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Abstract: Mechanisms of the displacement of native fish by nonnative fish can include agonistic
behaviors that push native fish species out of their preferred habitat, including their thermal optima.
To examine these interactions, we built an experimental thermal preference chamber to evaluate:
(1) the thermal preference of native, glacial relict northern redbelly dace Chrosomus eos; (2) if the
thermal preference and movement changed in the presence of the invasive western mosquitofish
Gambusia affinis; and (3) the direction of agonistic interactions. We hypothesized that G. affinis would
express agonistic behavior toward C. eos, because G. affinis is widely recognized as an aggressive
invader. Given the temperature range of the experimental chamber, i.e., 20–30 ◦C, C. eos selected an
average of 24.3 ◦C as its thermal preference. After G. affinis’ introduction, the thermal preference of
C. eos increased by 1.7 ◦C and the movement, given by distance (cm) travelled, increased by 21%.
Contrary to our prediction, more agonistic interactions were observed in C. eos toward G. affinis. These
results indicate that agonistic behavior of G. affinis toward native fish species may be species- and
condition-specific, and may not always be the primary mechanism of native species’ displacement.
Biological invasions are a global issue and altered thermal regimes are expected to continue. This
study provided the novel approach using of a thermally heterogeneous thermal chamber to examine
thermal preferences and aggressive interactions between a native and an invasive species. Future
research should examine other life history traits that may be conveying the competitive advantage to
G. affinis.

Keywords: agonistic behavior; thermal preference; condition-specific competition; Chrosomus eos;
interspecific competition; Gambusia affinis; northern redbelly dace; western mosquitofish

1. Introduction

Nonnative fish are implicated in the demise of native fish globally, but a mechanistic
understanding of how displacements take place is often lacking [1–3]. Mechanisms of
displacement may include agonistic interactions, where aggressive behaviors by nonna-
tive species push native species out of their preferred habitat, including their thermal
optima [4–6]. Western mosquitofish Gambusia affinis (Baird & Girard, 1853) is listed as one
of the 100 worst invasive species by the International Union for Conservation of Nature
and has been implicated in the decline of freshwater fish [7–9], amphibians [10,11], and
invertebrates [12–14]. A suite of ecological traits confer competitive advantages to G. affinis,
including broad physiological tolerances (i.e., eurythermic) and high fecundity [15,16],
but their aggressive behaviors are considered a key mechanism in native fish’s displace-
ment [17–19]. These agonistic interactions can result in an increased movement, which
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is an energetic cost that can require fish to consume more food [20], increase predation
risk [21], and reduce growth [22].

The northern redbelly dace Chrosomus eos Cope, 1861 = Phoxinus eos (Cope, 1861)
is declining on the western edge of its distribution, where it is a glacial relict species.
Although the species is stable throughout much of its range and has an IUCN status of
“least concern”, it is listed as “endangered” in Colorado, and “threatened” in Nebraska
and South Dakota [23]. Threats to C. eos include alterations to its habitat and the presence
of invasive species [23]. C. eos prefers off-channel lentic habitats, and has a strong pref-
erence for spring-fed habitats that are densely vegetated, such as beaver ponds [24,25].
In occupied habitats > 0.3 m deep, Bestgen [24] observed a strong thermal stratification,
with surface to bottom temperatures ranging from 27 to 18 ◦C, respectively. Likewise, G.
affinis uses the same habitat and has an overlapping thermal range with C. eos. G. affinis
tolerates temperatures up to 39.5 ◦C [26] and has a preferred temperature, under laboratory
conditions, of 31 ◦C [27]. Because C. eos occupies a thermally stratified habitat, its localized
displacement by G. affinis may result a thermal displacement.

Temperature regulates the physiological and metabolic processes of ectothermic fish
and is considered the abiotic ecological master factor [28,29]. As such, temperature influ-
ences growth [30], development [31], and behavior [32]. In habitats with micro-spatial
thermal variation, ectotherms behaviorally thermo-regulate, fine-tuning trade-offs between
thermal and competing resources (i.e., food) to optimize physiological and metabolic
processes—ultimately maximizing the fish’s fitness [33–35]. The thermal displacement of a
native species by a non-native species has the potential to interrupt the former’s thermal
regulation, therefore interrupting the optimization of its physiological and metabolic pro-
cesses. Instances where the inter-specific competitive dominance changes as a result of the
environment (i.e., temperature) are known as condition-specific competition [36–39].

Studies have investigated temperature condition-specific competition by examining
swimming performance among salmonids [38] and aggressive interactions of G. affinis [39].
While the foraging success and aggression of G. affinis increased significantly at higher
temperatures, these fish were subject to thermally constant tanks at only three experi-
mental temperatures [39]. Our current study aimed to examine behavioral interactions
between native and nonnative species in a thermally heterogeneous setting simulating
a thermally stratified micro-habitat, such as off-channel pools or beaver dams [40]. We
observed fish’s aggression to test for the presence of inter-specific competition and the fre-
quency of C. eos’ displacement to a non-preferred habitat. Aggressive behaviors in fish are
influenced by a variety of factors including their size, societal status, prior residency, and
temperature [41–43]. Elucidating how strongly thermal conditions mediate inter-specific
competition is critical for predicting the population persistence of native species, especially
for species with a relatively narrow thermal tolerance such as glacial relict species [44].

To inform conservation actions, we hypothesized that the displacement from preferred
thermal range occurs due to agonistic behavior of G. affinis toward C. eos. Trials were
conducted in a thermal preference chamber to determine: (1) the thermal preference of C.
eos, (2) if the thermal preference changed with the addition of the invasive G. affinis, and (3)
the direction of agonistic interactions.

2. Materials and Methods
2.1. Ethics Statement

The care and use of experimental animals complied with the State of Colorado’s
animal welfare laws, guidelines, and policies as approved by the State of Colorado Scientific
Collection License #05–AQ963.

2.2. Experimental Fish

Adult C. eos (average total length (LT) ± SD = 40 ± 4 mm) were obtained from the
Colorado Parks and Wildlife John W. Mumma Native Aquatic Species Restoration Facility
in Alamosa, CO, USA. Adult G. affinis (31 ± 4 mm) were captured using a two-person
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pull seine from the South Platte River, near Greeley, CO, USA. C. eos and G. affinis were
held in ten five-gallon holding tanks at the Colorado Parks and Wildlife Aquatic Research
laboratory in Fort Collins, CO, USA. The stocking density of C. eos and G. affinis was 18–20
and 10–12 fish/tank, respectively. Holding tanks were separated by visual barriers, and
supplied with on-site well water, aerated, and heated to 25 ◦C (±1 ◦C) using submersible
aquarium heaters. Fish’s health and holding tank temperatures were monitored daily.
Test fish were held in holding tanks for at least 21 days prior to testing, and were fed
ad libitum rations of Tetramin tropical flakes two times per day. Additional feeding of
Tubifex spp. occurred once per day. Fish were fasted 12–14 h prior to the initiation of the
experiment and were not fed during testing to limit the influence of their digestion on their
temperature selection.

2.3. Experimental Apparatus

We used a modified Myrick-type thermal preference chamber to quantify the thermal
and behavioral response of C. eos to the introduction of G. affinis (Figure 1) [45]. We made
several modifications to the original thermal preference chamber design as described
by Myrick et al. [45]. Most notably, we decreased the number of constant-headwater
distribution reservoirs from four to two and eliminated the distribution lines that carried
the source water directly to the mixing chamber. Water was instead piped from a warm
(31 ± 0.2 ◦C) and a cool (19 ± 0.2 ◦C) constant-headwater distribution reservoir into two
stacked mixing rings located above the chamber. The top mixing ring was a complete circle
and supplied water for diluting the temperature of the bottom mixing ring. The bottom
mixing ring was nearly a complete circle but, unlike the top mixing ring, was capped at
both ends. Water from the top mixing ring was funneled into the bottom mixing ring at 20
evenly spaced locations, effectively diluting the concentration of the bottom mixing ring’s
source water along the ring. The highest concretion of the bottom mixing ring’s source
water was located at the center point between the two capped ends and decreased as it
radiated out from the center point toward each capped end (Figure 1). The dilution of the
bottom ring from the top ring created a 10 ◦C circular thermal gradient (21.2 ± 0.71 to
29.4 ± 0.59 ◦C). Switching between cool and warm water delivered to the top mixing ring
reversed the orientation of the thermal gradient and allowed us to randomize the thermal
gradient orientation during trials. When cool water was delivered to the top mixing ring,
the water temperature decreased from 30 ◦C to 19 ◦C as it traveled from the center point to
the two capped ends. The gradient was reversed when warm water was delivered to the
top mixing ring.

Water from the bottom mixing ring was funneled into the 20 sections (increased from
8 in the original Myrick-type [45] thermal preference chamber) of the mixing chamber.
Water flowed from the mixing chamber into the swimming chamber through 60 evenly
spaced holes (3 per section). The swimming chamber’s outer wall had a diameter of 101 cm,
and the inner wall was 80 cm. Water then flowed through 32 evenly spaced holes, into
the 32 sections (increased from 8) of the effluent channel before finally flowing through
32 holes (1 per section) to three drains located in the base of the chamber. The apparatus
created a continuous 10 ◦C circular thermal gradient (mean segment temperature ± 95%
CI; 21.2 ± 0.7 to 29.4 ± 0.6 ◦C) with the capacity to control flow direction (Figure 2). We
randomized the thermal gradient orientation between trials to ascertain whether fish were
selecting a temperature and not a location in the chamber (Figure 2). The thermal chamber
was enclosed with a curtain, and a 122 cm × 122 cm sheet of white Plexiglas was mounted
above the chamber to eliminate external disturbances during trials and allow for a uniform
lighting of the chamber.
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to the center of each mixing section. 
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acclimation period, Run 2 began, representing the treatment period, which was used to 
observe changes in C. eos’ thermal preference and travel distance due to the introduction 
of three G. affinis. 

Prior to each trial, we randomly selected a thermal gradient orientation (clockwise or 
counter-clockwise) and allowed the preference chamber to equilibrate for 30 min. We then 
measured the thermal gradient of the annular chamber at 32 equally distanced locations 
(Figure 2). At the initiation of each trial, we removed one C. eos from its holding tank and 
introduced it into the thermal chamber at the location corresponding to the fish’s 
acclimation temperature of 25 °C. Test fish were randomly selected and measured for LT 
prior to their introduction into the thermal chamber. After a 1.5 h acclimation period, we 
began the reference condition period of the trial, which included only the single C. eos. 
The results of this hour in the thermal chamber established the thermal preference of C. 
eos. Following the reference condition period, we randomly selected and introduced three 
G. affinis, bringing the total number of fish in the chamber to four. The G. affinis were 
introduced to the chamber at the same location as the initial C. eos. 

During trials we video-recorded fish’s movement and behavior with four web-
cameras mounted 1.5 m above the surface of the water (Figure 3). Collectively, the four 
cameras were positioned to capture the entirety of the swimming chamber (Figure 3). 
Post-trial we used the video files to note the location, and thus temperature, of all fish at 
the start of every minute during reference condition and treatment periods, for a total of 
60 temperatures for each fish. We noted fish’s location (nose position) in relation to the 32 
effluent sections. To estimate C. eos’ movement travel, we visually tracked and recorded 
the number of sections each C. eos travelled through in the first 10 s of each minute during 
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example of the water distribution from the top mixing ring to the bottom mixing ring and finally into the mixing chamber.
The remaining 19 secondary water lines were equally spaced around the mixing rings, with their location corresponding to
the center of each mixing section.
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Figure 2. Mean (±standard deviation) water temperature recorded immediately prior to initiating
trials assigned to one of two flow directions, clockwise (open circles) or counter-clockwise (closed cir-
cles). The water temperature was measured in the swimming chamber at the center of 32 equidistant
visual sections.

2.4. Experimental Fish Trials

We first estimated C. eos’ thermal preference, and then proceeded to add G. affinis (i.e.,
the treatment) to quantify the thermal and behavioral response of C. eos to the introduction
of G. affinis. A total of 11 trials were completed, and each trial consisted of two 60 min runs.
Run 1 represented the reference condition period and was used to establish the thermal
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preference and travel distance of an individual C. eos. After a 15 min acclimation period,
Run 2 began, representing the treatment period, which was used to observe changes in C.
eos’ thermal preference and travel distance due to the introduction of three G. affinis.

Prior to each trial, we randomly selected a thermal gradient orientation (clockwise or
counter-clockwise) and allowed the preference chamber to equilibrate for 30 min. We then
measured the thermal gradient of the annular chamber at 32 equally distanced locations
(Figure 2). At the initiation of each trial, we removed one C. eos from its holding tank
and introduced it into the thermal chamber at the location corresponding to the fish’s
acclimation temperature of 25 ◦C. Test fish were randomly selected and measured for LT
prior to their introduction into the thermal chamber. After a 1.5 h acclimation period, we
began the reference condition period of the trial, which included only the single C. eos.
The results of this hour in the thermal chamber established the thermal preference of C.
eos. Following the reference condition period, we randomly selected and introduced three
G. affinis, bringing the total number of fish in the chamber to four. The G. affinis were
introduced to the chamber at the same location as the initial C. eos.

During trials we video-recorded fish’s movement and behavior with four web-cameras
mounted 1.5 m above the surface of the water (Figure 3). Collectively, the four cameras
were positioned to capture the entirety of the swimming chamber (Figure 3). Post-trial we
used the video files to note the location, and thus temperature, of all fish at the start of every
minute during reference condition and treatment periods, for a total of 60 temperatures for
each fish. We noted fish’s location (nose position) in relation to the 32 effluent sections. To
estimate C. eos’ movement travel, we visually tracked and recorded the number of sections
each C. eos travelled through in the first 10 s of each minute during the reference condition
and treatment periods and multiplied the number of sections traveled by the center width
of each section (9.6 cm). Finally, to quantify the species interactions we counted the number
of chases that occurred during the first 10 s of each minute in the treatment period.
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Figure 3. Photographs of the thermal preference chamber. (A) Display of the four camera angles. (B) Display of when the
four images are merged into one. Note: There are four fish in Figure A (II) and in the upper right corner of Figure B.

2.5. Statistical Methods

We tested whether the temperature selected and distance moved by the C. eos, differed
pre-treatment and after three G. affinis individuals were introduced into the chamber using
hierarchical linear models. The response variable was the mean water temperature across
sections that the single C. eos individual occupied, or the number of sections that the C.
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eos individual travelled through during a 10 s period at the beginning of each minute
for 60 min. The binary explanatory variable, xi, was the presence of G. affinis (0 = pre-G.
affinis’ introduction, 1 = post-treatment). Because the temperature was continuous and the
movement was discrete data, the temperature was modeled to follow a normal distribution,
and the movement followed a Poisson distribution. Given a vector of temperature (tempi)
and movement (movei) data across minutes and trials, the models are written:

tempi ∼ Normal
(

α.tempj[i] + β.tempj[i] xi, σ2
y

)
(1)

movei ∼ Poisson (λi) (2)

log (λi) = α.movej[i] + β.movej[i] xi (3)

We let the intercepts (α.tempj and α.movej) and slopes (β.tempj and β.movej) vary by
trial j to which observation i belong, and σy refers to the residual term (i.e., standard
deviation). That is, we considered that the initial temperature selection or travel distance by
C. eos, and its shifts after G. affinis’ introduction, could differ among trials. To model inter-
trial variation and synthesize the overall pattern across trials, we modeled the intercepts
and slopes as random effects, where µα.temp is the mean overall temperature selected, and
µα.move is the total number of sections moved by a C. eos across 10 s periods prior to G.
affinis’ introduction with standard deviations equaling to σα.temp and σα.move (Equation (4)).
Similarly, µβ.temp is the mean overall change in temperature selection, and µβ.move is the
mean overall change in the number of sections traveled due to the presence of G. affinis
with standard deviations equaling to σβ.temp and σβ.move:

α.tempj ∼ Normal
(

µα.temp, σ2
α.temp

)
; α.movej ∼ Normal

(
µα.move, σ2

α.move

)
(4)

β.tempj ∼ Normal
(

µβ.temp, σ2
β.temp

)
; β.movej ∼ Normal

(
µβ.move, σ2

β.move

)
(5)

We additionally fit a model that evaluated whether inter-trial variation in intercepts
and slopes could be explained by variation in the body length of C. eos between trials,
because agonistic inter-specific interactions depend frequently on the body lengths of
fish [46–48]. Specifically, we fitted linear models on intercepts (α.tempj and α.movej) and
slopes (β.tempj and β.movej), where µj is the mean-standardized body length of C. eos (total
length in mm) used in trial j:

α.tempj ∼ Normal
(

γ0.temp + γ1.temp ∗ µj, σ2
α.temp

)
α.movej ∼ Normal

(
γ0.move + γ1.move ∗ µj, σ2

α.move
) (6)

β.tempj ∼ Normal
(

δ0.temp + δ1.temp ∗ µj, σ2
β.temp

)
β.movej ∼ Normal

(
δ0.move + δ1.move ∗ µj, σ2

β.move

) (7)

C. eos body length did not affect temperature selection or movement; therefore, we primarily
report results based on the model described above (Equations (1)–(5)).

Models were analyzed with a Bayesian approach using a Markov chain Monte Carlo
(MCMC) method in the program JAGS [49] called from the program R [50] with the jagsUI
package [51]. Uninformative priors were used for all parameters. Posterior distributions
of parameters were estimated by taking every fifth sample from 10,000 iterations of three
chains after a burn-in period of 2000 iterations. The model convergence was checked by
visually examining plots of the MCMC chains for good mixture as well as ensuring that
the R-hat statistic was less than 1.1 for all model parameters [52]. We considered effects
of explanatory covariates (i.e., G. affinis introductions and C. eos body size) statistically
significant when >95% of posterior samples were either positive or negative; we report the
proportion of posterior samples (PPS) that were in the same direction (positive or negative)
as the posterior mean value. This metric ranged from 0.5 to 1. If covariate effects are zero,
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50% of posterior samples are approximately positive or negative; if effects are unequivocal
(i.e., posterior samples do not overlap zero), 100% of posteriors samples may be positive
or negative.

3. Results
3.1. Thermal Preference

Prior to G. affinis introductions, C. eos occupied an average temperature of 24.3 ◦C
(µα.temp) that varied between trials (σα.temp: mean = 2.5 ◦C). After G. affinis were introduced,
C. eos selected significantly (PPS = 0.98) higher temperature ranges (mean = 1.7 ◦C higher
(µβ.temp); Figure 4). The magnitude of changes in temperature selection varied by trial,
ranging from −1.3 ◦C to 4.7 ◦C.
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in temperature selected (µβ.temp) in β.tempj ∼ Normal
(
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β.temp

)
by Chrosomus eos. Posterior

samples that are positive are shown in gray and those that are negative are shown in black. The
vertical black dotted line shows the mean posterior value.

The body length of C. eos did not explain the inter-trial variation in its temperature
selection (γ1.temp: mean = −0.38, PPS = 0.69) or movement distance (γ1.move: mean = 0.70,
PPS = 0.63) before G. affinis’ introduction, or changes in its temperature selection (δ1.temp:
mean = −0.09, PPS = 0.53) or movement (δ1.move: mean = 0.07, PPS = 0.56) in response to
G. affinis introduction.

3.2. Movement

C. eos’ movement distance increased 21% after G. affinis were introduced. Without G.
affinis, C. eos moved an average of 10 sections (96 cm) per 10 s across minutes and trials.
After G. affinis introductions, C. eos moved an average of 12 sections (116 cm), and this
effect was statistically significant (µβ.move: mean = 0.36 (log scale), PPS = 0.96) (Figure 5).
Again, the change in the movement distance of C. eos varied by trial, ranging from two
fewer sections moved to nine more sections of movement after G. affinis’ introduction.
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3.3. Agonistic Interactions

Contrary to our prediction, more agonistic interactions were initiated by C. eos toward
G. affinis than the opposite. We recorded interspecific interactions (i.e., chases) in 2562
out of 6600 total seconds of observations (39%). Of these, 1976 observations (77%) were
chases by C. eos of G. affinis, and 348 observations (14%) were chases by G. affinis of C. eos
(Figure 6). In the remaining 238 observations (9%), G. affinis and C. eos chased each other,
and we could not determine which species initiated the interactions.
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4. Discussion

Our results indicated a temperature preference of C. eos (24.3 ◦C) slightly lower than
the temperature preference of 25.3 ◦C estimated by Stauffer et al. [53] when integrating
temperature preferences of fish acclimated to five different temperatures (6, 18, 24, 30,
and 33 ◦C). However, the preferred temperature of 24 ◦C-acclimated C. eos reported by
Stauffer et al. [53] (24.0 ◦C) was similar to the preferred temperature of the 25 ◦C-acclimated
C. eos in this study (24.3 ◦C). The similarity in the preferred temperatures between these
two studies was interesting given the differences between the C. eos source populations
used in each study. The source population of the hatchery-propagated C. eos used in this
study was West Plum Creek (a tributary to the South Platte River, CO, USA), which is
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at approximately 2,000 m in elevation, whereas the source population of C. eos used by
Stauffer et al. [53] was Spratt Creek (a tributary of the Thunder Bay system, Lake Huron,
Michigan, USA), which is at an approximate elevation of 220 m. As a glacial relict species
in Colorado, C. eos may have experienced cooler temperatures than other populations in C.
eos’ native range, however our results indicate that C. eos’ preferred temperature remains
stable across geographic regions when acclimated to similar temperatures.

The introduction of G. affinis into the thermal preference chamber increased C. eos’
movement, given by distance (cm) traveled, by 21%. The increase in movement resulted in
more time spent outside of C. eos’ initially established thermal preference, as documented
by an overall increase in the thermal selection of 1.7 ◦C, post G. affinis’ introduction. A
fish’s thermal preference, measured through laboratory studies, represents a snapshot
of the thermal regulation employed by the fish and has been found to correlate with
its optimal physiological performance [54]; an interruption to a fish’s natural thermal
regulation may reduce its physiological performance. Boltaña et al. [55] reported negative
effects of a restricted thermal regime, inhibiting thermal regulation, on the early life-stage
growth, survival, and cellular microstructure of Atlantic salmon. In the current study, the
introduction of G. affinis altered the thermal preference of C. eos, which we hypothesize
would shift the latter’s physiological performance.

The observed increased movement of 21% by C. eos in this study could result in an
increased mortality risk. For example, the increased energy requirements indicate a need
to consume more food [20], which can increase its predation risk [21]. In addition, the
increased energetic costs of movement can reduce somatic growth [22]; alternatively, that
energy could have been put toward gonadal growth [56]. Trudel and Boisclair [57] found
the activity costs of hybrids of northern redbelly dace and finescale dace, Phoxinus eos
Cope x Phoxinus neogaeus Cope, ranged from 36.8 to 153.0 J per 12 h−1 in July and 17.0 to
76.2 J 14 h−1 in August during daylight hours. Increasing these rates would be a significant
cost to C. eos and potentially cross an energetic threshold.

G. affinis is widely considered an aggressive nipper and chaser with agonistic behav-
iors toward other species frequently being documented [8,9,58]. These interactions can
lead to increased inter-specific competition and the native fish being displaced from its
thermally preferred habitat [38]. However, our results suggest that the effect of G. affinis
agonistic interactions might be species- or condition-specific. Contrary to our hypothesis,
we observed significantly more (six times as many) chases initiated by C. eos than G. affi-
nis. The aggression by C. eos toward G. affinis led to the observed thermal displacement
and increased movement. Additionally, although it was not a motivating factor in our
study, our study design allowed an inference regarding wild and hatchery-reared fish
interactions. It might be expected that hatchery fish would be more docile and that wild
fish would be more aggressive. However, our results showed the hatchery-reared fish to
be more aggressive than the wild-caught fish. The literature on the aggression of wild
versus hatchery-reared fish is mixed. For example, Deverill et al. [59] found wild brown
trout Salmo trutta initiated more aggressive acts than hatchery-reared S. trutta. However,
Mesa [60] found that hatchery-reared coastal cutthroat trout Oncorhynchus clarki clarki were
more aggressive than their wild conspecifics.

The lack of G. affinis aggression observed here may have been influenced by a variety
of factors including the fish’s size, prior residency, and water temperature. The C. eos
were, on average, larger than the G. affinis; however, G. affinis have been shown to be
aggressive toward larger species [58]. Prior residency is the hypothesis that the individual
who is already a resident in a habitat has an advantage in territory contests over an
intruder [61–63]. In our case, C. eos would have prior residency in a natural setting as the
native species, so this study design approximates conditions in which these encounters
would occur during biological invasions. The range of temperatures tested in this study
are closer to the preference of C. eos (24 ◦C) than G. affinis (31 ◦C), but within the range of
temperatures G. affinis and C. eos experience naturally [27,53].
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Manipulation effects may also influence the results of behavioral studies and should
be accounted for—especially in studies in which fish are netted, removed from water, and
transferred to another tank—as these manipulations can affect fish behaviors [64–67]. We
attempted to minimize and control manipulation effects by allowing a 1.5 h acclimation
period for C. eos to establish their thermal preference. This allowed the fish to settle after
being transported, time to explore the thermal preference chamber, and time to select their
preferred temperature. Once G. affinis were introduced, we allowed a 15 min acclimation
period to account for any short-term responses to subside.

This study focused on the adult life stage of these species; however, significant knowl-
edge gaps remain in our understanding of how G. affinis impact earlier life stages of C. eos.
Both species are omnivores [16,23,24], so competition for food resources likely occurs at
all life stages. For earlier life stages, there is also likely competition for habitats— both
preferred thermal habitats and vegetation that provides protection from predators. The po-
tential for competition between G. affinis and C. eos in their early life stages is compounded
by G. affinis’ reproductive strategy. G. affinis is a livebearer that produces prodigious
amounts of offspring [16]; these offspring may overwhelm C. eos in its early life stages
in terms of competition for food and habitat availability. In addition, adult G. affinis may
predate on C. eos in its early life stages.

5. Conclusions

In this study, we observed a native fish shifting its temperature preference in the
presence of G. affinis in an experimental chamber simulating a thermally heterogeneous
habitat, but aggressive behaviors were more frequently observed in the native fish toward
G. affinis rather than the other direction. We hypothesize that indirect mechanisms (e.g.,
reduced growth via a thermal displacement and increased movement), not direct agonistic
behaviors, may negatively affect C. eos in the presence of G. affinis. Conservation actions
that may help conserve remaining glacial relict populations of C. eos include: protecting
thermal refugia; promoting habitat enhancement strategies for C. eos; the hatchery stocking
of C. eos into suitable habitats, with priority given to areas that do not include G. affinis;
and establishing genetic refugia in hatcheries that can be used as source populations for
hatchery releases. The thermal experimental chamber used in this study is a promising
tool to study the thermal preference, and changes in preference and behavior, of native fish
in the presence of invasive species. Additional research is needed to identify which native
species are vulnerable to the direct and indirect effects of G. affinis’ presence, especially
given the likelihood of increasing temperatures, which would favor G. affinis. Future
studies should examine temperatures outside of those included in this study, especially
higher temperatures, to test the hypothesis that behaviors change at elevated temperatures.
Additional research may also include further investigation into the impacts of G. affinis on
native fish populations relative to the other ecological traits, especially its reproductive
output, of this highly successful invasive species.
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