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Lecture 2.  Density-dependent population growth models: logistic, Ricker, and Schaefer
models; maximum sustained yield.

Reading:
Gotelli, 2001, A Primer of Ecology, Chapter 2, pages 25-48.

Derivation of logistic equation: First, review notation for density-independent growth.
Nt+1 = Nt + Nt × R = Nt × (1 + R), Nt = N0 (1 + R)t

Nt+1/Nt = 1 + R =  = annual rate of increase8
Finite rate of growth (R)
R = finite birth rate - finite death rate + finite immigration rate - finite emigration

rate
Now, let R be a function of population size, Nt [and hence time, R(t)], such that 

R(Nt) ' R(t) ' R0 1 &
Nt

K

With this function R(t) = f(Nt, K), the following population growth curve results:

K is carrying capacity, threshold at which population growth is zero, negative
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Concept of Maximum Sustained Yield (MSY)
To see graphically the population size that provides the maximum
sustainable harvest from a population, plot the population size against the
annual increment:

To analytically examine MSY, recognize that we want to maximize the
annual increase in the population, i.e.,

.  To maximize thisNt%1 & Nt ' NtR0(1&Nt/K) ' R0Nt&(R0/K)N 2
t

equation with respect to , we can take the derivative and set the result toNt
zero.  Thus,

Setting this result equal to zero and solving for  gives the value of Nt Nt
that maximizes the annual increase in the population:

giving the result that .  Now, we can plug this value back intoNt ' K/2
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the equation for the annual increase to solve for the amount of annual
harvest:

Thus, if the population size is , then  animals can be harvestedK/2 R0K/4
each year.   However, consider the assumptions being made to obtain this
result: a deterministic population growth process with no age or sex
structure, just for starters.  Even though the result has a lot of theoretical
importance, its practical importance for management is negligible.

Because the solution to the differential equation is seldom presented, I have done
so here.  Start with the differential equation.

Separating variables gives

Now integrating each side

Performing the 2 integrations and adding a constant of integration c gives

Solving for c at t = 0 and N = N0 gives 

Substituting this expression for c gives



FW662 Lecture 2 – Density-dependent population models 4

ln(N)
K

&
ln(N & K)

K
'

rt
K

%
ln(N0)

K
&

ln(N0 & K)

K

N
N & K

'
N0e

rt

N0 & K

N '
K

1 %
K
N0

& 1 e &rt

Taking the exponential of both sides gives

Now solving for N gives

Derivation of Ricker's equation.  W. E. Ricker (1954) invented this equation to model
fishery stocks (also see Ricker 1975:282).  It is a discrete population model:

Nt % 1 ' Nt exp R0 1 &
Nt

K
.

Note that the density dependence in this model becomes stronger at higher
densities, due to the exponential function.

Density-dependent population growth is more than the logistic curve, with many
possibilities existing.  Ricker's model is just one example.  Getz (1996) suggests
that the strongest effect of density should occur as population growth rate
approaches zero, i.e., the population approaches carrying capacity.   Note that for
the logistic function, the effect of density is constant because the relationship is
linear.  Getz (1996), Burgman et al. (1993) and May and Oster (1976) summarize
other functional relationships to incorporate density dependence.  For example,
assume a linear relationship between  and :Nt/Nt % 1 Nt
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From this line, the equation

is derived, with intercept  and slope .  The resulting population growth$ 1 & $
K

model is

By taking the limit of the per capita rate of population growth as  approachesNt
zero, we find that  can be specified as a function of the parameter  asR0 $

giving the following parameterization of the model:

This model is generalized by Hassell (1975), Hassell et al. (1976) and May (1976)
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The following graph demonstrates the similarity of the 3 models for   = 0.15R0
and K = 100.

 The following table provides a comparison of the models in terms of the per capita growth rate
and .8
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Model Model Equation R(t) 8

logistic
Nt % 1 ' Nt 1 % R0 1 &
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K

Ricker
Nt % 1 ' Nt exp R0 1 &

Nt

K

Hassell

Two other examples of models of density dependence include Beverton and Holt
(1957) and Ricker (1975:291)

and Maynard-Smith and Slatkin (1973)

Each of these models of density dependence results in a different relationship
between per capita recruitment and population size.  As a result, the density
dependence is implemented differently at a particular population levels, and
population viability is somewhat affected.  Distinguishing between these various
models with data is generally not practical because the stochasticity of observed
population growth covers up the small distinctions between the models. 
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Richards model.  Rather than modeling per capita rates of change as linear functions,
more complex, nonlinear, functions can be substituted, as shown above.  An
example is the Richard's curve (Fowler 1981), where the per capita recruitment is

with the exponent m changing the shape of the relationship from linear to either
concave or convex.  For m = 10, density dependence is not invoked until the
population approaches K.  For m = 1, density dependence is invoked at a constant
rate as the population grows.  For m = 0.1, density dependence is invoked most
strongly at low densities, and relaxes as the population grows.  MSY shifts from
low on the curve (m < K/2) to close to K (m > K/2).

Fowler (1981) argues that both theory and empirical information support the
conclusion that most density-dependent change occurs at high population levels
(close to the carrying capacity) for species with life history strategies typical of
large mammals, such as deer (m > 1).  The reverse is true for species with life
history strategies typical of insects and some fishes, with m < 1).  McCullough
(1990) also elaborates on this concept, and suggests that the spatial scale of the
population being measured and environmental heterogeneity affect the degree to
which deer populations demonstrate density dependence near K carrying capacity.

Sæther et al. (2002) used the theta-logistic model (equivalent to the Richards
model described here) to show that in long-lived species like the south polar skua,
density dependence has the greatest influence on the dynamics of the populaiton
when the size of the population is close to carrying capacity.  In contrast, in
shorter-lived birds, the effect of density dependence is greater at lower relative
densities.
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Schaefer model (see Bulmer 1994:116-120) -- In this section, a traditional derivation of
the maximum sustainable yield (MSY) concept is provided.  I'll use a differential
equation to develop MSY because the mathematics are easier to do, and because
this is the traditional approach.  The approach and results are applicable to the
difference equation also.  Modify the logistic differential equation to include
exploitation:

where h(N) is the rate of harvest or fishing.  Under the catch per unit effort model
(catch is a linear function of effort), assume that h(N) = qEN, where E is the
fishing effort (e.g., number of vessel days per unit time) and q is a constant called
the "catchability" coefficient.  Absorb q into E, so that 

If E is constant and <R0, then a unique nonzero equilibrium exists at the point
, i.e., dN/dt = 0.  The equilibrium harvest or sustained yield atN̂ ' K(1 & E/R0)

this point is

The sustained yield is maximized when E = R0/2, giving an equilibrium
population size of  and a maximum sustainable yield (MSY) of .N̂ ' K/2 R0K/4

Impact of stochasticity on harvest.  Aanes et al. (2002) discuss 5 different harvesting
strategies, none of them based on the MSY concept.  When stochasticity is
recognized in the population, both in the form of annual variation in true
population size, and variation due to estimates of population size instead of truth,
alternative harvest strategies will provide a more effective harvest strategy.  More
on this topic will be included in the management lecture.

Ecological considerations in fisheries managment.  Link (2002) discusses the importance
of including ecological processes (predation, competition, environmental regime
shifts, and habitat alteration) in fisheries management.  Basically, he is arguing
that the simplistic models presented here are inappropriate to manage a fishery,
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particularly when the population is has low stock abundance.
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