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ABSTRACT
Tag-recovery and live-recapture data analyses focus on survival probabilities between

release occasions; time intervals between release occasions are assumed here to be of equal
duration, such as one year. We should expect temporal variation in these survival probabilities
( ) to be partly random; however, existing models treat these temporal variations as fixedS
effects. Often survival rates , ,  are unrestricted in the general model with the onlyS S1 á k

alternative model assuming Having only these two alternatives is tooS S S. 1 œ â œ ´k

restrictive when we have 10, 20, or more years of data. If no smooth time-trend or covariate-
explained variation occurs in the  then there will be no suitable intermediate structural modelSi

for these  to use as a parsimonious restriction on the general model. In reality, these annualSi

survival rates surely vary over years. Hence, a useful model would be ( ) , with theS E Si iœ � %
% 5i treated as independent random variables, mean 0 variance . This is a 2-parameter random#

effects model for the  which is intermediate between the models with all different (S S ki i 
parameters) and all the same (1 parameter). This intermediate model allows inference aboutSi 
5 52 and unconditional inference about ( ), i.e., inference about (  allowing for 0E S E S) # �
rather than assuming 0. While the random effects model would seem to eliminate the5# œ
individual , in fact it leads to shrinkage estimates ( ) as an improved (in mean square errorS S

~
i i

relative to unrestricted MLEs, ) conditional inference about the the set of individual annualŜi

survival rates. This paper presents new results for random effects models embedded into
classical capture-recapture models. Extended results are given wherein a general linear-
structural model is imposed on the survival rates as , or using a general linkS x-i i iœ �

�
w" %

function. Such a structural model can represent time-trends or informative covariates, such as
weather-related, or both types of structural fixed-effects, yet also allows for residual
unexplained variation (i.e., the , hence ) in the survival parameters, . Analysis starts with%i i52 S

unrestricted maximum likelihood estimates, , and their estimated conditional samplingŜi

variance-covariance matrix. The solutions, basically from variance components and shrinkage
theory, are not closed-form; however, they require only matrix methods and a one-dimensional
search over a function of the data and to construct point and interval estimates. Finally, AIC52 
is extended to apply to these random effects models, hence allowing unified AIC comparison of
both fixed and simple random effects models for capture-recapture data.
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1.  INTRODUCTION

The objectives of this paper are 1) to introduce to biologists the concept and nature of what are
called (alternative names for the same essential idea) variance components, random effects,
random coefficient models, or empirical Bayes estimates (Longford 1993; see also Carroll et al.
1995, Carlin and Louis 1996); 2) develop basic theory and methodology for fitting simple
random effects models, including shrinkage estimators, to capture-recapture data (i.e.,
Cormack-Jolly-Seber and band or tag recovery models); and 3) extend AIC to simple random
effects models embedded into the otherwise fixed-effects capture-recapture likelihood. It is
assumed that the reader already has a basic knowledge of dead-recovery and live-recapture
models, referred to here generically as just capture-recapture. The random effects idea is a
simple and fundamental one in statistics. It basically admits that the parameters we estimate
need sometimes to be considered as random variables.

Consider the Cormack-Jolly-Seber (CJS) time-specific model { } wherein survivalS pt t,  
( ) and capture probabilities ( ) are allowed to be time varying for 2 capture occasions,S p k �
equally spaced in time (see, e.g., Lebreton et al. 1992). If 20 or 30 we are adding manyk œ
survival parameters into our model as if they were unrelated; however, more parsimonious
models are often needed (Burnham and Anderson 1998, Link 1999). We can consider reduced
explanatory forms for the between-occasion survival rates, At one extreme we haveS S1 , , á k . 
the model { } wherein However, this model may not fit well even if theS p S S S. ,  t k1 œ â œ œ

general CJS model fits well and there is no evidence of any explainable structural time
variation, such as a linear time trend in this set of survival rates. Instead, there may be
unstructured time variation in the  that is not easily modeled by any classical smoothSi

parametric form, yet which cannot be wisely ignored. In this case it is both realistic and
desirable to conceptualize the actual unknown as varying, over these equal-length timeSi 
intervals, about a conceptual population mean ( ) , and with some population variation,E S œ .
52. Here, by population, we will mean a conceptual statistical distribution of survival
probabilities, such that the may be considered as a sample from this distribution. Hence, weSi 
proceed as if are a random sample from a distribution with mean  and variance .S S1

2, , á k  . 5
Doing so can lead to improved inferences on the regardless of the truth of thisSi 
conceptualization if the do in fact vary in what seems like a random, or exchangeable,Si 
manner. The parameter  is now the conventional measure of the unstructured variation in the52

S S Si k, and we can usefully summarize by two parameters:  and . The complication is1
2, , á  . 5

that we do not know the ; we have only estimates , subject to non-ingnorable samplingS Ŝi i

variances and covariances, from a capture-recapture model wherein we traditionally consider
the  as fixed, unrelated parameters.Si

This is the essence of a random effects model super-imposed on the survival rates in the
time-specific CJS model: the individual are acknowledged to vary about some mean valueSi 
but not in a way we can further explain by any trends or covariates. Hence, the estimation and
inference problem now extends to both ( ) and as conceptual population parametersE S 52, 
applicable to other time periods or other locations. However, we continue to face the usual
conditional inference about each , conditional on the actual time periods and study location.Si

Inference about survival rates under traditional CJS models are all conditional on the , i.e.,Si

are based on ( ) which does not involve, or acknowledge, . If we knew each var S S S^
i i i± 52



exactly (so and ( ) 0) then we would only be faced with unconditionalS S var S S^ ^
i i i i´  ± ´

population-level inferences and we would surely use just ( ) andE S S  ^ œ
�

  5̂
2
œ

!
i

k

i
=1

( )

1

S S�
� #

k�

to summarize the data that would be exactly .S S1 , , á k

Under the simplest capture-recapture model with ( ) as an unconditional. œ E S
population-level structural parameter, then ( ). Rather than use only such a simple% œ S E S�
random effects model we would like to further explain (i.e., understand) the variation in the ,Si

such as by finding covariates, or time trends. Thus we would have models of the form
S a b i S a bx cyi i i i i iœ œ �� �� �%  for a linear trend, or  for some environmental covariates%

x y and recorded annually. Whatever the structural model, the unexplained, unconditional, 
(population-level) component of variation is measured by the expected variation in the
theoretical residuals, hence by ( )  (thus, process variation is model-dependent). WeE % 52 2œ
can already fit such model structures to capture-recapture data as fixed effects models, i.e.,
assuming 0. Methodology is given here for fitting them as random effects models, hence52 œ
estimating .52

Presumably applies to other times or locations. Inference to time intervals other than52 
in the study at hand is always both problematic yet of great interest, as for example in
population viability studies where results can depend strongly on the value of  (see e.g.,52

White 2000). To fully understand population dynamics from recapture or banding data we must
allow for process variation in our analysis of these data types (Anderson and Burnham 1976,
Link and Nichols 1994, Catchpole et al. 1995). Such inferences, essentially to other time
intervals, should be unconditional, hence should include an uncertainty component for  and52

must recognize that sample size for this inference is the number of years of the study, not the
number of animals marked.

There are practical and philosophic issues that we will not consider here, such as
covariates needing to be be measured without error. Also, as noted above, the value of 52

depends partly on the adequacy of the unconditional structural model used; would be zero52 
given a perfect structural model to “explain" the . It is a deep philosophic issue as to whetherSi

there exists some set of fully-informative covariates such that any variations in the  areSi

deterministic. “True" will then be exactly zero. It suffices to know that measures the5 52 2  
average unexplained residual variation beyond the expected fit of any unconditional
deterministic structural model used to explain the variation in the set of .Si

The notation is chosen here for convenience. All that matters is that  representS S1 , , á k

a set of  estimable parameters of the same type, usually sequential in time. These parametersk
may be survival rates ( ), apparent survival rates (usually denoted as  in CJS models),S 9
sampling rates ( , , or ), fidelity rates ( ) in a joint recovery-recapture model (Burnhamp f r F
1993, Barker 1997), abundance parameters ( , ) in the Jolly-Seber models (Schwarz andN B
Arnason 1996), population finite rates of change ( ) from modified JS models (Pradel 1996),-
or they may be any of the aforementioned parameters transformed to some other scale based on
a link function other than the identity link (cf. Lebreton et al. 1992, White and Burnham 1999).
The concepts remain the same as regards separating average conditional sampling variance
from process variance.



It is important to know that ( ) depends on sample size of marked animals invar S S^
i i±

the study. This sampling uncertainty in the estimator , conditional on , can in principle beS S^
i i

driven to 0 by having a very large sample size of marked animals. In contrast, the process
variation, , exists independent of the marking study and hence is independent of the sample52

size of animals. Precision and bias of  does depend on sample size of marked animals.5̂
2

Inferences from capture-recapture data about population-level parameters (i.e., to other time
periods or areas) that are based only on conditional sampling variation are assuming 0.52 œ

Inferences may then be too liberal because relevant total variation is under-estimated. Treating
5 52 2 as being 0 is acceptable when sampling variances are much larger than . However, when

this is not true, i.e., average ( ) does not dominate  we should estimate both sourcesvar S S^
i i± 52,

of variation and make population-level inferences based on total (i.e., unconditional) variation.

For this would be, pragmatically, ( ). Theoretically, unconditional totalS var S S^ ^
i i i 52 � ±

variation for is [ ( )]. This expectation, over , of the sampling variance is notS E var S S S^ ^
i S i i 52 � ±

tractable; to first order we can use [ ( )] ( )). However, the actual E var S S var S S S^ ^ ^^
S i i i i i± ±œ

extant during the study are not population-level parameters (as we here use the term), so
inference about particular  should remain conditional.Si

We are lead therefore into a duality of thinking. We make population-level inferences
(that include the uncertainty represented by ) about population-level parameters under which52

thinking the  are random variables, and individually are not of interest. However, we alsoSi

want to make the best inferences we can about the actual applicable  as conditionalSi

parameters irrespective of collective (i.e., population-level) properties of this set of survival
rates. Interestingly enough we can have it both ways.

There is yet another concept that arises in these random effects models. The set of

maximum likelihood estimators, , of the parameters can be improved upon,S S S S^ ^
1 1, , , , á ák k  

in the sense of having smaller expected mean square error, by what are called shrinkage
estimators, denoted here as . For the simple model with only one population-level parameter,S

~
i

E S S E S S E S
~ ^ ^^( ),  lies between ( ) and and the extent of this shrinkage towards ( ) depends uponi i 

the variance components proportion /[ { ( )}] (this formula requires zero5 52 2 � E var ŜS i i± S

covariances for the ). An individual  may not improve upon the corresponding MLE  inS S S^ ^~
i i i

the sense of being nearer to  in a given case, but overall the shrinkage estimators as a set areSi

to be preferred as being closer to the true  if the random effects model applies with 0Si 52 �
(Efron and Morris 1975, Casella 1985).

Longford (1993) provides a general introduction to ideas about random effects in the
context of structural models, including estimation of ( ), or more generally  in E( ) ,E S S x- -"

�
œ w"

and  and shrinkage estimators. Some other relevant statistical and ecological literature on52

these ideas is in Efron and Morris (1975), Johnson (1981, 1889), Morris (1983), Burnham et al.
(1987), Robinson (1991), Carlin and Louis (1996), Ver Hoef (1996), Link (1999), and
Kubokawa 1999).

There are other issues but this is the crux of the matter: fit models wherein we can
estimate both the population-level process variation and population-level structural parameters
that parsimoniously explain sets of related parameters such as . This is accomplishedS S1 , , á k

by the use of structural plus random effects models that are effectively intermediate between



assuming all or having no constraints at all on . Simultaneously this frameworkS S S Si k´ 1 , , á

allows improved conditional inferences, via shrinkage methods, about the  considered as year-Si

specific conditional parameters.
Below we elaborate these concepts with an example in which there is independent

sampling (measurement) variation on the Hence, each  is conditionally independent of allS Ŝi i. 

other In capture-recapture models there are pairwise sampling correlations whichŜj . 

complicate estimation of ( ),  and shrinkage estimators, at least in the sense that theE S 52,
methods require expression in matrix algebra. In a subsequent section, using matrix methods,
we derive theory for the general case of  being a linear structural model plus random error, ,Si %
applicable to capture-recapture models. Those mathematics may seem difficult; we hope the
concepts here are understandable.

2. EXAMPLE OF CONCEPTS AND METHODS

A simple example of random effects variance components is used here that illustrates the key
ideas without the complications of capture-recapture. For 10 (think of as 10 years) wek œ
drew one sample of distributed as independent normal random variables with mean (S E Si 
) 0.5 and process variance (0.05) For each year we simulated marking 25 birdsœ œ œ52 2. n
and determining the number alive, , after 1 year. Conditional on each we generated as any S yi i  

independent binomial( , ) random variable. Hence /  has conditional samplingn S S y n^
i i iœ

variance ( ) (1 )/ , about (0.1) As an estimator we used ( )var S S S S n var S S S^ ^ ^^
i i i i i i i± ±œ � œ2.  

(1 )/( 1) because it is unbiased. Table 1 gives the results of the sample (by chance we� �S n^
i

got 0.0499 for the standard deviation of the 10 generated ). With real data we would notSi

know ; we would only have , and generally only have ( ( )) as ( ). In thisS S E var S S var S S^ ^ ^^ ^
i i S i i i i± ±

simple example we can determine ( ( )) but we have choose to keep the exampleE var S S^
S i i±

mimicking what occurs in complex capture-recapture.
From Table 1 we see that the empirical standard deviation of the 10 estimated survival

rates (i.e., the ) is 0.106. We should not take (0.106) as an estimate of because such anŜi
2 2  5

estimate includes both process and sampling variation (i.e., includes the conditional binomial

variation of the ). Rather, we must subtract the estimated average sampling variance,Ŝi

v ar S S^ ^�
( ), from the total variation to get 0.011182 0.009987 0.001195, or^

i i± 5
2
œ � œ

5̂ 0.0346. This estimator,œ

  ,5̂
2
œ

! !
i i

k k

i i i
=1 =1

( ) ( )

1

S S var S S^ ^ ^^

k

� ±
�

#

k

 

� �  

is theoretically appropriate when the sampling errors, , are independent, conditional on S S^
i i�

the . However, this estimator is neither the generally correct nor the most efficient one. ASi

general method of moments approach is given below (for this case of independent estimators
formulae are given in Burnham et al. 1987). Applying that more general theory we get for this
example, by numerical methods, 0.0394 with a 95% confidence interval of 0 to 0.1663. As5̂ œ



is the case here, estimated variance components can be imprecise, mostly because of the often
small sample size ( ) for . Here that sample size is 10, not the 250 marked birds.k k k n52 œ ‚ œ

In addition to , we find here ( ) 0.4825 with an estimated unconditional standard5̂ E S^ œ
error of 0.0339. If we just take the mean of the MLEs and base it's standard error on the set of

var S S^ ^( ) we get a conditional standard error estimate of 0.0316; this is equivalent toi i±

assuming 0. While the difference in the two standard error estimates is numerically trivial52 œ

here, the conceptual difference is quite important, especially in making a proper unconditional
inference about ( ). The distinction does not matter much in practice when the conditionalE S
sampling variances are a lot larger than the process variation an all too common occurrence.�

The most dramatic difference in point estimates, and precision, occurs with the

shrinkage estimates of the yearly survival rates. Table 1 shows true , the usual  (which areS Ŝi i

MLEs), ( ), and shrinkage results, , ( ) and ( ) (the latter we willse S S S se S S rmse S S^ ^ ^^ ^ ^~ ~ ~
i i i i i i i± ± ±

explain below). The shrinkage estimator used in this example is

 ( ) ( )  . (1)S E S S E S
~ ^ ^^

i iœ �� ‚Ê ’ “  ^

( )
5

2

2
5̂ �var S S^ ^

i i±

Figure 1 provides a graphical display of the MLEs, the shrinkage estimates and ( ) from theE S^

simple random effects model.
The shrinkage method given in (1) is so called, as one reason, because each residual,

S E S^ ^
i � ( ), arising from the fitted reduced-parameter model, is “shrunken" then added back to

the estimated model structure for observation  under that reduced model. In a heuristic sense,i
the are derived from the MLEs by removal of the sampling variation. A shrinkage coefficientS

~
i 

different from ( ( )) could be used. The chosen shrinkage coefficient has a^ ^É5 5
2 2
Î � var S S^ ^

i i±

very desirable property: if we treat the as if they were a simple random sample, then theirS
~

i  

sample variance almost exactly equals  This also means that a plot of the shrinkage residuals,5̂
2
.

such as is implicit in Fig. 1, gives a correct visual image of estimated process variation in the Si .

As shown in Table 1, the improvement gained by the shrinkage estimators ( ) appearsS
~

i

substantial, they have here about 50% better precision: compare ( ) to ( ).se S S se S S^ ^~ ^
i i i i± ±

However, because the MLEs here are unbiased and the shrinkage estimators are biased, a
necessary basis for a fair comparison is the sum of squared errors (SSE). The SSE is a natural
measure of the closeness of a set of estimates to the set of . For the example in Table 1, forSi

the MLEs, the SSE is

 ( ) ;!10

=1

2

i
i iS S^ � œ 0.067

for the shrinkage estimates the SSE is

 ( ) 0.019.!10

=1

2

i
i iS S

~
� œ



Clearly, in this sample the shrinkage estimates, as a set, are closer to truth. The expected SSE is
the mean square error, MSE ( (SSE)), which is a measure of average estimatorœ E
performance.

To evaluate the two MSEs here we did 10,000 independent simulation trials of this
example situation. In each trial a different random set of  was generated as noted above. TheSi

MSE results, precise to two significant digits, are

 ( )E S S^ ^” •!10

=1

2

i
i i� œ 0.0990,

 E S S^ ~” •!10

=1

2

i
i i( ) 0.0469 .� œ

Moreover, in 98% of the 10,000 trials the shrinkage estimators were closer, in the SSE
measure, to the set of true than were the MLEs.Si 

For the MLEs an approximate 95% confidence interval on is given by 2 (S S se S S^ ^^
i i i i „ ±

); this procedure will have good coverage in this example. However, for the shrinkage
estimator if we use 2 ( ) coverage will be negatively affected by the bias of . InS se S S S

~ ~ ~^
i i i i„ ±

fact, coverage was about 83% here for any , based on the 10,000 simulation trials. This is ini
accord with theory (see Särndal et al. 1992, page 165, Table 5.1) as here the expected
± bias|/se ratio for the shrinkage estimators is about 1. Essentially correct expected coverage

occurs for the interval 2 ( ) whereS rmse S S
~ ~^

i i i„ ±

 ( ) ( ) ( ) . (2)rmse S S var S S S S^ ^~ ~ ~ ^
i i i i i i± œ � �É ± 2

The expectation over  of ( ) [ ( )]  is approximately the mean squareS mse S S rmse S S^ ^~ ~
i i i i i± œ ± 2

error for , MSES
~

i i.

For the MLE, ( ) ( ) because  is unbiased. The unbiasedness ofrmse S S se S S S^ ^^ ^ ^
i i i ii± œ ±

the MLE in the general model, together with a high correlation between and , and theS S^ ~
i i 

framework that is random, allows an argument that ( ) is an estimator of theS rmse S S^ ~
i i i ±

unconditional sampling standard error of  over conceptual repetitions of the data. It followsS
~

i

that this can be a correct basis for a reliable confidence interval. It is rare to have a reliablermse 
estimator of MSE for a biased estimator, but when this occurs it makes sense to use, as a basis

for a 95% confidence interval, 2 MSE rather than 2se. This situation has been noted in^ ^„ „È
Särndal et al. (1992, pages 165-166); they assert there is good large-sample coverage.

Next we provide the general theory, on which this example and a second example below
are based.

3. SOME GENERAL THEORY FOR RANDOM EFFECTS

We present some general motivating results and then equations for random effects estimation.
A method of moments approach is used here to avoid distributional assumptions.



3.1 Informative Heuristic Considerations
First, we consider some heuristics motivated by the above simple framework of exchangeable
random variables in  dimensions. We simplify the problem to one dimension as follows. Fork

given ( ),  and [ ( )], consider an estimator of as (. 5œ E S v E var S S S S c S )^ ^~# œ ± œ � �S . .

where nature generates a random  and then we observe  conditional on ;  is, conditionallyS S S S^ ^

on , unbiased for all values of . The value of the constant  is to be determined. TheS S c
appropriate MSE of to consider isS 

~

 MSE ( ) ;œ �E E S S S
~

S S~� ‘� ‘2 ±

S S S S
~ ~^ ^is a function of so expectations can be equally well denoted as being with respect to or .

This leads us to write ( + ) ( ) ( 1)( ) andS S c S S S S c S S c S
~ ^ ^� œ � � œ �. � � � � �. .

hence

 ( ) ( ) ( 1) ( ) 2 ( 1)( )( ).S S c S S c S c c S S S
~ ^ ^� � �2 2 2 2 2œ �� � � � �. .

The cross product term above has conditional expectation, of given , of 0. Therefore,S S^

 ( ) ( 1) ( ) ,E S S S c v c S
~

S~ ’ “� œ2 2 2 2± � � � .

hence

 ( ) ( 1) MSE (3)E E S S S c v c
~

S S~’ “’ “� œ2 2 2 2± œ� � 5

(note that ( ) , [ ( )] ( 1) ) . Now we can determine E var S S c v E bias S S c c
~ ~

S S’ “ ’ “± ±œ �2 2 2 2œ 5

that minimizes MSE.
The derivative of (3) with respect to , set to zero, gives 0 2 2( 1) whichc c v cœ � � 52 

has unique solution ). This motivates a minimum MSE shrinkage estimator of thec vœ 52 2/(5 �

form

 ( ) , (4)S S
~ ^œ � �. .� ‘52

25 �v

whereas (1) is of the form

 ( ) . (5)S S
~ ^œ � �. .É 52

25 �v

Heuristically then, (1) is not likely to give the minimum MSE (in simulations of the aboveS 
~

normal-binomial type, form (4) did have somewhat smaller MSE than form (5)).
Other considerations might apply, rather than just to use a minimum MSE estimator.

The process variation is ( ) . If our shrinkage estimator, , is to be our best52 2œ E S S
~

� .
estimator of , we could ask that it satisfy ( ) . By the same methods as above,S E S

~
52 2œ � .

E S c v E S
~ ~

( ) ( ), hence if we want ( ) , we should use (5), that is, use� �. .2 2 2 2 2œ 5 5� œ



c / vœ 5 5È 2 2�  so that the average variation of the shrinkage estimate is   By way of5 .
contrast, under form (4),

 ( )E S
~
� . 2 2œ 5 ’ “5

5

2

2�v

so this shrinkage estimator is, in a sense, over-shrunk and hence does not reliably related
directly to . This over-shrinkage of the standard shrinkage estimator (4) has been criticized,52

in a more general setting, by Louis (1984), who also then gave and noted the advantage of (5).
The actual MSEs of the two cases are, for (4),

 MSE œ v � ‘52

25 �v

(hence the minimum MSE), and for (5)

 MSE 2 1œ �52 ” •É 5
5

2

2�@
 .

The above two MSE formulae allow one to compute here exact MSE ratios; these MSE ratios

depend only upon  For example, MSE ratios of (4) or (5) relative to MSE( ) are52 2/v. S v ^ œ 5 �
below:

52/    (4)      (5)     v
0.2  0.139  0.197
0.5  0.222  0.282
1    0.250  0.293
2    0.222  0.245
5    0.139  0.145

The take-away message from the above numbers is that use of (5), rather than (4), does not
entail a drastically increased MSE; a version of formula (5) is what we are herein
recommending. Next we consider a confidence interval on .S

We can expect a standard confidence interval on  based on the MLE, such as S 2^S v„ È
to have good large-sample coverage. However, from the shrinkage estimator if we use 2~S c„Èv S bias S S c S

~ ~
coverage will suffer because the conditional bias of is ( ) ( 1)( ). We± œ � � .

cannot just subtract this bias from because ( ) is unknown. We could subtract the S bias S S
~ ~

±
estimated bias from  but then the confidence interval should allow that the bias was estimated~S
(and in general  and  are also estimated), and the sign of the estimated bias might even bec .
wrong.

An alternative approach is to accept a type of unconditional-conditional confidence
interval on , which we sort of must do anyway because our confidence interval must haveS
good coverage over all possible values of Hence we should accept as a pivotal quantityS. 
[ ( )] Now we treat all of [ ( )] as random and we compute itsS bias S S S. S  bias S S
~ ~ ~ ~
� ± � ±�

expected (over ) sampling variance, or what is analogous to a sampling variance here: S c2

v E bias S S c v c
~

� ± �S[( ( )) ]  ( 1) MSE. Thus, we are motivated to use a2 2 2 2œ � 5 œ

confidence interval as S 2 MSE .~ ^„ È



Now the problem is to get a good estimate of [( ( )) ] or, just as well, ofE bias S S
~

S ± 2

( ( )) . The obvious ( 1) is too variable (e.g.,  can be 0). Also, we may be^bias S S c
~ ^± 2 2 2 2

� 5̂  5
better served by something that better estimates conditional squared bias. In this regard note

the obvious: ( ); hence, ( ) ( ) and thereforeS S S S S S S S S S^ ^ ^ ^~ ~ ~ ~
œ � � � œ � ��

 0 [( ) ] [( ) ] [( ) ] .œ ± œ ± � ±E S S S E S S S E S S S^ ^~ ~
S S S^ ^ ^� � �

The above means that ( ) [( ) ] . Hence, an estimator of ( ( ))bias S S E S S S bias S S
~ ~ ~^± � ±œ � ±Ŝ

2

is simply ( ) and we may take as a sort of effective sampling variance on , for purposesS S S
~ ~^� 2 

of a confidence interval on ,S

 ( ) ( ) ( )mse S S var S S S S^ ^~ ~ ~ ^± ± �œ � 2 .

This is leads to (2) and thus 2 ( ) for an approximate 95% confidence interval.S rmse S S
~ ~^

i i i„ ±

Using such a confidence interval based on estimated mean square error, for a biased estimator,
is noted to have good coverage properties by Särndal et al. (1992, page 165).

3.2 General Random Effects Inference Theory

The estimators from capture-recapture are pairwise conditionally correlated, whereasS S^ ^
1 , , á k  

most random effects theory assumes conditional independence of the basic estimators. Thus,
extended theory is needed. It is necessary to use matrix methods. Vectors are underlined; all are
column vectors. A matrix, ,  may be a vector if it has only one column, but we do not thenX
underline .X

We assume . Conditional on , has a zero expectation, henceS S S  ^
� � �œ �� �$ $

E S S S W^( ) . Also,  has conditional sampling variance-covariance matrix , which will� � �± œ �$
generally be a complicated function of  and other parameters (such as  or ). The optimalS p f�
theory requires the unconditional , ( ), which we do not expect to know.W E WS�

Unconditionally is a random vector with population-level expectation  andS  X� �
"

variance-covariance matrix  (generalizing this assumption is not attempted here, but one52I
might worry that the temporal nature of the  induces serial correlations). In the simplest case,Si

X k E S is a 1 vector of ones and  is just ( ). By assumption, the process residuals,‚
�
"

%i i iœ S E S� ( ), are independent with homogeneous variance . Also, we assume mutual52

independence of sampling errors  and process errors ; this is not a restrictive assumption.$� %�
We envision fitting a capture-recapture model that does not constrain  (probably model { }S S^

� t

for these parameters, but other models also apply), and hence get the MLE and the usualS  ^
�

likelihood-based estimator of as an estimator of ( ).W E WS�
Let be a vector with  elements; let  have  elements. Let VC denote a variance-S  k r� "

�
covariance matrix. Unconditionally,

 ,     VC( ) ( ).S X   D I E W^
� � �œ � � œ �

�
" $ % 5$ %� �� œ 2

S�



We need to estimate  and an unconditional variance-covariance matrix for , compute a" 5
�

2,  "̂
�

confidence interval on (on ), and compute the shrinkage estimator of , , and its52 k r df S S
~

� ��
conditional sampling variance-covariance matrix. Without any further information or context
(like random effects), the MLE is the best conditional (on ) estimator of However, onceS S . � �
we add the random effects structure we can consider an improved (smaller MSE) estimator of
S  S

~
� �(i.e., ) for finite sample sizes.

From generalized (weighted) least squares theory (see, e.g., Seber 1977, 1984) for 52

given, the best linear unbiased estimator of  is"
�

 ( ) (6)"̂
�

œ X D X X D S .^w w-1 -1 -1
�

Note that here  ( ( )), hence , is actually a function of  Assuming normalityD I E W ^œ 5 52 2�
�S�
" .

of (approximate normality suffices) then from the same generalized least squares theory theS  ^
�

weighted residual sum of squares ( ) ( ) has a central chi-squaredS X D S X^ ^ ^ ^
� �� �

� �
" "w -1

distribution on degrees of freedom. Therefore, a method of moments estimator of  isk r � 52

obtained by solving the equation  

 ( ) ( ) . (7)k r S X D S X^ ^ ^ ^� � �� �� �
œ " "w -1

Equation (7) defines a 1-dimensional numerical solution search problem. Pick a value of 52,

compute , then compute  from equation (6), then compute the right hand side of (7).D  "̂
�

Repeat the process over values of until the solution of (7), as is found. This also gives ^5 52 2
 , "̂

�
. The theoretical unconditional sampling variance-covariance of is"̂  

�

 VC( ) ( ) . (8)"̂ X D X
�

œ w -1 -1

Formula (7) can be simplified by eliminating . First, define"̂
�

 ( )A X X D X X .œ w w-1 -1

This is the “hat" matrix in linear regression, but we choose to not call it . Now (7) isH

 ( )k r S D D AD S .^ ^� � �œ
w

-1 -1 -1�

To get a confidence interval on we use52 

 ( ) ( ) ( )RSS S X D S X^ ^ ^ ^52 -1œ � �� �
� �
" "w

as a pivotal quantity. As a function of is monotonic decreasing. For true ,  is5 52 2 RSS RSS
distributed as central chi-squared on . A 95% confidence interval on  is found asdf k rœ � 52

the solution points in  (lower and upper bounds on , respectively) of upper 97.55 52 2 RSS œ
percentile point of a central  and lower 2.5 percentile point of a central . As ; ; 52 2 2

df dfRSS œ



goes to , ( ) goes to 0, hence a finite upper confidence interval always exists. The_ RSS 52

lower bound on is the negative of the smallest eigenvalue of ( ). The lower confidence52 E W^
S�

limit can be negative; in fact, even the point estimate and upper confidence limit can be
negative. In practice, truncate negative solutions to 0.

Define another matrix as

 ( ( )) ( ( ) ) ;H D I E W I E W^ ^œ 5 -1/2 -1/2 -1/2œ � �5 52
S S� �

œ
1
52

we will only need, and use, evaluated at . The shrinkage estimate of  that we recommend^H S5 �
is

  ( ) , (9)S H S X X  
~ ^ ^ ^
� œ �� �

� �
" "

  ( )œ � �� �
HS I H X  .^ "̂

To get an estimator of the conditional variance of these shrinkage estimators (not exact

as the estimation of is ignored here, as it is in VC( ) in (8)) we can define, and compute, a^5 "2 
�

projection matrix  as below:G

 ( ) ; (10)G H I H AD  œ � � -1

then

 .S GS  
~ ^
� �œ

The theoretical variance-covariance matrix of the shrinkage estimator is

 VC( ) ( )  .S S GE W G
~ ^
� �± œ S�

w

We propose that comparison to the MLEs, and confidence intervals, should be based on the
matrix

 MSCP( ) VC( ) ( )( ) . (11)^ ^S S S S S S S S
~ ~ ~ ~^ ^
� � � � � � � �� �± œ ± � w

In particular, from the diagonal elements of (11) we get

 ( ) ( ) ( ) . (12)rmse S S var S S S S^ ^~ ~ ~ ^
i i i i± œ � �� �

É ± 2

For this method of moments shrinkage estimator we can show, fairly directly from (7)
and (9), that

 5̂
2
œ

( ) ( )^

 
S X S X
~ ~^

k r
� �� �

� �
�

" "w

 .

Hence, the average sum of squares of the shrunk residuals (i.e., ) produces This^S X
~ ^
� �

�
" 5

2
. 

coherent relationship does not hold for the usual shrinkage estimate found in the statistical



literature (Morris 1983, Louis 1984): ( )  Moreover, in a bias-precisionS H S X X .
~~ ^ ^ ^
� œ �2

� �
� �
" "

trade-off there is no compelling reason to think minimum MSE must be the appropriate
solution. In fact, the shrinkage estimator defined here is central to being able to obtain a useful,
simple extension of AIC to this random effects model. If we used ordinary least squares to fit
the model and from this fit computed the residual sum of squares divided by itsS X  

~
� �œ �

�
" %

df we would get, essentially,  as the result. Therefore, in this sense we can say that the5̂
2

shrinkage estimators from (9) are a complete summary of the fitted random effects model and
thus provide a basis to evaluate the likelihood, and hence AIC, of the fitted random effects
model.

4. AIC FOR THE RANDOM EFFECTS MODEL

We will have started with a likelihood for a model at least as general as full time variation on all
the parameters, say ( , ) ( , , , ). Under this time-specific model, { , _ ) _ ) )S S S S� � œ á1 1, , á k tj

) ) _ )t }, we have the MLEs,  and , and the maximized log-likelihood, log ( , ) based on^ ^S S^ ^
� �� �

K k  nœ � j parameters. Thus (for large sample size, ), AIC for the time-specific model is

� ��2log ( , ) 2  The likelihood value for the fitted random effects model is^_ )S K.^
�

   ( , ) ( , ( )) ma x ( , ) , (13)^ ^~
_ ) _ ) _ )

)
S S S S
~ ~ ~ ~
� � � �� � �´ œ

�

where  is fixed. A first approximation to this maximized likelihood is just ( , ), where ^ ^S S
~ ~
� �_ ) )� �

is the MLE under model { , }. Experience has shown that log ( , ) and log ( , ) are^ ^~
S S S

~ ~
t t) _ ) _ )� �� �

often quite close; however, the re-optimization on  is theoretically appropriate and)�
empirically worth doing (based on Monte Carlo simulation evaluation of these methods using
program MARK, White and Burnham 1999).

The dimension of the parameter space to associate with this random effects model is Kre

,
 tr( )  , (14)K Gre œ � j

where  is the projection matrix (formula 10) mapping  into and tr( ) is the matrix traceG  S S  ^ ~
� � †

function: tr( ) sum of the diagonal elements of  The mapping  is a type ofG  G. GS S^ ~
œ œ� �

generalized smoothing. It is know that the effective number of parameters to associate with
such smoothing is the trace of the smoother matrix (see e.g., Hastie and Tibshinari 1990,
section 3.5).

From (13) and (14), the large-sample AIC for the random effects model is

 2log ( , ) 2 (15)
~̂

� ��_ )S K
~
� re

(a proof is sketched below). The more exact version, AIC , for the random effects model may,c

by analogy, be taken as



 2log ( , ) 2 2  . (16)
~̂

� � ��_ )S K
~
� re

K K
n K

re re

re

( +1)
1)� �

Results like these are in the literature for AIC generalized to semi-parametric smoothing, see
e.g., Hurvich and Simonoff (1998) and Shi and Tsai (1998); these papers are not about random
effects models. Instead, these papers note a generalized AIC where the effective number of
parameters is the trace of a smoothing matrix.

A detailed derivation of AIC is given in Burnham and Anderson (1998), section 6.2.
Using the same notation as in that section, a sketch of part of the derivation of (15) is given
here. The MLE under the full time-effects model is

 7̂� œ ” •Ŝ
^
�

�

 

)
 .

The estimator of  under the random effects model is7

  ~7� œ ” •S
~

^
G   O
O   I

�

�

 

)
œ œ� �

� ‘ 7 7^ ^P .

Under Kullback-Leibler based model selection (the foundation of AIC) we need to find
an estimator of a target quantity , defined in Burnham and Anderson (1998); ( ) definedT I 7� o

there is also needed here. The data are represented here by vector . The key result as regardsx�
AIC for the random effects model is then

 [log ( ( ))] tr ( ) ( ( ) )( ( ) )  ; (16)~ ~ ^T E x I E x xœ � � �� � � � � �_ 7 7 7 7 7 7� � �c dc do o o
w

the MLE of  under the time-effects model is consistent for . The derivation of (16) is left7 7o

out here as it is long and involved, it is just a variation on the AIC derivation in Burnham and
Anderson (1998). AIC is 2 , hence for the random effects model� T

 AIC 2log ( ( )) 2tr ( ) ( ( ) )( ( ) )  .~ ~^ ^œ � � � �� � � � � �_ 7 7 7 7 7 7x I E x x� � �c do o oc dw
The expectation under the trace operator is basically a covariance matrix. Expanding

that term we have

 ( ( ) )( ( ) ) ( ( ) )( ( ) )~ ^ ^ ^7 7 7 7 7 7 7 7� � � � � � � �� � œ � � œx x P x x� � � �o o o o
w w

 ( ( ) )( ( ) )^ ^P x P P x7� � �� � œ� � � �7 7 7 7o o oo� ��7
w

 ( ( ) )( ( ) ) ( )( ( ) )  .^ ^ ^P x x P x7 7 7 7 7 7 7� � � � � � �� � � �� � �o o o oo
w w��7

Taking the the asymptotic (large-sample) expectation over  with respect to truth, whereinx�
E x( ( )) ,7̂ 7� �œ� o

 ( ( ) )( ( ) )  .^ ^E P x x Pc d7 7 7 7� � � �� � œ� �o o
w D



The matrix  is the asymptotic variance-covariance matrix of . Thus, we get^D 7

 AIC 2log ( ) 2tr ( )~ ^œ � �� �_ 7 7c dI Po D

 P I  .œ � �� �2log ( ) 2tr ( )~ ^_ 7 D 7c do

If the model is “good" (close to truth), then ( ( )) so ( ) is an identity matrix andD 7 D 7œÞ � �I  Io o
-1

 AIC 2log ( ) 2tr( ) .~œ � ��_ 7 P

(The issue of AIC and estimation of this type of trace for model selection is discussed in
Burnham and Anderson 1998; the pragmatic assumption is made that the set of models
considered contains at least one good model, but not the “true" model). Finally,

 tr( ) tr( )  ,P G Kœ � j œ re

hence, AIC 2log ( ) 2 .~œ � ��_ 7 Kre

5. TWO EXAMPLES
5.1 A Sage Grouse Band Recovery Example
Band recovery data are used here from a 15-year study (hence 14) of a non-migratoryk œ
population of sage grouse ( ) banded in North Park, Colorado (aCentrocercus urophasianus
large mountain valley in north-central Colorado). The study, conducted by Clait Braun
(Colorado Division of Wildlife), was from 1973 to 1988. These data were analyzed in the M.S.
thesis of M. Zablan (1993) before program MARK existed; the analyses reported here were
done with MARK. We use just the recovery data from subadult males, of which 1,777 were
banded, in Spring, on the leks. There were 312 band recoveries obtained from hunters; hunting
was in Fall. These data are well-fit by model { , } ({ , } in the notation of Brownie et al.S r S ft t t t

1985; see White and Burnham 1999 for the notation and parameterizations used by MARK).
The goodness-of-fit 13.43 on 14 df, from program ESTIMATE (Brownie et al. 1985),;2 œ
which is callable from program MARK. Thus we use this time-specific model as our global
model for further illustrative random-effects analyses of the survival rates (full time variation
was kept on the band recovery rates).

With many years of data the AIC-based selection of model { , }, rather than { , },S r S rt t t

can occur because the addition of many parameters beyond just one constant  is notS
warranted: the “cost" in terms of lack of parsimony is too great. The random-effects model is a
legitimate intermediary model. Even if model { , } is selected one should also fit theS rt t

random-effects model and consider using the shrinkage estimates rather than the MLEs. For
these subadult male grouse data, the AIC  values for five models are below:? c



Model     AIC   Comments re model for survival rates, ? c K Si

{ , } 0.00 17 fixed effects, linear time trendS rT t

{ , } 0.86 17.00 random effects, linear time trendS rT t,5

{ , } 4.98 16 constantS rt

{ , }  6.16 19.96 random time effectsS r.,5 t

{ , } 18.21 29 fixed time effectsS rt t

The notation { , } denotes a model with a linear trend imposed on the survival rates. Hence,S rT t

S a bi a bi Si iœ � �is enforced by substituting  for  in the likelihood.
If one looked only at models { , } and { , } the AIC choice would be strongly inS r S rt t t

favor of no time effects on survival: an AIC  difference of 13.23. Selection of that simplerc

model does not mean we believe there are no time effects. Rather, it means the data do not
support having 13 more survival parameters estimated in the fully time-specific model.

The random survival-effects model is denoted as { , } because in its pure (i.e.,S r.,5 t

marginal likelihood) form it has only two parameters,  and , relating to the annual survival. 52

rates. All the time variation in the 14 is swept into one parameter (legitimate if the  behaveS  Si i

like a random sample). Here, model { , } produces ( ) 0.430 ( 0.027) andS r E S se^ ^
.,5 t œ œ

5̂ 0.046 (95% confidence interval 0 to 0.185). Table 2 gives the MLEs  under model { ,œ S S^
i t

r S S r
~

t i t t} and the shrinkage estimates  under the random-effects version of model { , }. Figure 2
provides a plot of these estimates. The show temporal variation that corresponds to the S

~
i 

magnitude of . Moreover, the general temporal pattern we see in the MLEs is mirrored (but5̂
muted) in the shrinkage estimates.

Given that we want parsimonious estimates of the , if we otherwise accept model { ,S Si t

rt }, we should use not the MLEs but rather the shrinkage estimates in Table 2. However, given
that 0, the correct assessment of the uncertainty of  (and hence confidence intervals)5̂

2
� S

~
i

should be based on ( ) in Table 2, not ( ), as would classically be done.rmse S S se S S^ ^~ ~
i i i i± ±

Assuming we use simple confidence intervals of the form 2  and 2 , then the ratioS se S rmse^ ^ ^~
„ „

of average confidence interval length based on vs based on is 0.111/0.163 0.68; this is a S Ŝi i
~

  œ
substantial improvement. If we do not need to make specific estimates of each it suffices toSi 

report only the two population-level parameter estimates, ( ) and  and their confidence^E S^ 5
intervals.

We go further with this example for illustrative purposes. Say we wanted,  toa-priori
seeing the data, to examine a model for a simple linear trend in the  but with random residualSi

effects about the fitted trend line. To denote this model we use the notation { , }. Here weS rT,5 t

are saying that even if there is a linear trend we expect the true do not fall exactly on theSi 
trend line. Rather, the situation would be dealt with using standard linear regression if we knew
the without a measurement (sampling) variance component. We would then also estimateSi 

average residual variation about the fitted line based on . Inference about  would use a^ ^5 5
2 2

sample size of ( 14), not infinity.k œ
However, when we approach such a model by embedding its structure directly into the

likelihood as  (possible via a nonlinear link function) we are forcing the model toS a bii œ �
accept the condition 0 rather than including that additional variance component parameter52 œ

in the inference problem and we proceed as if the sample size of survival rates is infinite, not . k



With the random effects approach we can estimate and if we get 0 (we may not if^5 52 2
 �

sampling variance is large and the model structure is a good fit) we can get more suitable
unconditional variances and also shrinkage estimators about the fitted structural model.

Table 3 gives the MLEs  under model { , }, these are the inputs to the randomS S r^
i t t

effects model { , } that produced the shrinkage estimates  in Table 3. For the random-S r S
~

T,5 t i

effects linear time trend model, 0.577 ( 0.056), 0.021 ( 0.007), and 0^ ^a se b se^ ^^œ œ œ � œ œ5
(95% confidence interval 0 to 0.10). Because here 0, the shrinkage estimates exactly5̂ œ

satisfy . Figure 3 shows this more clearly than Table 3. We do not interpret theS a bi
~ ^ ^

i œ �
result to mean that  is zero in reality. Rather, we have learned that here the fitted linear time5

trend accounts for all the explainable variation in the , the MLEs from model { , }.S S r^
i t t

Sampling variation is not “explainable." Hence, relative to sampling variation and covariation
there is no discernible lack of fit, of the to the fitted line, as would be measured by havingS  i
5̂ 0. This result here is probably due to large sampling variation. Consequently, as a matter

2
�

of pragmatism we can feel comfortable here making conditional inferences from the fixed-
effects trend model, { , }, which is the AIC best model. Also, model  { , } would nowS r S rT Tt t,5

be dropped from consideration to avoid model redundancy (Burnham and Anderson 1998,
sections 4.2.9 and 4.2.10).

Because the random effects theory applied here lead to 0 we should expect the5̂ œ
results of fitting that model indirectly, based on starting with model { , }, to correspondS rt t

well to results of direct maximum likelihood estimation under model { , }. In the latter caseS rT t

we find MLEs as 0.595 ( 0.058), and 0.020 ( 0.007) compared to theâ se b se^ ^^œ œ œ � œ

indirect random effects fitting which give 0.577 ( 0.056), and 0.021â se b^ ^œ œ œ �

( 0.007). However, because and under fixed and random effects models are notse  a b ^ ^ ^œ

identical, even though 0 (which results in  being the same as  for the fixed-effects5̂
2
œ K Kre

trend model), the likelihoods of the two models are not identical. This results in AIC for the
two models being slightly different; logically, they should be the same. An adjustment is
possible (see discussion).

5.2 Mallards Banded for 42 Consecutive Years
This example is from late Summer bandings, in California, of adult male mallards (Anas
platyrhynchos k) banded every year from 1955 to 1996 ( 41) (Franklin et al., in press). Theœ
total number of birds banded was 42,015, with a yearly minimum of 268 and a yearly maximum
of 2,279. The total number of recoveries was 7,647. The goodness-of-fit test (Brownie et al.
1985, Burnham et al. 1987) to the time-specific model { , } gave 280.86 on 235 dfS rt t ;2 œ
( 0.0216), for a variance inflation factor 1.1952 (see Lebreton et al. 1992 and Burnham^P cœ œ
and Anderson 1998 for discussions of variance inflation in capture-recapture). To
accommodate 0 the sampling variance-covariance matrix  was adjusted upwards to bec W�
cW^  and QAIC (Burnham and Anderson 1998) was used:

 QAIC 2œ ��2log_
ĉ

K .

We also used Akaike weights in this example (see Burnham and Anderson 1998).



Results are given here for three models: { , }, { , }, and { , }:S r S r S rt t t t.,5

 Akaike
Model              weight Comment re model for survival K        QAIC?

{ , } 73.26 0.00 0.9984 random time effectsS r.,5 t

{ , } 83 12.87 0.0016 fixed time effectsS rt t

{ , } 43 100.11 0.0000 time-constant S r St

The random-effects model is by far the AIC best model here. From the random effects model

5 5 .^ ^0.0843, 95% confidence interval on  of 0.0582 to 0.125, and ( ) 0.630 withœ ´ œE S^

unconditional 0.014. This estimated standard error includes the uncertainty due to . Ifse^ œ 5

one takes the mean of the 41 MLEs, , from model { , } and bases the standard error ofS S r^
i t t

that mean on just the sampling variance-covariance matrix, , the result is 0.638 withcW^

se S^ œ 0.0054 (a result that is conditional on , hence excludes ). This is an incorrect standard� 5
error to use when inferences are meant to apply to other mallard populations or time periods.
Just as bad, if one computes the standard deviation of the MLEs from model { , } as anS rt t

estimate of , the result is 0.121, a value much inflated by sampling variation, and almost5
outside the proper 95% confidence interval on .5

Finally, consider the improvement in precision achieved by the shrinkage estimates, ,S
~

i

from model { , } compared to the MLEs, , from model { , }. As a basis for thisS r S S r^
.,5 t i t t

comparison we use the ratio of average  to  below: rmse  se^ ^

 0.823 .r mse S S^ ~

se S S^
_

^

�
±

±

( )

( )
0.06476
0.07870

i i

i i

œ œ

The average precision of the shrinkage estimates is improved, relative to MLEs, by 18%, hence
confidence intervals on  would be on average 18% shorter.Si

The simple random effects model is both necessary here for inference about process
variation, and very useful for improved inferences about time-varying survival rates.52, 

6. DISCUSSION

For capture-recapture data the MLEs and their variance-covariance matrix are conditional on
the survival probability parameters as being fixed effects. Thus, traditional statistical inferences
for such data (e.g., CJS models) do not in theory extend to conditions other than those extant
when and where the data were collected. This consideration also applies in principle if we
embed the model restriction (or with a nonlinear link function) directly into theS X  � œ

�
"

likelihood, ( , ) (i.e., the “direct" approach) and hence get a direct MLE  of ._ ) "S S1 , , á k � �
Indeed, that MLE value will be very similar to the estimate of  from the random effects"

�
approach based on the MLEs  from this same likelihood. However, what the directS S^ ^

1 , , á k

MLE approach lacks is an evaluation of the fit of the structural model, such as , to theS X� œ
�
"

true  in the sense of obtaining a valid estimate of  Rather, the direct likelihood approachSi 52.
implicitly assumes no lack of fit, hence 0, and the uncertainty of the MLE of  will not5 "2 ´

�



include a component for . Such a direct approach is thus  analogous to what occurs in the52 not
regression approach we would do if knew the . The random effects approach properlySi

recognizes the two variance components affecting  and hence produces a correct estimator ofŜ�
the unconditional VC( ) when 0. Therefore, we can get correct unconditional inferences^ ^" 5

�
2
�

on a conceptual population-level  as well as get . We also get improved conditional^" 5
�

2

inferences on the  by use of the shrinkage estimators, , given by (9) and their conditionalS S
~

i i

rmse S S^ ~
( ) given by (12).i ± �

The approach to random effects models presented here could, in principle, be replaced
by one of two exact approaches, one Bayesian the other frequentist. However, those
approaches are both computationally very demanding and both require assuming a probability
distribution on  as a random variable, say ( ) (as a pdf). Under the frequentist approach weS f S
first compute the marginal distribution of the data by integrating out . The resulting marginalS
likelihood has only the fixed-effects parameters , , and , and standard AIC applies. In"

� �5 )#

the simplest case the marginalized likelihood is given by

 ( , , ) ( , ) { , } ( , )  . (17)_ 5 ) _ ) _ ) 5. .2 2

=1
1� � � �œ œ âE S S f S dS dSS i k

i

k

�
c d�

' ' # ± â

This is a -dimensional integral and  can be 10 to 30, or more.k k
For capture-recapture models we cannot ever do (17) analytically (because the

likelihoods are far too complicated as functions of their parameters) and perhaps not well, or
easily, by classical numerical integration methods. It should be possible to compute (17) by
Monte Carlo methods, including Markov Chain Monte Carlo used in Bayesian marginalization
methods (see e.g., Gelfand and Smith 1990, Zeger and Karim 1991, Smith and Gelfand 1992).
Those methods are very computer intensive. Bear in mind that the entire optimization of ( ,_ .
5 )2 , ) for the MLEs must be numerical, hence the integration in (17) must be done many�
times. Some simple investigation suggests that for capture-recapture perhaps 1,000,000 Monte
Carlo trials are be needed to get useful precision in the evaluation of (17), and that is for one
point in the parameter space of , , Full numerical maximization of (17) will require) .� 52. 
evaluation at many points in the parameter space; in principle this can be done. The upshot is
that the exact frequentist approach is not recommended. However, a full Bayesian approach
using MCMC is probably feasible and worth exploring for capture-recapture models that are in
effect mixed-effects models possibly with nested or multiple levels of random effects. The
advantage of the MCMC approach is its generality; the disadvantage is that it is very computer
intensive.

As with the grouse example for models { , } and { , } the fitted random-effectsS r S rT t T t,5

model may produce 0. In this case tr( ) is exactly the number of structural parameters,5̂
2
œ G

"
�

, in the model for  (2 for this grouse example). Also,  is then identical to  (17 in thisS K K� re

example) for the fixed effects version of the random-effects model structure. However, the two
estimates of the structural parameter  will not be identical (they will be quite close) and this"

�
results in the two AIC values being slightly different. This is a nuisance only, as in this case one
should discard the redundant random effects model. However, it is possible to eliminate this
discontinuity between the two AICs in such a case.



First consider the simple random effects model with one structural parameter, ( ). TheE S
fixed-effects analogy is the model wherein all Let the MLE from that model be denotedS S. i œ

S E S^ ^. From the random effects model we have the estimator ( ). Now instead of computing the
random effects likelihood from (13) as

   ( , ) ma x ( , ) 
~̂

_ ) _ )
)

S S
~ ~
� �� �œ

�

based on the , we modify these survival probabilities to beS
~

i

  ( ( ))  . (18)S S E S
~ ^ ^

i � � ’ “’ “ ’ “1
tr( ) 1

tr( )
G k

k G�
�

The likelihood function is then re-optimized for  at these values of the survival probabilities.)�
This smoothly eliminates the AIC discontinuity because at 0, tr( , the shrinkage5̂

2
œ G) 1œ

estimates “collapse" to ( ) and (18) becomes , the MLE under the matching fixed effectsE S  S^ ^

model. Upon re-optimization the likelihood for the fitted random effects model is identical to
that of its structural matching fixed effects model and the two AIC values will be identical.

The idea is easily generalized to a model structure , where  is -dimensional.S X r� œ
�
" "

Let  be the MLE under the fixed effects version of the model. From the fitted random effects"̂
�

version of the model we get ( ) , the shrinkage estimate about ( ), and  Now^E S X S E S^ ^^̂ ~
� �œ "

� � 5
2
.

re-optimize (for ) the likelihood not at , but rather at)� S
~
�

  ( ( ))  . (19)S X E S
~ ^ ^
� �

� � �" ’ “’ “ ’ “r
G k r

k G
tr( )

tr( )�
�

If 0, then tr( , the shrinkage estimate collapses to ( ) and (19) becomes5̂
2
œ G r E S^) œ �

S X^
� œ

�
"  so the re-optimized likelihood has the same value as for the fixed effects model, and

the two AICs are the same. The main reason to do this is so one sees at a glance from the AICs
that the random effects model is totally redundant.

Model redundancy in the context of AIC selection is discussed in Burnham and
Anderson (1998, sections 4.2.9 and 4.2.10). The random effects model is substantially
redundant of its fixed effects likelihood version. Report results from only one of these models.
A general suggestion now is to not model average over the random effects models because
their primary purpose is to allow estimation of process variance, , a parameter not in any of52

the fixed effects models. Whereas analysis strategies for capture-recapture data do exist (e.g,
Lebreton et al. 1992, Anderson and Burnham 1999), they do not consider random effects
models. One strategy suggestion is to first fit fixed effects models. Then for the AIC selected
model, e.g., of the form { , }, fit the corresponding random effects model S S X .X"

�
) " %� � �œ �

�
If it has similar or smaller AIC and 0 then make inferences from that random effects5̂

2
�

model. As a general suggestion be sure and check for overdispersion (as by goodness-of-fit)
and use QAIC if overdispersion is found.



For fitting a random effects model we suggest using the MLEs from the general time
specific model (plus any age or group effects needed). This generality is required not only for

S p  f^
� , but also for other parameters in the model (e.g.,  or ). Those other parameters should be
allowed to be fully time-varying so that no erroneous structure imposed on them can affect

(wrongly constrain)  and thereby bias ^Ŝ� 5
2
.

When generating the MLEs  to input to the random effects model weS S^ ^
1 , , á k

recommend using an identity link (and use an identity link in the random effects fitting). The
reason for this recommendation is that only the identity link is free of problems as to estimation
of the sampling variance-covariance matrix, , that occur when estimates are on a boundary.W

With a logit link, in particular, when an is at or very near 1 a result is that the numerical-Ŝi 

determined value of ( ) is often 0 (which is quite wrong). Then in the weighting usedvar S S^ ^
i i±

for random effects this estimate erroneously gets very high weight. The result is bias in
estimates from the random effects model fitting. An estimator that minimizes (but does not
eliminate) this problem is

  ,5̂
2
œ

D( )
1

Ŝ
k

i�
�S 2

� � �var cov- -

where  and  are the average sampling variances and covariances, respectively, computedvar cov- -

from . This is a quick, easy estimator (given in program MARK as the naive estimator), it isW
not as efficient as the weighted estimator.

Random effects models can be fit to parameters on a transformed scale, in particular

such as logit( )  (but estimates of both  and ( ) can be unreliable when is tooS var  S ^ ^œ " " " "±
near a boundary). However,  is now on a logit scale; if we want process variation for  a back5̂ S
transform is required. In general, if ( ), then to a first order ( ( )) ; this mayS t t Eœ " 5 " 5S œ ± w ± "

not be a good approximation. If  has a Gausian distribution then a second order result is"
5 " " 52 2 2 22 1

2S œ [ ( ( ))] ( ( )) ]  A seemingly better procedure (not explored yet) is tot E t Ew ww5" "� [ .

obtain the , compute ( ), 1, , , and then estimate as the sample standard~ ~
" " 5i ii SS t i k

~
œ œ á  

deviation of .S S
~ ~

1, , á k

The methods here are for equal-length time intervals. It is not clear how to relate
process variation to quite unequal time intervals. Surely the biology of the animals would have
to then be a consideration.

There may be a need to consider time series issues for , ,  since the time intervalsS S1 á k

are sequential. The sequence of survival rates, , may not be independent. However, givenSi

their conceptual nature it is difficult to come to intellectual grips with the issue of their
independence or possible lag-correlations. To generalize the method here the key step is to
generalize matrix to be ( ) for some correlation matrix on . For example,D D C E W  Sœ � �52

S�
assuming the  are AR(1) adds one correlation parameter, , to the problem. The extension isSi 3
worth developing just to see if the estimators then perform well or not.

The estimation theory presented here (for exchangeable ) is optimal only when theSi

weight matrix is ( ). However we will generally have only ( ) fromD I E W E W W ^ ^œ � œ52
S S� �

numerical second partial derivative methods (i.e., from an empirical information matrix). The
effect of this difference between theory and application is not well known yet, but based on
preliminary Monte Carlo simulations it does not appear to be problematic. Also, note that some



positive bias in  may occur because negative estimates (which occur) must be truncation to 0,5̂
2

yet the estimation method is nearly unbiased only when one allows negative estimates of .52

There is a large literature on capture-recapture models (see, e.g., Schwarz and Seber
1999), yet very little has been done on random effects models for capture-recapture. This paper
is a start. Much remains to be learned about random effects in capture-recapture, but here is a
class of models we have not been using, but need to, that are intermediate between completely
unstructured time variation and a model like that eliminates all the process variation. TheS S i ´

latter modelling forces 0, which is unrealistic, although as a model it may often be useful.52 œ

However, we need to start using random effects models with capture-recapture data both to
estimate and study process variation, and because of the efficiency advantages of shrinkage
estimators.
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Table 1. One realization from the random effects example, 10, ( ) 0.5, 0.05 k E Sœ œ œ5

 where /  are binomial(25, ), hence expected ( ) is almost 0.1;S y n S se S S^ ^
i i i i iœ ±

 also shown are shrinkage estimates, their estimated conditional standard errors and

 root mean square errors, and the sum of squares between and  and betweenS S^
i i 

W
~

Si i .                                                                   and 

                                    i          S            S se S S   S se S S rmse S S^ ^^ ^ ^~ ~ ~
i i i i i i i i i( )      ( )    ( ) ± ± ±

    1    0.603    0.640    0.098    0.541    0.047     0.109
    2    0.467    0.360    0.098    0.437    0.047     0.090
    3    0.553    0.480    0.102    0.482    0.047     0.047
    4    0.458    0.440    0.101    0.467    0.047     0.054
    5    0.506    0.480    0.102    0.482    0.047     0.047
    6    0.498    0.320    0.095    0.420    0.047     0.111
    7    0.545    0.600    0.100    0.526    0.047     0.088
    8    0.439    0.400    0.100    0.452    0.047     0.070
    9    0.488    0.560    0.101    0.511    0.047     0.068
   10    0.480    0.560    0.101    0.511    0.047     0.068
 mean    0.504    0.484    0.100    0.483    0.047     0.075
st.dev.  0.050    0.106             0.039

 0.067 0.019!10 10

=1 =1

2 2

i i
i i i i( ) ( )S S S S^ ~
� œ œ �!        



Table 2. MLEs and shrinkage estimates, their relevant estimated standard errors, and
 the shrinkage , for the male subadult sage grouse ring recovery data in Zablanrmse^
 (1993) (see text for details) fit to the simple random effects model with estimated

      parameters, ( ) 0.430 and 0.046 (95% C.I. 0 to 0.186).                         ^ ^E S œ œ5

                 ( )         ( )       ( )  i           S se S S   S se S S rmse S S^ ^^ ^ ^~ ~ ~
i i i i i i i i                           ± ± ±

       1   0.579    0.204    0.479    0.050     0.111
       2   0.667    0.211    0.494    0.050     0.180
       3   0.366    0.101    0.427    0.045     0.076
       4   0.626    0.156    0.493    0.049     0.141
       5   0.521    0.139    0.477    0.047     0.065
       6   0.535    0.176    0.463    0.049     0.087
       7   0.365    0.128    0.411    0.047     0.065
       8   0.319    0.110    0.389    0.046     0.083
       9   0.705    0.267    0.466    0.051     0.245
      10   0.261    0.102    0.367    0.045     0.115
      11   0.507    0.172    0.438    0.050     0.085
      12   0.295    0.128    0.381    0.048     0.098
      13   0.396    0.219    0.411    0.051     0.053
      14   0.227    0.162    0.369    0.050     0.150
   mean    0.455    0.163    0.433    0.048     0.111
st. dev.   0.157             0.046                    



Table 3. MLEs and shrinkage estimates, their relevant estimated standard errors, and
 the shrinkage , for the male subadult sage grouse ring recovery data in Zablanrmse^
 (1993) (see text for details) fit to the linear time trend random effects model with

      estimated parameters, 0.577, 0.021 and 0.0 (95% C.I. 0.0 to 0.10).^ ^a b̂œ œ � œ5

          ( )          ( )    ( ) i             S se S S   S se S S   rmse S S^ ^^ ^ ^~ ~ ~
i i i i i i i i                            ± ±±

    1    0.579    0.204    0.556    0.049     0.054
    2    0.667    0.211    0.535    0.043     0.139
    3    0.366    0.101    0.514    0.038     0.153
    4    0.626    0.156    0.493    0.032     0.136
    5    0.521    0.139    0.473    0.028     0.056
   6    0.535    0.176    0.452    0.025     0.087
   7    0.365    0.128    0.431    0.023     0.070
    8    0.319    0.110    0.410    0.024     0.094
    9    0.705    0.267    0.389    0.027     0.317
   10    0.261    0.102    0.368    0.031     0.111
   11    0.507    0.172    0.347    0.036     0.164
   12    0.295    0.128    0.326    0.042     0.052
   13    0.396    0.219    0.305    0.048     0.103
   14    0.227    0.162    0.284    0.054     0.079
  mean   0.455    0.163    0.420    0.036     0.115
st.dev.  0.157                                               








