-
mals for only a few occasions (say t < 10).
These recommendations do not guaran-
tee that the data can be satisfactorily ana-
lyzed, but we have seen enough real and
simulated data to say that if the data fail
these criteria it is improbable that a pre-
cise estimate will be achieved.
Estimation of density by the nested
subgrid- approach requires even larger
sample sizes; the data on the smaller

subgrids will otherwise be too sparse for
reliable results. We believe that reliable
density estimates using the subgrid ap-
proach require a grid of at least a 10 x 10
and as a minimum 75 to 100 different an-
imals caught.

We now consider an approach to de-
termining a minimum grid area on the
basis of the above criteria. We start with
the relationship N = D-A(W), where
A(W) is the effective trapping area. For
a rectangular grid, this is

N = D[L,L, + 2(L, + L)W + 7#W2,

where L, is the length of a row [L,=s-
(r—1)} and L, [L, = s(c — 1)] is the length
of a column of traps. Thus, the area cov-
ered by the grid is L,L.

As mentioned above, without some
knowledge of D and W, a suitable study
cannot be designed. Assume D, and W,
are the best guesses of the values of the
parameters. To determine if a grid study
is at all feasible, set N = 50, substitute
D, and W, in the above equation, set L,
= L. = L (a square grid), and solve for L:

L= \/0.8584(W0)2 + N/D, — 2W,,

Then the actual area the grid must cover
is L2

This procedure is not difficult; how-
ever, one must be careful to use the same
basic units for D, L, and W. For example,
let W, be 100 feet (30.5 m) and assume a
density of 1 animal per acre (1/0.4 ha). For
compatibility of units put D, in terms of
square feet, then D, = (1/43,560) feet®.
Solving for L gives

L = ,/(0.8584)(100)% + (50)(43,560) — 200
= 1,279 feet.

This translates back into 37.5 acres (15.2
ha) as an absolute minimum grid size
[37.5 = (1,279)%43,560].

This is clearly conservative because
not all animals will be caught. Improved
planning requires us to determine grid
size so that a given number of animals
M. will be caught. But the expected
number of distinct animals caught de-
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pends upon the true underlying capture
probabilities, which are not known. The
only practical approach is to make the
best guess at the overall average proba-
bility of first capture, p, applicable during
the study and then use the formula

My = N[1 - (1 - p)T.

Because the value of t (number of occa-
sions) has been introduced, the relevant
computations for several realistic values
of t can now be performed.

For example, assume p = 0.30, set
M,,; = 50, and solve for N for several val-
ues of t. Given these values of N, solve
for the value of L, and hence minimum
grid size:

grid size
in acres
t N L (ha)
4 66 1,498 51.5(20.8)
6 57 1,378 43.6 (17.6)
8 53 1,323 40.0(16.2)

In practice, this example means if trap-
ping were only for 4 days, one would
need a 16 x 16 grid, traps spaced 100 feet
(30.5 m) apart. For an 8-day period of
trapping, the same (expected) data could
be obtained with a 14 x 14 grid of traps
spaced 100 feet (30.5 m) apart.

This process can be reversed. Let us
say a study is planned with a square grid
of 16 traps, spaced 15 m apart (W = 7.5
m). Then L, = L, = 225m. Substitution in
the basic equation gives

N = D-57,552

(m?)
or
N =D-5.76 (ha).

Assume further the study is to last 5 days
and the average capture probability is
about p = 0.30. Then we have

M = N(0.83).

We need to get at least 100 animals be-
cause the smallest subgrid requires 50, so
the density should be large enough that
N = 120, or

D= 120 20.8 animals/ha.

5.76
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Thus, to get reliable results in such a
study we would say the true population
density should equal or exceed 21 ani-
mals/ha. If the biologist has good reason
to believe true density is only 10 or 12
animals/ha, the study is not even worth
doing.

In addition to controlling the sampling
effort through the size of the grid and the
number of traps, the biologist can also
select the number of trapping occasions.
In theory, the more trapping times there
are the better, but this ignores the fact
that the closure assumption becomes less
realistic as more time passes. We rec-
ommend a minimum of 5 trapping occa-
sions, but 7 to 10 is better. The interval
between occasions should be short. In
practice, most trapping of small animals
is either once a day (morning) or twice a
day (morning and evening). Trapping
only once a day is far less likely to intro-
duce time variation. With morning and
evening trapping there is very likely to
be a difference in capture probabilities
between times. If variation of behavior
and heterogeneity should also be pre-
sent, the correct model ends up as My,
for which no suitable estimator is avail-
able. Morning and evening trapping may,
however, be aimed at different species.
Then a workable design would be 5 (or
7) days of trapping in both morning and
evening, but with separate analysis of the
morning and evening data.

In removal studies, an absolute mini-
mum is t = 3 occasions (not 2, as is often
done) because it is impossible to test for
equal capture probabilities when t = 2.
We recommend that at least 4 removals
be done.

Another valuable method of testing the
adequacy of the design before going to
the field is to simulate the experiment on
a computer. Approximate parameter val-
ues can be chosen, and the experiment
replicated as many times as necessary.
Among the criteria that can be observed
are selection of the appropriate model,
the bias of selected estimators, and the
achieved confidence level. Obviously,
the validity of the simulations to the field
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Fi1c. 20. Example of trap numbering for a 4 x 4
grid with a standard coordinate system.

study will depend on the similarity of
parameters selected to the actual param-
eter values. However, insights about the
experiment can be gained through sim-
ulations that cannot be achieved in any
other way. We note that program CAP-
TURE has the capability to conduct these
simulation studies.

Recording Data

If density is to be estimated on the ba-
sis of grid trapping data, the minimum
information that must be taken when a
capture occurs includes: (1) animal iden-
tification code, (2) trap location, and (3)
trapping occasion. Usually, the species,
sex, and age are also recorded for each
animal, though for analyses given here it
has no purpose except to partition the
data by species, sex, and age. While ana-
lyzing the data separately by species is
recommended, there often are not enough
data to further partition by sex and age of
animal.

For true removal studies (e.g., electro-
fishing), there is no animal identification
code. As suggested by Raleigh (pers.
comm.), it is very important in removal
studies to record the individual by
species and to analyze the data by at least
major taxonomic groups.
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In recapture studies, each animal
should be marked uniquely, otherwise
substantial information may be lost and
it will be impossible to compute some of
the tests for sources of variation. Though
it should be obvious, we do mention that
it is crucial to correctly record all data
(e.g., animal number and trap number).

To know the trap location, traps must
be numbered uniquely. Moreover, the
biologist must know the relationship be-
tween the trap number and its coordinate
on some (arbitrary) rectangular X-Y co-
ordinate system. From the standpoint of
data analysis, the best approach is to
identify the traps in the field by these X-
Y coordinates. We strongly recommend
use of this system and we stress that den-
sity estimation using program CAPTURE
requires data to be collected in the con-
text of a coordinate system. We recom-
mend that a corner trap be numbered (1,
1) then the rows become the “X axis” and
columns the “Y axis.” For example, a 4
x 4 grid would look like Fig. 20. This
system can be extended to cover any reg-
ular rectangular grid of r rows and ¢ col-
umns.

When traps are checked both morning

and evening, it is necessary to record not

only the day of capture, but also the time.

Data recording will be facilitated by
using standard field forms and standard
conventions for trap numbering and ani-
mal identification. One example of a stan-
dardized method is presented in Brotz-
man and Giles (1966).

Data Anomalies

Various anomalies and unplanned
events may occur in trapping. For exam-
ple, (1) several animals may be found in

-1 trap, (2) animals may be found dead in

traps, (3) released animals may be found
further down the grid trapped again on
the same occasion, and (4) a trapped an-
imal may escape when one attempts to
remove it from the trap. We make the fol-
lowing suggestions regarding these hap-
penings: (1) more than 1 animal per trap
presents no problem. Record each animal
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separately. This type of data does not in-
validate the analyses present here; (2) an
animal dead in the trap in a livetrapping
study is a more serious problem. If it is
the last trapping occasion it does not mat-
ter. Otherwise the data analysis must be
modified. Some of the methods described
here can allow for known removals in a
true livetrapping study (specifically
Models M, and M,). Because not all tests
and estimators can be so modified, we
have not dealt here with such modified
models. We recommend the following: if
trap deaths are less than 5 percent of total
captures, remove those data from the to-
tal results, run the analyses and add that
number of dead animals to N, and then
multiply the density estimate D, by (1 +

proportion dead). If such deaths are more
than 20 percent of total captures, use the
generalized removal method of analysis
on first captures. For 5-20 percent trap
deaths, the only safe analysis may be the
removal method. These modifications
give N and D relative to the first day of
the study. If one desires these estimators
to apply to the population remaining
alive after the study, then simply delete
all trap deaths from the data set prior to
analysis; (3) the same animal is caught
more than once on a given occasion, the
only added information provided is on
movement. We recommend that both
captures be recorded, but only the results
of the first capture be used for data anal-
ysis; and (4) an animal escapes during
handling before it is tagged, or before the
mark is read. Do nothing but record the
fact. Do not attempt any sort of analysis
of this “record.” In essence, it does not
become part of the data.

COMPREHENSIVE EXAMPLES

Preceding sections have given the de-
tails of the specific models, estimators,
and tests that are the basis for our anal-
ysis of capture data. The analysis of a set
of livetrapping data by these methods
will involve the model selection proce-
dure, followed by estimation of N under
the selected (or most appropriate model);
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OVERALL TEST RESULTS --
Z-VALUE -1.084
PROBABILITY OF A SMALLER VALUE . 13925

TEST OF CLOSURE BY FREQUENCY OF CAPTURE.
(FREQUENCIES LESS THAN 10 ARE NOT COMPUTED.)

NUMBER OF CAPTURES Z-VALUE PROBABILITY

e 184 .57306
3 L464 .67863
4 1.208 . 868650

FI1G. 21a. Example of test procedure for popula-
tion closure with the Scheme B taxicab data from
Carothers (1973b).

density estimation may also be desired.
Finally, in the course of these analyses
various summary statistics can be com-
puted. Below, we given several complete
examples of the entire analysis process of
livetrapping data for purposes of estimat-
ing population size. We do not include
density estimation for all these examples
because its essential features are always
the same. Also, no further examples are
given here of the analysis of removal data
because that subject is substantially sim-
pler than the analysis of capture-recap-
ture data.

A Taxicab Example

Carothers (1973b) conducted an inge-
nious capture-recapture experiment on
the taxicab population of Edinburgh,
Scotland. Such a study has the advan-
tages of known population size, yet the
population is a real one (though not in-
volving animals) as opposed to a com-
puter simulation experiment. Two differ-
ent sampling methods were used; we
have already used Carothers’ Scheme A
in the section on Model M, to illustrate
the jackknife estimator (see Fig. 6); the
entire 10 days of observations (“trap-
pings”) from Scheme B are used as an
example here. In that scheme, observers
had fixed stations in the city. This corre-
sponds to a trapping study with 10 days
of trapping at fixed trap locations. The
true population size was 420, and we can
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OCCASION J= 1 2 3 4 5 6 7 B k] 10
ANIMALS CAUGHT N(J)= 48 52 47 44 4B 45 48 43 47 53
TOTAL CAUGHT M{J)= 0 48 90 122 146 173 188 203 213 225 24!
NEWLY CAUGHT Uty = 48 42 32 24 27 15 15 10 12 18
FREQUENCIES Ftoh= tow 67 St 12 ] i o] 0 0 0

1. TEST FOR HETEROGENEITY OF TRAPPING
NULL HYPOTHESIS OF MODEL M(Q) VS,

PROBABILITIES IN POPULATION.
ALTERNATE HYPOTHESIS OF MODEL M(H)

CHI-SQUARE VALUE = 7.913 DEGREES OF FREEDOM = 4  PROBABILITY OF LARGER VALUE

2. TEST FOR BEHAVIORAL RESPONSE AFTER INI!TIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(B}
CHI-SQUARE VALUE = .085 DEGREES OF FREEDOM = 1 PROBABILITY OF LARGER VALUE
3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(0) VS, ALTERNATE HYPOTHESIS OF MODEL M(T)
CHI-SQUARE VALUE = 2.247 DEGREES OF FREEDOM = 9  PROBABILITY OF LARGER VALUE
4. GOODNESS OF FIT TEST OF MODEL M(H)

NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)

CHI-SQUARE VALLE = 2.300 DEGREES OF FREEDOM = @  PROBABILITY -OF LARGER VALUE

TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)

NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY
i 6.769 g 66113
2 6.246 =] - 71504
3 471y ] .85847

5. GOODNESS OF FIT TEST OF MODEL. M(B)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE
CHI-SQUARE VALUE =

8.957  DEGREES

SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF

CHI-SQUARE VALUE = 7.698  DEGREES

S8. CONTRIBUTION OF TEST OF HOMOGENEITY OF

CHI-SQUARE VALUE = 1.358  DEGREES

6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M{(T) VS. ALTERNATE
CHI-SQUARE VALUE =

188.341  DEGREES

HYPOTHéSIS OF NOT MODEL M(B)

OF FREEDOM = 16  PROBABILITY OF LARGER VALUE

FIRST CAPTURE PROBABILITY ACROSS TIME
OF FREEDOM = 8 PROBABILITY OF LARGER VALUE
RECAPTURE PROBABILITIES ACROSS TIME

OF FREEDOM = 8 PROBABILITY OF LARGER VALUE
HYPOTHESIS OF NOT MODEL M(T)

OF FREEDOOM = 168 PROBABILITY OF LARGER VALUE

7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.

NULL HYPOTHESIS OF MODEL M(H)

CHI-SQUARE VALUE = 15.148 DEGREES

MODEL SELECTION CRITERIA.

M(H)
1.00

MODEL
CRITERIA

M(0)
.83

M(B)
.37

M(BH)
.52

VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)

OF FREEDOM = 26  PROBABILITY OF LARGER VALUE

MODEL SELECTED HAS MAXIMUM VALUE.

M(TB)
.36

M(TBH)
.59

M(T)
0.00

M(TH)
.46

Fic. 21b. Example of model selection procedure based on Scheme B taxicab data from
(1973b). Appropriate model probably is My. Suggested estimator is jackknife.
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NMRBER OF TRAPPING OCCASIONS WAS
MRMBER OF ANIMALS CAPTURED, M(T+1), WAS 2‘41
TOTAL NUMBER OF CAPTURES, N., WAS 475

FREQUENCIES OF CAPTURE,.F(1)
I= 1 2 3 4 5 6 7 8 910

Fili= 104 67 51 12 8 1 00 0 O
COMPUTED JACKKNIFE COEFFICIENTS
NC1) Ni2) NE3) Ny) N(D)
1 1.800 2.700 3.400 4,000 %.500
2 t.ooo .289 -.878 -2.278 -3.722
3 1.000 1.000 1.476 2.535 4.0u2
% 1.000 1.000 1.000 LT3 077
S 1.000 1.000 1.000 i.000 1.103
THE RESULTS OF THE JACKKNIFE COMPUTATIONS
1 N SE(1) .95 CONF. LIMITS TEST OF NC1+1) ¥S. NCI}
o 241 CHI-SQUARE(] D.F.)
¥ 334.6 13.34 308.5 360.7 13.225
2 370.2 21.53 328.0 wiz.y 2.34%
3 388.1 31.54% 327.3 450.9 1.680
4 408.6 w4.09 322.1 495.0 2.137
5 433.3 58.67 318.3 548.3 0.000
AVERAGE P-HAT = .1301
INTERPOLATED POPULATION ESTIHATE (S 365 WITH STANDARD ERROR 20.3074
APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 325 70 4“6
HISTOGRAM OF F(1)
FREQUENCY 0% 87 51 12 6 i o [} 0 0
EACH * EQUALS 11 PDINTS
a9
88
77
66
55
Yy
33
22
11
F1G. 21c. Example of population estimation with

variable probability of capture by animal under
Model M, with Scheme B taxicab data from
Carothers (1973b).

be reasonably certain of the closure as-
sumption.

In this example, the concept of density
is not applicable, nor is it meaningful to
identify “trap” locations. Consequently,
the first page of computer output is the
test of closure (Fig. 21a). From Fig. 21a,
we have the overall test value z =
—1.084. This is not significant, conse-
quently we would not reject closure.
There were enough resightings 2, 3, and
4 times of the same taxicab to allow spe-
cific tests of closure on just those cabs
seen that many times. None of the 3 tests
are significant.

The next section of output is the model
selection procedure (Fig. 21b). After the
headings, some summary statistics are
presented (daily captures n;, cumulative
marked M;, new animals u;, and capture
frequencies f;). The rest of the model se-
lection procedure output (Fig. 21b) is de-

voted to the 7 tests of assumptions fol-

lowed by the computed selection criteria
and a suggested appropriate model. The
first 3 tests compare Model M, to Models
My, My, and M,, respectively. From Fig.
21b results are summarized below for
those 3 tests:

Chi-square Significance

Test of Model  value level

M, versus My 7.913 0.09482
M, versus M, 0.095 0.75740
M, versus M, 2.247 0.98693

The only indication of variability in cap-
ture probabilities is heterogeneity (sig-
nificant at the 10% level). The study was
designed to achieve constant numbers
captured every day; therefore it is not
surprising there is no indication of time
variability in capture probabilities. Also,
we do not find it surprising that there is
no indication, from test 2, of behavioral
response. One would not expect “trap”
responses from taxicabs.

Tests 4, 5, and 6 examine the goodness
of fit of Models M, M,, and M,, respec-
tively. When any of those tests reject, we
are saying that model does not appear ap-
propriate for the given study. Test 4 in-
dicates no departure from Model M,
(overall chi-square of 2.3 with 9 df). Nor
does test 5 reject Model M, (overall chi-
square of 8.957 with 16 df). The goodness
of fit test to Model M, does not cause us
to reject M;, but does make us suspicious
of that model (probability of a larger val-
ue = 0.13483). Finally, test 7 gives us no
cause to suspect Model My, should be re-
jected in favor of Model My (chi-square
of 16.148 with 27 df).

By itself, none of these 7 tests is defin-
itive in suggesting the appropriate mod-
el; rather it is necessary to consider the
results of all the tests. In this example we
see some evidence of heterogeneity, but
no evidence of time or behavioral varia-
tions in capture probabilities. Bearing in
mind the robustness of the jackknife es-
timator of Model M,, we are willing to
conclude the appropriate model for these
data is M;. The “model selection crite-
ria”’ computed by the program suggests
M, as appropriate (with Model M, as the



84

best second choice). Given these results,
the user should look next at the jackknife
estimate for these data and should con-
sider all other estimators as being inap-
propriate.

Fig. 21c gives the results of estima-
tion of N from Carothers’ Scheme B data.
This page of output will always give the
summary statistics M;.,, n., and the cap-
ture frequencies. Then the jackknife
coefficients are given for the number of
trapping occasions used. Next, the results
of computing the first 5 jackknife esti-
mates are shown. For example, Ny, =
334.6 with a standard error of 13.34,
while Ny; = 433.3, and SE(N,;) = 58.67.
In that example, the selected estimate of
N is 365 with standard error of 20.3. The
approximate 95 percent confidence inter-
val on N is 325 to 406. That confidence
interval fails to cover the true N = 420,
reflecting the previously discussed poor
coverage of the confidence. intervals as-
sociated with the jackknife estimator, but
the relative error of the estimator is only
13.1 percent (which is consistent with
our simulation results on Ny). In terms of
real capture-recapture studies, this
amount of bias is, in our opinion, accept-
able.

Finally, we note that jackknife esti-
mator is better (i.e., nearer to N = 420) for
Carothers’ Scheme B data than the com-
monly used estimators as Petersen (1896)
or Schnabel (1938).

As a further aid in judging the validity
of the study, the estimated average cap-
ture probability is given. From Fig. 21c,
AVERAGE P-HAT = 0.1301. Our studies
have indicated that a value of less than
0.10 suggests the capture results may not
be trusted to produce good results. A 0.13
average probability is not very high, but
it is acceptable when the true population
size is as high as 420.

A Penned Rabbit Study

Edwards and Eberhardt (1967) report-
ed the results of a livetrapping study on
a penned population of 135 wild cotton-
tails Sylvilagus floridanus. To our knowl-
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OVERALL TEST RESULTS --
Z-VALUE
PROBABILITY OF A SMALLER VALUE

-2.132
.01650

TEST OF CLOSURE BY FREQUENCY OF CAPTURE.
(FREQUENCIES LESS THAN 10 ARE NOT COMPUTED.)

NUMBER OF CAPTURES Z-VALUE PROBABILITY

2 3.681 99983

Fi1G. 22a. Example of test for population closure
procedure with cottontail data from Edwards and
Eberhardt (1967).

edge there have been few other con-
trolled studies like that done, which is
unfortunate because it would be very
valuable to have more data sets on real
populations where N is known.

It that study, 135 wild cottontails were
captured and placed in a 40-acre (16.2 ha)
rabbit-proof enclosure. After allowing 4
days for the rabbits to adjust to their new
surroundings, livetrapping was conduct-
ed for 18 consecutive nights. When pro-
gram CAPTURE was used to analyze the
resultant data, the results were disap-
pointing.

Fig. 22a shows the results of the clo-
sure test applied to Edwards and Eber-

“hardt’s (1967) data. Because z = —2.132

(P = 0.0165) one would normally ques-
tion whether closure was true. In that ex-
ample, we attribute the result to a time
variation in daily capture probabilities,
specifically there were fewer captures to-
ward the end of the 18 days than at the
start. As mentioned before, this “closure
test” can detect only certain types of time
variations of individual capture probabil-
ities. It cannot of itself “know” the cause
of the variations. Therefore, all the evi-
dence in the data or otherwise available
must be used to reach final conclusions
about closure, or about other questions
such as the presence of behavioral re-
sponse (which also gets confounded with
closure). ,

A brief data summary and the tests of -
assumptions are given by the model se-
lection procedure (see Fig. 22b). From
tests 1, 2, and 3, we see that Model M, is
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OCCASION J= 1 2 3 4 5 6 7 8 9 10 i1 12 13 1+ 15 6 17 18
ANIMALS CAUGHT NiJ)= 9 8 8 14 8 5 18 11 4 3 16 S 2 7 9 0 4 10
TOTAL CAUGHT M(J)= 0 8 15 18 29 33 3 4w 51 52 653 62 62 63 68 ™M ™M ™M 76
NEHLY CAUGHT Ut = 9 B8 3 1n 4 1 10 7 1 1 9 0 1 5 6 0 0 2
FREQUENCIES FtJ)= 43 16 8 6 0 2 1 0 0 0 0 0 0 0 o 0 0 0
1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(O) VS, ALTERNATE HYPOTHESIS OF MODEL M(H)
CHI-SQUARE VALUE = 11.110 DEGREES OF FREEDOM = 3  PROBABILITY OF LARGER VALUE = .01115
2. TEST FOR BEHAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(B)
CHI-SQUARE VALUE = .062 = DEGREES OF FREEDOM = 1 PROBABILITY OF LARGER VALUE = .80367
3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)
CHI-SQUARE VALUE = 46.932 DEGREES OF FREEDOM = 17 PROBABILITY OF LARGER VALUE = .gool12

4. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)

CHI-SQUARE VALUE = 55.502 DEGREES OF FREEDOM = 17  PROBABILITY OF LARGER VALUE =  .00001

TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)

NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY

1 52.023 17 .go002

5. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)

CHI-SQUARE VALUE = 102.913 DEGREES OF FREEOOM = 31  PROBABILITY OF LARGER VALUE = 0.00000
SA. cbmmaunou OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBABILITY ACROSS TIME
CHI-SQUARE VALUE = 47.065 DEGREES OF FREEDOM = (15 PROBABILITY OF LARGER VALUE = .00004
SB. CONTRIBUTION OF TEST OF HOMOGENEITY OF 'RECAPTURE PROBABILITIES ACROSS TIME
CHI-SQUARE VALUE = 55,848 DEGREES OF FREEDOM = 16 PROBABILITY OF LARGER VALUE = .ooooo
6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)

EXPECTED VALUES TOO SMALL. TEST NOT PERFORMED.

7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)

CHI-SQUARE VALUE = 52.023 DEGREES OF FREEDOM = 17 PROBABILITY OF LARGER VALUE = .00002

MODEL SELECTION CRITERIA. MODEL SELECTED HAS MAXIMUM VALUE.

MODEL L1{v}] M(H) M(B} M{BH) M(T) M(TH) M(TB} M(TBH)
CRITERIA .15 0.00 .29 .01 1.00 -0 .22 .32

Fic. 22b. Example of model selection procedure based on cottontail data from Edwards and Eberhardt
(1967). Appropriate model probably is M, Suggested estimator is Darroch.

not acceptable; moreover, the tests show (tests 3 and 1). Although test 2 fails to
that there is clearly time variation in av- suggest that Model M, is better than
erage daily capture probabilities and that Model M,, we cannot, from that alone,
there probably is some heterogeneity conclude there are no behavioral re-
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OCCASION J= 1 2 3 4 5 6
ANIMALS CAUGHT Ni{W= 9 8 9 14 8 5
TOTAL ANIMALS CAPTURED 76

P-HAT(J)= .12 .11 .12 .18 .11 .07

POPULATION ESTIMATE 1S 76 WITH STANDARD ERROR

APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL

HISTOGRAM OF N(J)

FREQUENCY 9 -] 9 14 8 5 18 11

75 TO

WILDLIFE MONOGRAPHS

10 13} 12 13 L] 15 16 17 18
3 16 5 e 7 9 0 Y% 10

A% .08 .04 .21 .07 .03 .09

.0165

n

EACH * EQUALS 2 POINTS
18
16
14

.
* -
- - »
12 » - . -
]u - - - » - * - *
8 - * . . - . . 3 * * *
6 * L] - - . . » » - - ] - *
" . - * . - - » . » * » 3 - »
2 » . - - * . * 3 » + - +* * . * .
Fic. 22¢c. Example of population estimation with time specific changes in probability of capture

under Model M, with cottontail data from Edwards and Eberhardt (1967).

sponses. In fact, test 7 (p = 0.00002)
shows that there are time variations in
capture probabilities which may be be-
havioral.

Only 2 of the goodness of fit tests (4

and 5) could be computed. The goodness
of fit to Model M; could not be done be-
cause of the small numbers of individuals
caught most days. The other 2 tests, how-
ever, resulted in rejection, indicating that
neither Model M, nor M, is a satisfactory
model for the data.

When the goodness of fit test cannot be
computed for Model M,, the model selec-
tion criteria are computed based on the
assumption that test 6 would give a sig-
nificance level of 0.50. This tends to give
undue weight to Model M,, but there is
really no good solution to this problem.
For Edwards and Eberhardt’s data, My is
the indicated best fitting model, with
Model My, the next best. This is consis-
tent with the observation that capture
probabilities do appear affected by both
time and heterogeneity.

The estimation of N based on Model
M, is given in Fig. 22¢. The point esti-

mate of population is 76, which is the
same as the number of distinct animals
captured (i.e., Mo = 76). As further evi-
dence for determining whether N, is a re-
liable estimate (and model), one should
compute  the overall average capture
probability:

b= n.
't—'ﬁ-
For Edwards and Eberhardt’s data:
- 142 '
=__~— _=10.10380.
D (18)(76) 0.10380

The advantage of using this formula in-
stead of

b= (JZ pj)/(t)

is that we know the true population size
is greater than or equal to 76. Thus, we
know this value of p is an upper bound
on the true expected value of p, and hence
average capture probability is less than or
equal to 0.10. This should raise a red
flag to the investigator, average capture
probability may well be less than 0.10,
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ANIMAL NUM. MAXIMUM AVERAGE STANDARD  ANIMAL NUM. MAXIMUM AVERAGE STANDARD  ANIMAL NUM.  MAXIMUM AVERAGE STANDARD
1.D. CAP. DIST. DIST. ERROR 1.D. CAP. DIST. BIST. ERROR 1.D. CAP. DIsT. DIST. ERROR
268 6 4.5 1.7 .69 268 3 14 .7 .7 272 8 2.0 .B .37
273 8 1.4 .3 .28 am -1 1.0 .3 .25 278 [} 1.4 N .29
an 6 2.2 1.5 .30 279 L] 8.5 4.0 1.75 280 4 2.2 .8 42
281 3 5.0 3.2 1.79 e82 S 1.4 1.0 0.00 285 5 7.1 3.3 1.46
286 6 2.0 27 .28 287 5 2.0 -5 .29 288 8 2.2 .8 .20
294 5 1.4 4 .35 299 Y 3.0 1.0 1.00 300 3 2.0 2.0 0.00
163 Y 1.0 7 .33 165 Y Y.t 3.6 .63 166 2 0.0 0.0 0.00
167 4 2.0 7 .67 169 4 2.2 1.2 .65 170 S 2.0 .5 -S0
171 5 4.1 1.8 .61 172 2 .4 1.4 0.00 173 3 5.0 4.1 .g2
175 1 0.0 c.0 0.00 178 3 0.0 0.0 0.00 177 3 1.0 1.0 .00
184 1 0.0 6.0 0.00 187 Y 2.2 7 .75 188 3 0.0 0.0 0.00
189 -4 3.0 3.0 0.90 191 L3 1.0 .3 .33 192 3 0.0 0.0 0.00
193 3 0.0 0.0 0.00 196 3 1.4 1.2 .21 198 1 0.0 0.0 0.00
199 2 5.0 5.0 6.00 200 2 e.2 2.2 0.00 86 2 0.0 0.0 0.00
89 1 0.0 0.0 6.00 90 1 0.0 0.0 0.00 a1 1 0.0 0.0 0.00
92 e 1.0 1.0 0.00 93 e 0.0 0.0 0.00 85 2 Y. 4.1 0.00
98 1 0.0 B.0 0.00 100 1 0.0 0.0 0.00 360 1 0.0 0.0 0.00

NOTE THAT AVERAGE DISTANCE ONLY REFERS TO DISTANCE BETWEEN SUCCESSIVE CAPTURES,

WHILE MAXIMUM DISTANCE REFERS TO THE GREATEST DISTANCE BETWEEN ANY TWO CAPTURE POINTS.
ALSO DISTANCE IS IN UNITS OF TRAP INTERVALS, [.E., IF THE INTER-TRAP DISTANCE 1S 5 METERS,
AND THE MAX. DISTANCE IS i.4, THEN THE MAX. DISTANCE IN METERS IS 1.4*6 OR 7 METERS.

SUMMARY 8Y FREQUENCY OF CAPTURE OF MAXIMUM DISTANCE BETHWEEN CAPTURE POINTS.

NUMBER SAMPLE  MEAN OF STANDARD
CAPTURES SIZE MAX DIST, ERROR
2 e 1.86 621
3 10 1.58 .BlY
Y4 8 2.23 .360
S 8 3.45 j.018
6 7 2.25 .3%2
TOTAL 42 2.23 .575

FIG. 23a. Example of animal by animal summary of deer mouse capture data from V. Reid (pers. comm.).

in which case this analysis is not trust-
worthy when (apparent) population size
is around 100.

In fact, if we use the true value of N =
135, then average capture probability in
this experiment was 0.056. We also point
out that even after 18 days of trapping
only 53 percent of the population had
been captured. This example illustrates
our contention that it is very important to
have average capture probabilities well
above 0.05 or 0.10 for the population
sizes typically encountered in capture—
recapture studies (50 to 150). Consider-
ing that N = 135 and the population was
penned, we suggest that the “true” situ-
ation was as follows. There was signifi-
cant time variation and heterogeneity but
little real behavioral response. The av-
erage daily capture probabilities de-
clined in the last 9 (of the 18) days and
this caused rejection of both the closure
test and test 7. No good estimator of pop-
ulation size is available for data of this
type and quality.

An Example of Trap Response

Many data sets we have seen on Pero-
myscus maniculatus have fit Model M,
(trap response). The following is an ex-
ample supplied by V. Reid (pers.
comm.). The data were taken in a 6-day
livetrapping study near Wet Swizer
Creek, Rio Blanco County, Colorado, Au-
gust 1975. A rectangular grid of 9 x 11
traps was used, with 50-foot (15.2-m) trap
spacing. One Sherman live trap (for small
mammals) was placed at each grid point
and trapping was done twice daily (morn-
ing and night); we have used only morn-
ing captures for this example. The reader
should study Figs. 23a—e, which give
the basic results, before proceeding.

A summary of movement information
from recaptures is given in Fig. 23a. We
remind the reader these distances are in
units of 1 trap spacing [i.e., 50 feet (15.2
m) here]. Thus, the mean maximum dis-
tance of 2.23 implies the average maxi-
mum movement was 111.5 feet (34 m).
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OCCASION J= 1 2 3 4 S 6
ANIMALS CAUGHT N(J))= 16 29 27 @28 3 38
TOTAL CAUGHT M= o 16 31 38 44 48 61
NEWLY CAUGHT Uthr= 16 15 7 6 4 3
FREGQUENCIES Flr= 9 9 10 8 8 7

I. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(H)

CHI-SQUARE VALUE = 37.489 DEGREES OF FREEDOM = 4  PROBABILITY OF LARGER VALUE

2. TEST FOR BEHAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(B)

CHI-SQUARE VALUE = 24.342 DEGREES OF FREEDOM = 1 PROBABIL.ITY OF LARGER VALUE

3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(O) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)

CHI-SQUARE VALUE = 24.773 DEGREES OF FREEDOM = 5  PROBABILITY OF LARGER VALUE
4. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL MI(H)

CHI-SQUARE VALUE = 25.226 DEGREES OF FREEDOM = S  PROBABILITY OF LARGER VALUE

5. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)

CHI-SQUARE VALUE = 5.978 OEGREES OF FREEDOM = 8  PROBABILITY OF LARGER VALUE =

SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBABILITY ACROSS TIME
CHI-SQUARE VALUE = 1.135 DEGREES OF FREEDOM = 4  PROBABILITY OF LARGER VALUE =
58. CONTRIBUTION OF TEST OF HOMOGENEITY OF RECA;’TURE PROBABILITIES ACROSS TIME
CHI-SQUARE VALLE = 4.843 DEGREES OF FREEDOM = 4  PROBABILITY OF LARGER VALUE =
6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M{T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)

EXPECTED VALUES TOO SMALL. TEST NOT PERFORMED.

7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.
NAL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)

CHI-SQUARE VALUE = 22.217 DEGREES OF FREEDOM = 7  PROBABILITY OF LARGER VALUE =

MODEL. SELECTION CRITERIA. MODEL SELECTED HAS MAXIMUM VALUE.

MODEL M(0) MH) M(B) M(BH) M(T) M(TH) M(TB) M(TBH)
CRITERIA .26 .17 1.00 .65 0.00 .28 .55 .27

.0o00c

.00000

.00015

.00013

. 64968

. 88866

.30379

.00233

F1G. 23b. Example of model selection procedure based on deer mouse data from V. Reid (pers. comm.).

Appropriate model probably is M. Suggested estimator is Zippin.

One estimate of W (strip width) is pro- ing 106 feet, 32.3 m, here). Either ap-
duced by taking half this average maxi- proach probably would be an improve-
mum distance (56 feet, 17 m, here), or ment over using W = 0, but these are

half of it plus one intertrap distance (giv- essentially ad hoc approaches.




STATISTICAL INFERENCE FROM CAPTURE DATA—Otis et al.

OCCASION J= 1 2 3 4 5 6
TOTAL CAUGHT M= 0 15 31 38 44 48 Sl
NEWLY CAUGHT uth= 16 15 K 8 Y 3
ESTIMATED PROBABIL!ITY OF CAPTURE,

P-HAT = .318118

ESTIMATED PROBABILITY OF RECAPTURE, C-HAT = .677966

POPULATION ESTIMATE IS 56 WITH STANDARD ERROR 4.2859

APPROXIMATE 95 PERCENT CONFIDENCE INTERVALS 47 10 65

HISTOGRAM OF UILJ)

FREQUENCY 16 15 7 6 4 3

EACH * EQUALS 2 POINTS

“ LI
12 . .
10 .
8 . e e
6 [N
. v e e e s
2 v e e e s
FI1G. 23c. Example of population estimation with

constant probability removal estimator under Mod-
el M, with deer mouse data from V. Reid (pers.
comm.).

In this example, the test for closure
gave z = —1.586 (P = 0.05633). But be-
cause the closure test is known to be
biased when there is trap response, in the
final analysis we conclude Model M,, ad-
equately fits the data and closure is ac-
ceptable. A second bit of evidence on clo-
sure is given by the “ring” test (see Fig.
23e). That test examines for any apparent
attraction of animals by the grid; it is not
significant in this example, indicating
that there is no basis to think immigration
occurred.

From the model selection results (Fig.
23b) we find that tests 1, 2, and 3 all re-
ject. This typically happens when there
is strong trap response. Tests 4, 5, and 6
examine the goodness of fit of the 3
Models (Mpn, My, and M, respectively).
We see that Model M, does not fit, but
Model M, does fit the data adequately.
Unfortunately, the goodness of fit of M;
is the most difficult test to compute and
with the small numbers of animals caught
it could not be reliably computed.

Test 7 examines for possible behavior-
al variations in capture probabilities al-
lowing for any heterogeneity which may
be present (Fig. 23b). That test strongly
suggests some form of behavioral re-
sponse is present.

MATRIX OF CAPTURES PER TRAP STATION.
COLUMNS 1 2 3 4+ 5 & 7 8 9
1
roW 11f0 0 t 3 7 3 & 4 4
H
ROM 21033 +« » 1 5 o 1]2
1
row z1J2fefle o o 4 2]4]e
t
row w11 3l2l3te o 1112 .
1 Grid
gow 51t Jofo] o oL ]uls 1
1 2
row 61 §ofelafe 2 ofjuvjo]eo 3
1
rRod 7108l ]a}le 3 3]Jtrjojo — 4
1
row a1 la2alefuw]o v o323
1
rRow 9tfuwfofls o 2 o ofjojo
1
rRowi10iflofs o 1 o o o o0fe
I
rRoW 11 1o v 2 o 1 2 o0 1 1

Fic. 23d. Nested subgrids used in the density

estimation procedure with deer mouse data from V.

Reid (pers. comm.). In the matrix, trap coordinates

are rounded to the nearest whole integer. In the

following goodness of fit tests, trap coordinates

that are not integers and nonrectangular trapping
grids will cause spurious results.

The suggested model is M,, and the
corresponding estimator of population
size is, essentially, the Zippin removal
estimator. (We have used the maximum
likelihood estimator of N under the Zip-
pin removal model. Recall that this dif-
fers slightly from the estimator usually
computed.) Fig. 23c shows the esti-
mate of population size under Model
M, to be N = 56, with a standard error of
4.3. The approximate 95 percent confi-
dence interval on N is 51 to 65. Note that
the program does not truncate the com-
puted lower limit of 47 back to 51 (the
number actually seen), but this could be
done in reporting the results. The prob-
ability of initial capture is p = 0.32 and
the probability of recapture is ¢ = 0.68.
These are significantly different because
Model M, was rejected in favor of Model
M,. This sort of dramatic increase in cap-
ture probability after initial capture is en-
tirely consistent with the properties of
the data, for example, the observed in-
crease over time in the n;'s (daily num-
bers captured).

The area covered by the trapping grid
was 4.59 acres (1.86 ha); the naive esti-
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CHI-SQUARE TEST OF UNIFORM DENSITY BY ROWS.

ROW 1 2 3 4 5 6 7 8 9
OBSERVED 27 23 18 15 12 12 18 20 11
EXPECTED 15.545 15.545 15.5456 16.545 15.545 15.545 15.545 15.545 15.545
CHI-SQUARE 8.440 3.575 .388 .019 .809 .809 .388 1.276 1.329
ROW 1t
OBSERVED 11
EXPECTED 15.545
CHI-SQUARE 1.329
TOTAL CHI-SQUARE = 26.94 MWITH 10 DEGREES OF FREEDOM. PROBABILITY OF LARGER VALUE = .0027
CHI-SQUARE TEST OF UNIFORM DENSITY BY COLUMNS.
COLUMN 1 2 3 Y4 S 6 7 8 9
O0BSERVED 21 19 25 15 20 18 17 17 19
EXPECTED 19.000 19.000 19.000 18.000 19.000 19.000 19.000 19.000 19.000
CHI-SQUARE .21t 0.000 1.895 - 4 .053 .053 .211 .211 G.000

TOTAL CHI-SQUARE =

CHI-SQUARE TEST

3.47 WITH 8 DEGREES OF FREEDOM. PROBABILITY OF LARGER VALUE = .9012

OF UNIFORM DENSITY BY RINGS (OUTER RING 1S NUMBER 1).

RING . 1 2 3 4
OBSERVED 73 42 36 20
EXPECTED 62.182 48. 364 34.545 25.909
CHI-SQUARE 1.882 .837 .061 1.348
TOTAL CHI-SQUARE = %.13 WITH 3 DEGREES OF FREEDOM. PROBABILITY OF LARGER VALUE = .2479

10

15.545
B8.575

F1G. 23e. Chi-square tests of uniform density with deer mouse data from V. Reid (pers. comm.).

mate of density is thus 12.2 mice/acre
(30.7/ha). Because of edge effect, we
know this is an overestimate. As dis-
cussed above, movement data from re-
captures is one basis for estimating the
strip width W to get an estimate of effec-
tive trapping area. A conceptually better
approach is to estimate W based on trap-
ping grids of different sizes. Figs. 23e~f
give results relevant to this approach
for Reid’s Wet Swizer Creek data. Four
nested subgrids were chosen (as shown
in Fig. 23d) as the basis of this procedure;
from the number of captures per trap sta-
tion, there is no apparent evidence of a
nonuniform density over the grid. Figure
23e gives some logical tests of this uni-
form density assumption. However, our
experience with the tests is that they
often reject when there is, in fact, no real
density gradient (i.e., systematic changes
in density over the grid). Thus, even
though there may be some variation in
density by “rows,” it is minor. Also, the

choice of subgrids as shown tends to min-
imize the problem.

For each subgrid, an estimate of the
population at risk of capture on that
subgrid was obtained using Model M,
As explained in the density estimation
section, we can then estimate W. The re-
sults are shown in Fig. 23f. The 4 naive
densities are shown, with the necessary
computed constants (based on grid sizes),
and the initial covariance matrix of the
naive densitites._

The value of W is 105 with a (typically
large) standard error of 58. Nonetheless,
this value of W is significantly greater
than zero, so we accept as our density
estimate D =5.54 animals/acre (13.7/ha),
(SE(D) = 1.92). ’

When this subgrid approach to esti-
mation of D fails, one must use

D = N/AW),
AW) = A1 + aW + bW,
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STARTING VALUES FOR DENSITY ESTIMATION--
NUMBER OF GRIDS Y4
TRAP INTERVAL 50.00
UNITS CONVERSION 43560. 00
INITIAL DENSITY ESTIMATE 30.6995
INITIAL STRIP WIDTH ESTIMATE .5228
GRID NAIVE DENSITY PERIMETER/AREA PI/AREA STARTING COVARIANCE MATRIX
1 Y1} ALl B(1)
1 32.67000 .3000000E-01 .1571E-03 150.
2  61.71000 . 1666667€-01 .5236E-04 507. . 152E+08
3 17.42400 .1166667€-01 .2618€-04 7. a3z, 4.1
4 12. 19680 .9000000E-02 . 1571E-04 1.186 4.7 2.11 .871

RESULTS OF ITERATIONS
FUNCTION EVALUATIONS REQUIRED
ESTIMATED SIGNIFICANT DIGITS OF PARAMETER VALUES 8

87

FITTED MODEL COMPARED TO THE DATA

GRID(D) Yen F(D

1 32.670 32.651

e 61.710 18.460

3 17.424 13.941

4 12.197 11.745
MULTIPLE CORRELATION COFFICIENT IS .33718
ESTIMATED DENSITY= 5.538 = 1.9241 = 1TS STANDARD ERROR
ESTIMATED STRIP WIDTH= 105.225 57.9903 = [TS STANDARD ERROR
CORRELATION OF ESTIMATORS -.9824

TEST OF ESTIMATED STRIP WIDTH GREATER THAN ZERO.

Z-VALUE = 1.8145 PROBABILITY OF LARGER VALUE =

FINAL COVARIANCE MATRIX

150.0

818.6 .1521E+05

18.80 311.4 14.10
3.359 55.62 2.518

.0348

.8714

Fic. 23f. Example of joint estimation of density and boundary strip width with deer mouse data from
V. Reid (pers. comm.).

where A, is the grid area, W derives from
either movement data or an independent
source, and a and b are constants which
can be computed. In fact, the program

tance of 111.5) we get
A(W) = 4.59 x 1.5506 = 7.117,

prints these constants on the density es- and hence,

timation page. From Fig. 23f, we have 56

(for the total grid), a =0.009 and b = D=_2"_ =787
0.00001571. 7.117 ,

As an illustration only, if we use W =

55.75 (half the average maximum dis-

(For previously given reasons, however,
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OCCASION J= 1 2 3 Y4 5
ANIMALS CAUGHT N(J)= 37 S5+ 58 65 68
TOTAL CAUGHT MU= 0 37 €8 77 98 110
NEHLY CAUGHT U= 37 31 s a 12
FREQUENCIES F(h)= 3+ 20 28 15 13

1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(H)

CHI-SQUARE VALUE = 49.016 DEGREES OF FREEDOM = 3  PROBABILITY OF LARGER VALUE

2. TEST FOR BEHAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(B)

CHI-SQUARE VALUE = 35.865 DEGREES OF FREEDOM = t PROBABILITY OF LARGER VALUE

3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(O) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)

CHI-SQUARE VALUE = 24.071 DEGREES OF FREEDOM = 4  PROBABILITY OF LARGER VALUE

. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)

CHI-SQUARE VALUE = 25.504 DEGREES OF FREEDOM.= 4%  PROBABILITY OF LARGER VALUE

TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.}

NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY

1 18.647 4 .00082
e 18.333 Y .00106
3 6.048 Y . 19562
4 6.000 4 .18915

5. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)

CHI-SQUARE VALUE = 13.510 DEGREES OF FREEDOM = 6  PROBABILITY OF LARGER VALUE
SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBABILITY ACROSS TIME
CHI-SQUARE VALUE = 9.220 DEGREES OF FREEDOM = 3  PROBABILITY OF LARGER VALUE
5B. CONTRIBUTION OF TEST OF HOMOGENEITY OF RECAPTURE PROBABILITIES ACROSS TIME
CHI-SQUARE VALUE = 4.289 DEGREES OF FREEDOM = 3  PROBABILITY OF LARGER VALUE
6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL MI(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)

CHI-SQUARE VALUE = 84.121 DEGREES OF FREEDOM = 66  PROBABILITY OF LARGER VALUE

7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)

CHI-SQUARE VALUE = 47.135 DEGREES OF FREEDOM = 10  PROBABILITY OF LARGER VALUE

MODEL SELECTION CRITERIA. MOOEL SELECTED HAS MAXIMUM VALUE.

MODEL MQ) M(H) M(8) M(BH) M(T) M(TH) M{TB) M(TBH)
CRITERIA .55 42 .99 .89 0.00 .55 .88 1.00

=

0.00000

0.00000

.0ooo8

.00o0o4

. 03562

. 02650

.23187

. 06562

.gcooo
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we suspect that W= 55.75 is an under-
estimate and suggest W = 105 is a better
value to use.) ~

The sampling variance of D is comput-
able by the formula given in the density
estimation section. The only missing
term is Var(W) which is obtained from
the standard error of mean maximum dis-
tance (Fig. 23a)

Var(W) = (.5—0*%—575*)2 — 206.64.

Then using the formula for Var(D) we get
Var(D) = 0.98, or SE(D) = 0.99.

An Example Where No Model Fits |

In previous examples, the model selec-
tion procedure usually indicated a model
that fit the data, and for which there was
an estimator. However, with many real
data sets we have found that no model
fits the data. In those cases, the proce-
dures given in this monograph serve to
warn that no reliable estimator can be
computed from the data (unless it can be
judged the entire population has been
caught).

In this example (Flgs 24a—e), we use
livetrapping data collected by S. Hoff-
man (pers. comm.) in mid-July 1974 on
deer mice. The study site was in a sage-
brush—-greasewood community at 4,500
feet (1,372 m) elevation in Curlew Val-
ley, Idaho. A 12 x 12 grid of Sherman
~live traps, spaced 15 m apart, was used.
Trapping was on 5 consecutive mornings,
110 individuals were caught (i.e., My, =
110) and there were 283 captures. in all.

Fig. 24a shows some summary sta-
tistics and the model selection procedure
results. The daily captures increased (37,
54, 58, 65, 69), and although the new cap-
tures tended to decrease, they varied
substantially (37, 31, 9, 21, 12). From
these summary statistics, we would judge
a substantial part of the catchable popu-

OCCASION g= 1 e 3 4 5

TOTAL CAUGHT M= 0o 37 68 77 88 110

NEWLY CAUGHT vt = 37 3 g 2 12

ESTIMATED PROBABILITY OF CAPTURE, P-HAT = . 265222

ESTIMATED PROBABILITY OF RECAPTURE, C-HAT = .617857

POPULATION ESTIMATE IS 142 WITH STANDARD ERROR 16.4217
APPROXIMATE 95 PERCENT CONF IDENCE INTERVALS 109 70 175

HISTOGRAM OF UL

FREQUENCY 37 31 9 a1 e
EACH * EQUALS 4 POINTS

» .

= . .

o . .

b . .

20 . . .

e . . .

2 . . .

b v e e e

“ e e e a
F1G. 24b. Example of population estimation with

constant probability removal estimator under Mod-
el My, with deer mouse data from S. Hoffman (pers.
comm.).

lation remains untrapped. Phrased differ-
ently, there is no evidence here to sug-
gest M, is a reliable estimate of N.

From Fig. 24a, it can be seen that tests
1, 2, and 3 reject Model M, overwhelm-
ingly. We thus conclude there is some
type of variability in capture probabili-
ties, and are suspicious that more than
one source is operating. Test 4 also re-
jects the null hypothesis that Model My
fits. At this point we can be fairly certain
there is some form of time variability in
daily capture probabilities, but it may be
the often encountered result of behavior-
al variability.

The goodness of fit test to Model M,
indicates that this model is not a good fit
to the data (P = 0.03562). Test 6 also sug-
gests Model M, is not an adequate fit to
the data. Test 7 again confirms that some
form of behavioral response is present so
that Model My, is inadequate. This leaves
us uncertain as to how time and behavior
variability are operating. Tests 5a and 5b

L

FiG. 24a.

Example of model selection procedure based on deer mouse data from S. Hoffman (pers.

comm.). Appropriate model probably is Mun or M,. Suggested estimator is Zippin.
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MATRIX OF CAPTURES PER TRAP STATION.

COLUMNS t ¢ 3 4 S 6 7 8 98 10 11 12
i
ROW 11 4 3 5 § 5 3 2 0 3 4 3 |
ROW 2 : 8 'S 0 4 1 0 4 3 0 1 3 0
ROK 3 : Y 2 0 3 1 0 2 e i 3 3 1
ROW 4 ; 1 S 3 4 i 6 2 6§ 2 4w 2 3
ROW & i 0 1 4 3 © 1 3 0 0O 1 5 2
RON 6 ; 3 5 0 1 1 0 3 2 0 0 4 5
ROW 7 : e 0 2 0 0 o 1 3 ¢ 1 2 1
ROW 8 : 4 1 ¥ 2 0 0 1 0o 0 3 2 o0
ROW 9 : 1 2 4% 2 % 0 0 2 4 4% 2 4
ROW 10 : 2 0 5 2 o0 o 1 0 ! 2 4 4
ROW 11 : 1 3 1 0 0 0 0 3 4 @2 2 e
ROK 12 : 4 % 3 0 2 0 0 o0 1 ¥ 4 2

-

IN THE ABOVE MATRIX, TRAP COORDINATES ARE ROUNDED TO THE NEAREST WHOLE INTEGER.
IN THE FOLLOWING GOODNESS OF FIT TESTS, TRAP COORDINATES THAT ARE NOT INTEGERS
AND NON-RECTANGULAR TRAPPING GRIDS WILL CAUSE SPURIOUS RESULTS.

CHI-SQUARE TEST OF UNIFORM DENSITY BY RINGS (OUTER RING IS NUMBER 1).

RING 1 e 3
O0BSERVED 107 76 53
EXPECTED B6.472 70.750 55.028
CHI-SQUARE 4.873 -390 ' .075

TOTAL CHI-SQUARE = 15.31 WITH

5 DEGREES OF FREEDOM. PROBABILITY OF LARGER VALUE =

4 5 6

32 11 4
39.306 23.583 7.861
1.358 6.714 1.896

.0091

FIG. 24c. Chi-square tests of uniform density with deer mouse data from S. Hoffman (pers. comm.).

help to clarify matters somewhat. Test 5a
is the goodness of fit test to Zippin's
(1956) constant probability removal mod-
el, i.e., the null hypothesis here is that
first capture probability is constant. Test
5b examines the null hypothesis that re-
capture probabilities are constant. This
latter test has P = 0.23187 suggesting that
recapture probabilities may well be con-
stant over time. By contrast with Test 5a
(P = 0.02650) we conclude that first cap-
ture probabilities probably vary. These 7
tests suggest that behavior is the strong-
est factor affecting capture probabilities
and that time is the next most significant
factor.

The model selection criteria are a sig-
nificant aid to interpreting data. In this
example, the criteria values for models
Mb, Mbh, Mtba and Mtbh are 0.99, 089,
0.88, and 1.00, respectively. Recall that
the most likely model is always given a
value of 1, and the other criteria values
are scaled accordingly, hence, we cannot
say Model My, actually fits the data. It is
significant that these 4 models all account
for behavioral response, thus corroborat-
ing our contention that there is a strong
behavioral variation in capture probabil- -
ities. Because Model M, is the next most
likely model, one might select it as the
basis for estimation. But there can be no
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SUMMARY BY FREQUENCY OF CAPTURE OF MAXIMUM DISTANCE BETWEEN CAPTURE POINTS.

NUMBER SAMPLE  MEAN OF STANDARD

CARTURES SI1ZE MAX DIST. ERROR
2 20 1.46 .279
3 28 2.43 410
4 15 2.e6 .388
5 13 a.u4 .338

TOTAL 76 2.1 401

F1G. 24d. Summary by frequency of capture of
maximum distance between capture points.

strong reliance on N, or any other esti-
mator here, because none of the models
fit the data. From Fig. 24b, the first cap-
ture probability (p) and the recapture
probability under Model M, are estimat-
ed to be

p = 0.26 and ¢ = 0.62.

These are known to be significantly dif-
ferent because test 2 rejected Model M,
From Model M, the estimate of N is N, =
142, with an estimated standard error of
16.4. The approximate 95 percent confi-
dence interval is 109-175. Other alter-
natives are also basically unsatisfactory.
Model M, could be considered but it
does not fit the data for any of its specific
cases. This may be because first capture
probabilities vary over time. Model M,
does not fit; and there are strong indica-
tions that behavior is the dominant source
of variation. Based on these factors, we
cannot recommend. a valid estimation
procedure for these data.

If density estimation is desired here,
further problems arise. From Fig. 24c,
there is no visual evidence of nonuniform
density over the 12 x 12 grid. However,
the ring test suggests significantly more
animals were caught in the outer traps,
which could be evidence of the grid “at-
tracting” animals. This phenomenon
does affect density estimation based on
nested subgrids; in fact, this procedure
failed for these data as the estimated W
value was not significantly different from
zero. The only recourse is to estimate W
from movement data, or to use a value of
W known to be representative for deer
mice.

Fig. 24d shows the summary of max-
imum distances moved for recaptured an-
imals. The overall average is 2.14 trap

95
OVERALL TEST RESULTS --
Z-VALUE -2.142
PROBABILITY OF A SMALLER VALUE .01610

TEST OF CLOSURE BY FREQUENCY OF CAPTURE.
(FREQUENCIES LESS THAN 10 ARE NOT COMPUTED.)

NUMBER OF CAPTURES Z-VALUE PROBABILITY

e -1.118 .13178
3 -1.708 . 04383
4 -1.054% . 14592

FiG. 24e. Example of test for population closure
procedure with deer mouse data from S. Hoffinan
(pers. comm.).

units. Converting this to meters (2.14 x
15) and dividing by 2 we have 16 m
(52.7 feet) as a conservative estimate of
W. This is typical of such values seen for
deer mice on livetrapping grids with 15-m
trap spacing. It is also known to be an un-
derestimate. Using W = 16 m would give
a less biased density estimate than W = 0,
but it would still probably result in an
overestimate of D. The matter is further
complicated if animals were in fact at-
tracted to the grid. This phenomenon
cannot be adequately dealt with, except
by assessment lines (or designing a study
so that no attraction occurs). Dropping
the outer ring of traps and reanalyzing
the data is another possibility, but then
we are treating this outer ring as an as-
sessment line.

Normally, we should have looked at
the closure test early on in the model as-
sessment procedure (see Fig. 24e); the
results. are z = —2.142, P = 0.0161. Be-
cause there is strong behavioral variation,
we must discount this test; it cannot be
relied upon. Thus, the only evidence we
have of a closure failure is the ring test”
of Fig. 24c.

We propose the following as a plausi-
ble explanation of these data. From Hoff-
man (pers. comm.) we know there was no
prebaiting of these traps, no time was al-
lowed for the animals to become used to
the traps. From the analysis we know
there was behavioral response, and prob-
ably time variation in first capture prob-
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abilities (but not in recapture probabili-
ties). The lack of prebaiting (often
recommended in the literature) may have
resulted in animals either increasing
their first capture probabilities over time
as the study progressed, or in an influx
occurring during (rather than before) the
study started. Prebaiting may solve the
first problem. It will not solve the second
problem of the grid attracting animals
and thereby creating artificially high den-
sities.

COMPREHENSIVE COMPUTER
ALGORITHM

The computations necessary to calcu-

late many of the estimates described in
the preceding pages are quite lengthy,
and in most cases, nearly impossible
without a computer. Therefore, to pro-
vide methods of population estimation
useful to the biologist, a comprehensive
FORTRAN computer program, CAP-
TURE, has been written. The input to
the program has been written in a free-
form and natural style to make it easy to
use. :
The program is written in ANSI FOR-
TRAN 1V with several small exceptions
so that it will function on most brands of
digital computers. Statements known to
cause compilation errors on IBM, CDC,
Burroughs, Univac, Xerox, Honeywell, or
DEC equipment have been flagged with
comment statements, and the correct
statement for the specific brand of com-
puter included on a comment statement.
A magnetic tape with the FORTRAN
code and the 13 sets of example data il-
lustrated in this monograph are available
from

SHARE Program Library Agency
P. O. Box 12076
Research Triangle Park, N.C. 27709

at a cost of $40.00. Specifications for the
tape (e.g., 7 or 9 track, 800 or 1,600 bpi,
etc.) should be given when ordering the
source program (No. 360D-17.5.002).
The program consists of a main routine

WILDLIFE MONOGRAPHS

and 54 subroutines. In addition, there are
7 common blocks. Included in the source
code are ample comment statements to
follow program flow. The total code con-
sists of about 6,000 cards. Core require-
ments on an IBM 360 are about 200 K for
the code without an overlay structure,
but this can be reduced considerably
with an overlay structure.

The dimensions of the program are
presently set to allow up to 2,000 indi-
vidual animals and 31 trapping occasions.
The product of the number of captured
animals and the number of trapping occa-
sions must be less than 4,000. This will
allow, for example, 30 trapping occasions
and 80 animals, or 120 animals and 20
trapping occasions. These values can be
changed by changing DIMENSION
statements in the program.

SUMMARY

The results of this study provide meth-
ods for the estimation of animal popula-
tion size N and density D from capture
experiments. Both capture-recapture and
removal studies to estimate population
size are treated in detail. The primary fo-

_cus of the work has been to relax the as-

sumption of equal probability of capture.
Three basic types of variation in proba-
bilities of capture were examined: (1)
capture probabilities vary with time,
Model M,, (2) capture probabilities vary
by behavioral response, Model M,, and
(3) capture probabilities vary by individ-
ual animal, Model M;. Models allowing
these assumptions and various combina-
tions of assumptions (i.e., Models My,
Min, Mpp, and My,) are treated. Popula-
tion closure is assumed throughout.

An integrated approach was followed
and the result is a blend of practical
methods, examples of the analysis of real
data, statistical theory, and results of
computer simulation studies revealing
some small sample properties of the
methods. The estimation and testing"
problem has been treated in a standard
and usually rigorous statistical frame-
work. Above all, the necessity of assump-
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tions, their importance, and statistical
tests of their reasonableness have been
emphasized. Assumptions must be care-
fully evaluated, both biologically and sta-
tistically, before a particular estimator
can be used justifiably.

A sequence of 8 models that incorpo-
rate various assumptions has been devel-
oped. Point and interval estimators have
been derived for most of the models. Fur-
thermore, a comprehensive and objective
(but not optimal} model selection strate-
gy is provided. This is crucial because
use of an incorrect model and improper
assumptions is apt to produce biased es-
timates and incorrect inferences. In ad-
dition, proper interpretation of the test
statistics and their interrelationships is
shown to be somewhat difficult.

Although the practical analysis of data
from capture experiments has been ex-
tended, additional research needs are ap-
parent. Statistical testing within and be-
tween models will require more work.
Models allowing other sets of assump-
tions need to be developed. Alternative
estimation schemes (e.g., the generalized
jackknife as opposed to the standard max-
imum likelihood approach) need atten-
tion, particularly for some of the more
complex models. Additional work with
incomplete contingency tables may prove
fruitful (see Fienberg 1972). Interval es-
timates in general, and particularly inter-
val estimates for the removal models, re-
quire additional research. Better tests for
the important closure assumption are
needed. Additional controlled studies are
needed where population size is known,
such as that reported by Edwards and
Eberhardt (1967). Behavioral studies
aimed at specific animal-trap interac-
tions promise to provide interesting in-
sights. ,

Research results indicate that accept-
able estimates can be obtained if ade-
quate data are collected properly. How-
ever, it is clear that biologists have not
correctly conceptualized capture experi-
ments over the past 4 decades. These
limitations must be corrected if progress
is expected in biological experiments in-
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volving capture of animals. Biologists
have all too often gone into the field with
only a few traps hoping to obtain mean-
ingful data. Rarely will this be possible,
even if only an estimate of population
size is the goal. If density estimation is
a goal, then further data requirements
must be met.

As a reference point, it probably is ap-
propriate to think in terms of 12 x 12,
16 x 16, or 20 X 20 square or rectangular
grids and a trapping period of 8-9 days.
Further guidelines on effort and sample
size are given in the text. OQur primary
contention is that most capture experi-
ments conducted in the past were quite
inadequate in terms of design, effort, and
sample size, which virtually prohibits
justifiable inferences to be drawn from
such studies.

Our computer simulation experiments
have examined the small sample prop-
erties of the various point and interval
estimators and the tests of model assump-
tions. The results have been informative
and provide some basis for cautious op-
timism. Capture-recapture and removal
methods have been overrated in the past
and this probably has contributed to the
lack of emphasis on design, sample size,
and analytical methods. Estimation prob-
lems related to D and N represent diffi-
cult subjects. Our results provide hope
that a rigorous analysis may often allow
useful inferences to be drawn if future
experiments are well designed and pro-
vide adequate capture and recapture or
removal data for analysis.
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