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Abstract
Climate change affects populations over broad geographic ranges due to spatially auto-
correlated	abiotic	conditions	known	as	the	Moran	effect.	However,	populations	do	not	
always respond to broad-scale environmental changes synchronously across a land-
scape. We combined multiple datasets for a retrospective analysis of time-series count 
data (5–28 annual samples per segment) at 144 stream segments dispersed over nearly 
1,000	linear	kilometers	of	range	to	characterize	the	population	structure	and	scale	of	
spatial	synchrony	across	the	southern	native	range	of	a	coldwater	stream	fish	(brook	
trout, Salvelinus fontinalis), which is sensitive to stream temperature and flow variations. 
Spatial	synchrony	differed	by	life	stage	and	geographic	region:	it	was	stronger	in	the	
juvenile life stage than in the adult life stage and in the northern sub-region than in the 
southern	sub-region.	Spatial	synchrony	of	trout	populations	extended	to	100–200 km	
but	was	much	weaker	than	that	of	climate	variables	such	as	temperature,	precipitation,	
and stream flow. Early life stage abundance changed over time due to annual variation 
in summer temperature and winter and spring stream flow conditions. Climate effects 
on abundance differed between sub-regions and among local populations within sub-
regions, indicating multiple cross-scale interactions where climate interacted with local 
habitat	to	generate	only	a	modest	pattern	of	population	synchrony	over	space.	Overall,	
our analysis showed higher degrees of response heterogeneity of local populations 
to climate variation and consequently population asynchrony than previously shown 
based on analysis of individual, geographically restricted datasets. This response heter-
ogeneity	indicates	that	certain	local	segments	characterized	by	population	asynchrony	
and resistance to climate variation could represent unique populations of this iconic na-
tive coldwater fish that warrant targeted conservation. Advancing the conservation of 
this species can include actions that identify such priority populations and incorporate 
them	into	landscape-level	conservation	planning.	Our	approach	is	applicable	to	other	
widespread aquatic species sensitive to climate change.
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1  |  INTRODUC TION

Populations	 commonly	 experience	 shared	 temporal	 variation	 in	
abundance or demographic rates across a landscape. This spatial 
synchrony is often the strongest between nearby populations due 
to	spatially	autocorrelated	abiotic	conditions,	known	as	the	Moran	
effect	 (Moran,	1953; Royama, 1992) and biotic processes such as 
movement	and	predation	(Koenig,	1999; Liebhold et al., 2004; Ranta 
et al., 1995).	 Spatially	 homogeneous	 population	 responses	 have	
been	 reported	 for	 distances	 near	 1,000 km	 in	 some	 animals	 and	
plants	 (Koenig	&	Knops,	1998; Post & Forchhammer, 2002; Ranta 
et al., 1997).	Such	broad-scale	responses	are	attributed	to	continental	
and	regional	climate	patterns,	which	are	key	drivers	of	demographic	
rates	(Koenig,	2002;	Stenseth	et	al.,	2002). The shared spatial scale 
of synchrony between climate drivers and population responses 
is	 typically	 regarded	 as	 a	 sign	of	 the	Moran	 effect	 (Koenig,	1999; 
Moran,	 1953). As climate change accelerates, understanding the 
scale and drivers of spatial synchrony is critical to range-wide spe-
cies	conservation	and	management	(Hansen	et	al.,	2020).

Spatial	synchrony	as	a	result	of	climate	is	common	in	animals	and	
plants, however local populations, even those in close geographic 
proximity,	do	not	always	display	 synchronous	population	 trajecto-
ries	 (Herfindal	 et	 al.,	2022;	 Sutcliffe	 et	 al.,	1996).	 Heterogeneous	
population responses result not only because the magnitude of cli-
mate variation differs over space but also because the capacity to 
buffer against it differs locally. This cross-scale interaction between 
a broad-scale driver (e.g., climate) and local populations can occur 
due to the fine-scale spatial heterogeneity created by features such 
as local topography, microclimate variation, and surface-groundwa-
ter	 exchange	 (Fridley,	2009;	McLaughlin	 et	 al.,	2017). As a result, 
the strength of cross-scale interactions determines how synchro-
nously a set of local populations respond to broad-scale drivers 
(Vendrametto	Granzotti	et	al.,	2022). A set of asynchronous popu-
lation	trajectories	buffers	species	from	range-wide	declines	(Heino	
et al., 1997; Roy et al., 2005),	stabilizes	populations	over	time	at	the	
regional	scale	(portfolio	effect,	Schindler	et	al.,	2015, 2010;	Wilcox	
et al., 2017), and increases socioeconomic resilience of resource use 
(e.g., hunting and angling, Cline et al., 2022).	However,	little	empir-
ical	 knowledge	 exists	 about	 how	 synchronous	 and	 asynchronous	
populations are situated across the landscape in widely distributed 
species.

Stream	 systems	 offer	 a	 unique	 opportunity	 for	 the	 study	 of	
macrosystems processes such as spatial synchrony and cross-scale 
interactions	(McCluney	et	al.,	2014).	Streams	are	inherently	charac-
terized	by	spatial	autocorrelation	because	downstream	environmen-
tal patterns and processes such as temperature, biotic communities, 
and water chemistry are influenced by those upstream due to 
unidirectional	 flow	 (Isaak	et	al.,	2017; Lloyd et al., 2005; Peterson 
et al., 2006).	 However,	 these	 processes	 do	 not	 typically	 prevail	
due	to	the	spatial	heterogeneity	and	network	geometry	created	by	
stream confluences (Boddy et al., 2019; Frissell et al., 1986; Terui 
et al., 2018).	Confluences	represent	geomorphic	breaks	where	phys-
ical	 habitat	 characteristics	 such	 as	 stream	 size,	 temperature,	 and	

channel slope change abruptly, creating spatial heterogeneity in 
abiotic conditions (Benda et al., 2004) and demographic responses 
(Childress et al., 2019)	 across	 stream	 networks.	 Consequently,	
stream	habitat	is	often	characterized	and	classified	by	segment	(i.e.,	
from confluence to confluence, Frissell et al., 1986;	U.S.	Geological	
Survey,	2016). The stream segment is also the finest spatial grain at 
which stream habitat data are available at the national and continen-
tal	scale	(e.g.,	National	Hydrography	Dataset	Plus	[NHDPlus]	data-
set	 in	 the	United	 States).	 Stream	 confluences	 are	more	 numerous	
and average segment length is shorter in headwaters than farther 
downstream	in	stream	networks	(Wohl,	2017). Therefore, headwa-
ter	 stream	networks	 contain	 habitat	 heterogeneity	 over	 relatively	
short physical distances, providing a template on which cross-scale 
interactions can occur.

Globally, headwater streams harbor a significant portion of re-
maining populations of coldwater fish such as trout and salmon, 
which are sensitive to variation in stream temperature and flow 
(Kovach	et	al.,	2016).	Temperature	and	flow	are	key	abiotic	drivers	
of	 population	 and	 community	 dynamics	 in	 stream	 biota	 (Maheu	
et al., 2016; Poff et al., 1997).	Atmospheric	air	 temperature,	a	key	
influence on and common surrogate for stream temperature, has 
increased steadily in the last century and is predicted to further in-
crease (Pörtner et al., 2022).	In	the	southeast	United	States,	climate	
change is projected to increase precipitation and the occurrence 
of	extreme	flood	events	 (Alipour	et	al.,	2020;	 Ingram	et	al.,	2013). 
Stream	salmonids	respond	negatively	to	both	high	temperatures	and	
high	extremes	of	streamflow	(Goode	et	al.,	2013;	Kanno	et	al.,	2017; 
McCullough	et	al.,	2009;	Santiago	et	al.,	2017). Climate effects on 
stream fish also vary by life stage and season. Early life stages of 
fish	are	sensitive	to	changes	in	streamflow.	In	particular,	bed-scour-
ing flows during incubation and emergence can wash away eggs and 
newly hatched individuals (Cattanéo et al., 2002;	Kanno	et	al.,	2015; 
Kovach	et	al.,	2016;	Schlosser,	1985). As stronger swimmers, adults 
are less sensitive to high streamflow, however, high water tempera-
tures can result in increased stress and direct mortality, as well as 
impact	spawn	timing	and	reproductive	success	(Kovach	et	al.,	2016; 
Pankhurst	 &	 King,	2010; Warren et al., 2012). As climate change 
amplifies these effects, stream fish populations at the rear edges of 
their	distributions	are	particularly	vulnerable	(Hampe	&	Petit,	2005; 
Pregler et al., 2018).

We	characterized	the	climate	drivers	of	spatial	synchrony	by	life	
stage (i.e., juvenile and adult) among populations of an iconic native 
coldwater	fish	(brook	trout,	Salvelinus fontinalis) across multiple spa-
tial scales in the southern portion of their native range in the eastern 
United	 States.	 Remnant	 populations	 of	 this	 salmonid	 in	 the	 study	
region	 occur	 in	 small,	 isolated	 headwaters	 (Kazyak	 et	 al.,	 2022), 
which	 limit	 potential	 for	 dispersal	 among	 headwater	 networks.	
Furthermore, predation impacts from other species are low as many 
populations	 occur	 in	 allopatry	 (Hudy	 et	 al.,	2008), precluding dis-
persal	 and	 predation	 as	 factors	 that	might	 otherwise	 synchronize	
population	 trajectories	 over	 space.	 Brook	 trout	 are	 highly	 sensi-
tive	to	climate	drivers	such	as	stream	temperature	and	flow	(Kanno	
et al., 2017; Roghair et al., 2002; Warren et al., 2012; Xu et al., 2010). 
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Consequently, this species provides an opportunity to investigate 
population synchrony attributable mainly to climate variation.

Our	 study	 aims	were	 threefold.	 First,	 we	 quantified	 the	 scale	
and	 strength	 of	 spatial	 synchrony	 among	 brook	 trout	 populations	
and compared it with those of spatial synchrony in climate variables 
(i.e.,	temperature,	precipitation,	and	streamflow).	We	hypothesized	
that patterns of spatial synchrony would be similar between the cli-
mate	 variables	 and	 trout	 populations,	 if	 climate	 variables	 exerted	
a strong and spatially homogeneous effect on population trajecto-
ries	 (Koenig,	1999; Levin, 1992; Wiens, 1989).	 Second,	we	 tested	
whether	spatial	synchrony	was	explained	by	a	set	of	seasonal	climate	
variables and whether the importance of seasonal climate variables 
differed between and within northern and southern sub-regions. 
Because we studied a sensitive coldwater species at its southern 
range limit, we predicted that temperature would be a stronger 
driver of synchrony in southern populations compared to northern 
populations	 (Maitland	&	Latzka,	2022). Furthermore, we predicted 
that winter and spring stream flow would be a stronger driver of syn-
chrony	in	the	young-of-the-year	(YOY)	(juvenile)	stage	versus	adult	
stage of this fall spawner due to the diminished ability to withstand 
bed-scouring	high	 flows	of	 the	younger	 stage	 (Kanno	et	al.,	2016; 
Kovach	et	al.,	2016). Third, we quantified stream segment-specific 
population trajectories relative to the overall trajectory across seg-
ments	 to	 characterize	 how	 synchronous	 and	 asynchronous	 popu-
lations are distributed in the landscape. Asynchronous populations 
that deviate from the overall trajectory hold conservation value 
when asynchrony is due to population resiliency to environmental 
changes	or	habitat	 serving	as	 climate	 refuge	 (Hilborn	et	 al.,	2003; 
Schindler	et	al.,	2010, 2015). To address these aims, we assembled 
time-series abundance data at 144 stream segments spanning nearly 
1,000	 linear	 kilometers	 of	 brook	 trout	 range	 across	 the	 southern	
Appalachian	Mountains	of	the	eastern	United	States.

2  |  METHODS

2.1  |  Study species

Brook	trout	are	native	to	eastern	North	America,	distributed	from	
the	 Appalachian	 Mountains	 in	 northern	 Georgia	 to	 the	 coasts	
of	 Newfoundland	 and	 Labrador	 in	 Canada	 and	 inland	 as	 far	 as	
Minnesota	in	the	United	States.	They	are	culturally	and	economically	
important,	designated	as	the	state	fish	of	nine	US	states.	Brook	trout	
are	among	the	most	popular	freshwater	sportfish	in	the	United	States	
(American	Sportfishing	Association	&	Sport	Fish	Restoration,	2021). 
They spawn in fall, and their eggs overwinter in streambed nests 
(“redds”)	to	hatch	in	early	spring	(Hazzard,	1932). They can reach ma-
turity	as	early	as	1 year	of	age,	and	seldom	live	longer	than	3 years	in	
their southern range (Donald & Alger, 1989;	Larson	&	Moore,	1985; 
Meyer	et	al.,	2006).	Brook	trout	are	highly	sensitive	to	water	temper-
ature and cannot withstand prolonged temperatures above 22–24°C 
(Eaton et al., 1995; Wehrly et al., 2007) and spawning is deleteriously 
affected by high summer and fall temperatures (Warren et al., 2012). 

Redds	are	scoured	and	young	brook	trout	are	swept	away	by	high	
stream	flows	during	winter	and	spring	months	(Kanno	et	al.,	2015). 
Because	 of	 their	 high	 environmental	 specificity,	 brook	 trout	 are	
often considered an aquatic indicator species. Due to anthropogenic 
activities,	they	have	experienced	large	declines,	particularly	in	their	
southern	native	range	(Hudy	et	al.,	2008).

We	consider	that	if	spatial	synchrony	occurs	in	brook	trout,	it	is	
most	 likely	due	 to	 the	Moran	effect	 rather	 than	dispersal	 dynam-
ics because stream populations are typically isolated by unsuitable 
riverine habitat downstream and physical barriers such as water-
falls	 and	 road	 crossings.	 Kanno	 et	 al.	 (2016) found that seasonal 
air	 temperature	 and	 precipitation	 led	 to	 spatial	 synchrony	 in	YOY	
brook	trout,	but	not	 in	adults,	at	scales	of	up	to	170 km.	Zorn	and	
Nuhfer	(2007)	found	correlations	between	brook	trout	density	and	
spring	 discharge	 in	Michigan	 rivers.	 Spatial	 synchrony	 due	 to	 the	
Moran	effect	has	been	described	in	other	stream-dwelling	salmonids	
(Cattanéo et al., 2003; Lobón-Cerviá, 2007;	Zorn	&	Nuhfer,	2007). 
Despite	 these	 indications	 of	 synchrony	 in	 brook	 trout,	 prior	work	
has	been	limited	to	single	datasets	(i.e.,	Kanno	et	al.,	2016;	Zorn	&	
Nuhfer,	2007), and no study has attempted a broad-scale analysis of 
spatial synchrony in this species.

2.2  |  Study area and dataset

Our	study	area	comprised	the	far	southern	and	eastern	native	range	
of	brook	trout	in	the	United	States,	from	the	southern	Appalachian	
Mountains	in	Georgia	to	Maryland	(Figure 1). We compiled a dataset 
with	over	200,000	brook	trout	individuals	in	144	stream	segments	

F I G U R E  1 Map	of	144	study	stream	segments	where	
electrofishing data were available (5–28 annual samples per 
segment). Dotted line (37.13° latitude) divides north and south sub-
regions. Dot colors represent the agencies/groups that collected 
the	data.	GA,	Georgia;	MD,	Maryland;	NC,	North	Carolina;	
SC,	South	Carolina;	TN,	Tennessee;	VA,	Virginia.	Basemap:	
Environmental	Systems	Research	Institute	(ESRI).
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from nine state, federal, and private sources between 1982 and 
2015 (Table S1).	All	stream	segments	had	≥5 years	of	data	during	this	
time	period	(range:	5–28 years	of	data).	Data	consisted	of	individual	
trout measurements, sampling occasion data, and stream segment 
data.	 Individual	 trout	 measurements	 included	 total	 length	 (mm)	
and	weight	 (g).	 Sampling	occasion	data	 included	date	and	number	
of	 electrofishing	 passes.	 Stream	 segment	 data	 included	 National	
Hydrography	 Dataset	 Plus	 (NHDPlus)	 stream	 segment	 common	
identifier	 (COMID),	 coordinates	 (decimal	 degrees),	 elevation	 (m),	
and	 length	and	median	width	 (m).	Study	segments	were	 located	 in	
headwater	streams	with	a	mean	wetted	width	of	5.1 m	(Table 1). We 
divided the northern and southern sub-regions at 37.13° latitude—
that	of	the	New	River	Valley	in	Virginia,	which	aligns	with	a	major	shift	
in	genetic	patterns	of	 this	species	 (Kazyak	et	al.,	2022). The mean 
elevation was higher and channel slope was steeper in the southern 
versus	northern	sub-region	(905.5 m	vs.	461.9 m	in	elevation;	6.6%	
vs.	3.6%	in	slope).	The	mean	maximum	summer	(June–September)	air	
temperature was higher in the southern sub-region (25.7°C) than in 
the northern sub-region (24.6°C).

All	brook	trout	data	were	collected	by	backpack	electrofishing	
in	 wadeable	 streams	 (mean	 site	 length:	 128 m).	 A	 combination	 of	
single-	 and	multi-pass	 sampling	methods	 (single:	 32%,	multi:	 68%)	
was	 employed	 following	 standardized	 sampling	 protocols	 for	 the	
southern	USA	region	(SDAFS	Trout	Committee,	1992).	In	multi-pass	
sampling, fish were removed from the stream in successive passes in 
temporarily	blocked	stream	reaches	to	estimate	capture	probability	
and	thus	population	size.	Sampling	boundaries	were	defined	by	block	
nets or cobble dams which served as barriers for fish movement. 
Depending	on	stream	width,	one	 to	 three	backpack	electrofishing	
units	were	used.	A	majority	of	sampling	occurred	in	June–October.	
Samples	taken	in	lakes	and	ponds,	as	well	as	observations	of	hatch-
ery-born	fish,	were	excluded.	We	also	excluded	segments	with	less	
than	 10%	brook	 trout	 in	 fish	 assemblages.	 YOY	brook	 trout	were	
defined	as	 those	≤90 mm	total	 length,	 and	adults	were	defined	as	
those >90 mm	total	length.	We	summarized	the	data	to	counts	by	life	
stage, sampling occasion, and electrofishing pass.

To spatially match trout data with predictors, we pooled trout 
count and surface area surveyed across sites when multiple sites 
were	 surveyed	 annually	 in	 an	NHDPlus	 stream	 segment	 (a	 length	
of a stream delineated by either its beginning and a confluence, or 
by	 two	 confluences	 (U.S.	 Geological	 Survey,	 2016); average seg-
ment	 length = 3.3 km).	 Brook	 trout	 in	 headwaters	 typically	 remain	
within	 several	 hundred	 meters	 of	 their	 hatching	 locations	 (Hudy	
et al., 2010;	Rodríguez,	2002). Thus, pooling count data by stream 
segment allowed us to account for dispersal within segments and 
demographic	 independence	among	segments.	On	average,	34%	of	
stream segments contained more than one collection site.

2.3  |  Correlogram analysis

We	quantified	the	magnitude	and	scale	of	spatial	synchrony	in	YOY	
and	 adult	 brook	 trout	 using	 the	 nonparametric	 spatial	 covariance	
function	Sncf	in	the	“ncf”	package	for	R	(Bjørnstad,	2022;	Bjørnstad	
&	Falck,	2001; R Core Team, 2022).	We	 then	extracted	estimates	
of both initial and average spatial correlation and the Euclidean 
distances	 to	which	 spatial	 covariance	 extends.	We	 visually	 repre-
sented synchrony using spline correlograms, which portray the spa-
tial decay in pairwise correlation between segments. The scale of 
synchrony (correlation length) can be interpreted as the distance at 
which the confidence envelope of the spline function is significantly 
higher than the sample average (x-axis,	 Bjørnstad	&	 Falck,	2001). 
We	selected	72	 stream	 segments	with	5 years	or	more	multi-pass	
electrofishing data between 1995 and 2015. We further removed 
segments where the focal life stage was never collected, resulting 
in	70	segments	for	YOY	and	68	segments	for	adults.	We	conducted	
the correlogram analysis of the two life stages at both the regional 
and	sub-regional	levels.	We	calculated	95%	CIs	for	the	correlograms	
using	 the	bootstrap	algorithm	 in	 the	 “ncf”	package.	We	 truncated	
pairwise Euclidean lag distances to 2/3 the total distance observed 
following Fletcher et al. (2018). Abundances at each sample were 
	estimated	 using	 the	 removal	 function	 in	 the	 “FSA”	 package	 for	 

North South

Mean SD Mean SD

Channel	slope	(%) 3.6 2.9 6.6 4.7

Length	(km) 3.7 2.9 2.8 1.7

Catchment	area	(km2) 6.9 9.1 3.6 3.1

Elevation (m) 461.9 212.4 905.5 207.7

Stream	order 2.0 1.0 1.0 1.0

Wetted width (m) 5.1 3.1 5.1 2.4

Max	summer	temperature	(°C) 24.6 2.5 25.7 1.8

Max	0.9Q	winter	stream	flow	(cfs) 61.5 226.6 56.9 144.0

Max	0.9Q	spring	stream	flow	(cfs) 105.0 369.9 56.0 134.8

Note:	Summer:	June–September	Winter:	December–February.	Spring:	March–May.Sources:	Oak	
Ridge	National	Labs	DAYMET,	US	Geological	Survey	NHDPlus.

TA B L E  1 Summary	statistics	for	
segment characteristics and climate 
variables (1980–2015) by sub-region.
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R	(Ogle	et	al.,	2022), which uses electrofishing depletion counts to 
estimate	 abundance.	 Using	 these	 predicted	 abundances,	 we	 cal-
culated	 the	 natural	 log	 of	 average	 density	 (fish/1000 m2) at each 
stream segment and year. We imputed missing data when necessary 
for	the	analyses	and	show	in	Appendix	S10.1 that the results were 
robust to this imputation.

We compared the magnitude and scale of spatial synchrony 
in	 brook	 trout	 abundance	 to	 those	of	mean	 summer	water	 and	 air	
temperature	and	winter	streamflow	and	precipitation	(2016;	Kanno	
et al., 2015). We obtained observed air and water temperatures at 
30-min intervals (Li et al., 2016).	They	were	measured	using	a	network	
of	204	paired	temperature	loggers	located	in	brook	trout	streams	in	
the	southeast	United	States	from	2011	to	2015	(Figure S2). Although 
atmospheric air temperature is not always an appropriate surrogate 
for	stream	temperature	(Kirk	&	Rahel,	2022), these air and water tem-
peratures were highly correlated (mean r = 0.95,	Pearson).	We	summa-
rized	these	temperatures	to	annual	summer	(June–September)	means	
because spatial variation in stream water temperatures is greatest 
during summer base flow condition (Beauchene et al., 2014).	Monthly	
streamflow	 estimates	 were	 obtained	 from	 the	 NHDPlus	 V2	 (U.S.	
Geological	Survey,	2016) for the stream segments used in the correlo-
gram	analysis	of	trout	populations.	We	summarized	these	estimates	
to	 annual	 winter	 (December–February)	 means.	 Hourly	 observed	
winter	precipitation	(2008–2014)	data	were	obtained	for	51	NOAA	
NCEI	measurement	 sites	within	 the	geographic	extent	of	 the	 trout	
data (Figure S3,	National	Oceanic	and	Atmospheric	Administration,	
&	National	Centers	for	Environmental	 Information,	2022) and sum-
marized	 to	 annual	winter	 (December–February)	 totals.	As	with	 the	
brook	trout	data,	we	used	the	nonparametric	spatial	covariance	func-
tion	Sncf	in	the	“ncf”	package	to	quantify	the	magnitude	and	scale	of	
spatial synchrony in these climate variables.

2.4  |  Hierarchical model

We developed two Bayesian hierarchical models to quantify the ef-
fects	of	climate	variables	on	synchronous	dynamics	of	brook	trout	
populations by life stage (Berliner, 1996;	 Wikle	 et	 al.,	 1998). For 
each,	we	developed	an	N-mixture	model	 (Royle,	2004) using a re-
moval	mechanism	coupled	with	 a	 log	 linear	 process	model.	 In	 the	
first,	hereafter	 the	climate	effects	model,	we	 inferred	brook	 trout	
count as a function of summer temperature and winter and spring 
streamflow in the season preceding sampling. We elected to model 
brook	trout	abundance	as	a	function	of	density-independent	climate	
variables but not density-dependent factors because the former 
have	consistently	overwhelmed	the	latter	in	studies	of	brook	trout	
population	dynamics	(Kanno	et	al.,	2016; Letcher et al., 2015;	Sweka	
& Wagner, 2022). This model employed both single- and multi-pass 
electrofishing abundance data from 144 stream segments collected 
between	1982	and	2015.	 In	 the	second,	hereafter	 the	 random	ef-
fects	model,	we	inferred	brook	trout	count	as	a	function	of	a	tempo-
ral random effect and a spatiotemporal random effect. This model 
employed abundance data from 102 stream segments sampled with 

multi-pass electrofishing techniques between 1988 and 2015. We 
elected to use separate models for climate and random effects after 
encountering convergence issues using a single, combined model 
(however,	the	simulation	 in	Appendix	S10.2 demonstrates that pa-
rameters	are	 identifiable	 in	such	a	model).	Models	 lacking	random	
effects	overestimate	the	precision	(i.e.,	underestimate	95%	credible	
intervals) of regression coefficients such as climate effects in our 
study, but their point estimates (i.e., posterior means) are much less 
affected	(Schaub	&	Kéry,	2012). Therefore, our analysis should pro-
vide reliable inferences on the relative importance of temperature 
and flow effects and their spatial variation on trout abundance.

Adapting	 the	 standard	N-mixture	model	 to	 allow	 our	 removal	
sampling data at segment i = 1, … ,N, and year t = 1, … , T for each 
of j = 1, … , 3 electrofishing passes, we specified the data model

where yi,j,t	is	observed	count	of	YOY	or	adult	brook	trout	at	segment	i  ,	
pass j, and year t. We denote Ni,t as the predicted count of the given 
life stage in year t at segment i . We modeled abundance separately for 
passes j > 1 because there are 

∑j−1

1
yi,j,t fewer individuals in the sampling 

area after removing them in each pass. The term ps represents the cap-
ture probability of individuals for data source s = 1, … , S (Figure S4). 
We used informative priors for p such that p ∼ beta(0.5, 0.1)	for	YOY	
and p ∼ beta(0.65, 0.1) for adults, based on their differences in cap-
ture	probability	(Kanno	et	al.,	2015). We allowed capture probability to 
vary by agency because sampling crew capture is often a large source 
of	 variation	 in	 sampling	 efficiency	 (Hughes	 et	 al.,	 2002;	 Kimmel	 &	
Argent, 2006;	Meador,	2005). We modeled abundance in each stream 
segment and year conditional on local density �i,t	(fish/1000 m

2) as

where ai,t	is	the	sum	of	site	areas	(length × median	wetted	width)	sam-
pled for stream segment i  and year t.

For the climate effects model, local abundance was represented 
as	 a	 function	of	 three	 climate	 covariates.	Daily	maximum	air	 tem-
perature predictions for each stream segment were obtained from 
the	DAYMET	model	 (Thornton	et	 al.,	1997, 2014, 2021) using the 
“daymetr”	 package	 in	 R	 (Hufkens	 et	 al.,	2018).	Monthly	 flow	 per-
centile predictions for each stream segment were obtained from 
the	 NHDPlus	 V2	 (U.S.	 Geological	 Survey,	 2016).	We	 summarized	
summer	 high	 temperature	 as	 the	mean	 of	 daily	maximum	 predic-
tions	between	June	and	September	in	year	t − 1. We used previous 
year summer temperatures to account for temporal discrepancies 
between trout sampling and temperature measurements. We sum-
marized	winter	(December–February)	and	spring	(March–May)	high	
stream	flows	as	the	maximum	of	monthly	90th	percentile	flow	es-
timates. All climate covariates were centered and scaled by stream 
segment.	Brook	 trout	density	was	modeled	as	a	 function	of	 these	
covariates xi,t	using	the	log-link	function

(1)yi,j,t ∼

⎧
⎪⎨⎪⎩

binomial
�
Ni,t,ps

�
if j=1

binomial
�
Ni,t−

�j−1

1
yi,j,t , ps

�
if j>1,

(2)Ni,t ∼ Poisson

(
ai,t

1000
�i,t

)
,
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where �i represents average log density at segment i  when climate 
variables are set at their mean and � i represents a vector of seg-
ment-specific climate covariate effects. Priors on �i and � i were non-
informative: �i ∼ normal(0, 1000) and � i ∼ normal

(
�� ,�

2
�

)
 where 

�� ∼ normal(0, 100) and �� ∼ uniform(0, 10). As a random effect, � i 
allows the estimation of both local (stream segment specific) and over-
all covariate effects.

The	synchronizing	effects	of	the	climate	covariates	in	Equation (3) 
can be estimated from the variances of the covariate coefficients 
(�2

�
 ).	A	coefficient	with	low	variance	(i.e.,	similar	effects	on	different	

populations)	 has	 a	 strong	 synchronizing	effect.	A	 covariate	with	 a	
high	variance	(differing	effects	on	different	populations)	has	a	weak	
synchronizing	effect.

For the random effects model, local abundance was represented 
as a function of segment-specific intercept and two random effects:

where �i represents average log density at segment i  with the 
diffuse normal prior �i ∼ normal(0, 1000). The terms �t and � i,t 
represent temporally and spatiotemporally structured random 
effects, respectively. The random effects are assumed to be in-
dependent with distributions �t ∼ normal

(
0, �2

�

)
, �� ∼ uniform(0, 10),  

� i,t ∼ normal
(
0, �2

� ,i

)
, and �� ,i ∼ uniform(0, 10). The �t term repre-

sents the between-year variation in density that is synchronous 
to all segments, and the � i,t term represents the variation that is 
segment specific (i.e., asynchronous).

Following Grosbois et al. (2009)	and	Lahoz-Monfort	et	al.	(2011), 
we used posterior samples of the estimated variances of the two 
random effect terms to derive a segment-specific intraclass correla-
tion	coefficient	(ICC):

The	ICC	serves	as	a	measure	of	synchrony	of	the	local	population	
in segment i  relative to the temporal variation averaged across 
all segments. This metric ranges from 0 to 1, with values closer 
to 1 indicating that the given segment was synchronous with the 
averaged temporal variation and 0 indicative of asynchrony. We 
created	semivariograms	of	YOY	and	adult	ICC	values	to	check	for	
spatial structure in synchrony.

We tested for the presence of a portfolio of population re-
sponses by comparing segment-specific interannual variability in 
observed	 abundance	 to	 that	 of	 all	 segments	 following	 Schindler	
et al. (2010). We calculated the coefficient of variation in pass 1 
YOY	abundance	for	each	segment,	as	well	as	in	the	average	of	pass	
1	YOY	abundance	for	all	segments.	A	smaller	coefficient	of	varia-
tion across all segments than in individual segments demonstrates 
a portfolio effect.

We	fit	a	total	of	12	models:	One	random	effects	and	one	cli-
mate	effects	model	each	for	YOY	and	adults	at	the	regional	scale	

fit to all stream segments (hereafter the “regional” models), as well 
as the same set of models in the northern and southern halves of 
the study region, hereafter the “sub-regional” models. We imple-
mented	our	models	utilizing	Markov	Chain	Monte	Carlo	(MCMC)	
sampling	using	JAGS	with	the	“jagsUI”	package	in	R	(Kellner,	2021). 
We	provide	code	in	“Code	Availability	Statement”.	After	a	burn-in	
period of 5,000 samples for the climate effects models and 
20,000 for random effects models, three chains were run with-
out thinning until 25,000 and 50,000 samples were obtained, re-
spectively. All chains converged, as visually evaluated using trace 
plots. To evaluate the performance of our models, we conducted 
posterior	predictive	checks	for	the	test	statistics	of	mean	and	co-
efficient	of	variation	of	pass	1	abundance.	These	checks	test	for	
lack	of	fit	using	Bayesian	p-values, defined as the probability that 
simulated	data	are	more	extreme	than	the	observed	data	(Gelman	
et al., 2004).	Using	this	method,	models	with	a	lack	of	fit	produce	
Bayesian p-values close to 0 or 1, with values closer to .5 indica-
tive of adequate fit. We report posterior means as point estimates 
and	95%	highest	posterior	density	intervals	(HPDIs)	as	estimates	
of	 uncertainty.	 Effects	 were	 considered	 significant	 if	 their	 95%	
HPDIs	did	not	overlap	0.

3  |  RESULTS

3.1  |  Correlogram analysis

The	average	scale	and	magnitude	of	spatial	synchrony	in	both	YOY	
and	adult	brook	trout	was	 low	compared	with	those	of	a	suite	of	
climate variables (Figure 2). Correlation lengths measured using 
the	 95%	 confidence	 envelope	 of	 the	 spline	 correlogram	 were	
84 km	in	YOY	and	70 km	in	adult	brook	trout.	Point	estimates	for	
the	scale	of	synchrony	were	roughly	100 km	for	YOY	and	200 km	
for	adults.	Summer	air	and	water	temperature	and	winter	stream-
flow	 and	 precipitation	were	 synchronous	 to	 scales	 of	 400 km	 or	
more.	There	was	little	overlap	in	the	95%	confidence	interval	(CI)	of	
initial pairwise correlation between trout density and abiotic vari-
ables.	Average	pairwise	correlations	in	YOY	and	adult	brook	trout	
were 0.07 and 0.05, respectively, and those of the climate variables 
ranged from 0.51 to 0.64. The average magnitude of synchrony 
was greater in the northern than in the southern sub-region for 
both life stages (Figure 3).	 Initial	pairwise	correlation	was	consid-
erably	higher	 in	 the	northern	 sub-region	 for	 adults	 (mean = 0.31;	
95%	CI = 0.16–0.46	vs.	mean = 0.06;	95%	CI = −0.1	 to	0.2	 for	 the	
southern sub-region). The scale of synchrony did not differ greatly 
between sub-regions.

3.2  |  Hierarchical model

Lacking	 random	 effects,	 predictive	 ability	 of	 the	 climate	 effect	
models was modest. Bayesian p-values for mean and coefficient of 
variation	of	pass	1	abundance	were	0.35	and	0.61	(YOY)	and	0.01	

(3)log
(
�i,t

)
= �i + x�

i,t
� i ,

(4)log
(
λi,t

)
= ωi + �t + γi,t ,

(5)ICCi =
�̂
2

�

�̂
2

�
+ �̂

2

� ,i

.
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and 0.37 (adult). Predictive ability of the random effects models 
improved considerably, with Bayesian p-values for mean and coef-
ficient	of	variation	of	pass	1	abundance	of	0.46	and	0.57	(YOY)	and	
0.27 and 0.83 (adult). Electrofishing capture probability per pass 
(p)	was	higher	 for	adults	 than	YOY.	Estimates	of	capture	probabil-
ity varied by agency, with the mean probability ranging from 0.47 
(95%	HPDI = 0.41–0.53)	to	0.63	(95%	HPDI = 0.62–0.65)	for	YOY	and	
from	0.62	(95%	HPDI = 0.58–0.67)	to	0.77	(95%	HPDI = 0.76–0.78)	
for adults (Figure S4).

3.2.1  |  Overall	climate	effects	across	
stream segments

Climate	 effects	 on	 brook	 trout	 abundance	 varied	 by	 life	 stage,	 as	
represented by posterior distributions of the mean parameters for 
�� (Figure 4).	As	predicted,	YOY	were	more	affected	by	climate	than	
were	 adults,	 thus	 unless	 noted	 otherwise	 we	 focus	 here	 on	 YOY	
responses. At the regional scale (Figure 4), all three environmental 
covariates	had	negative	effects	on	YOY	abundance,	while	summer	

F I G U R E  2 Spline	correlogram	of	pairwise	correlation	in	brook	trout	(Salvelinus fontinalis) log density (1995–2015) and selected climate 
variables	for	the	southeast	United	States.	Climate	variables:	mean	estimated	monthly	winter	(December–February)	flow	(1980–2015),	mean	
daily	observed	summer	(June–September)	air	temperature	(2010–2015),	mean	daily	observed	summer	water	temperature	(2010–2015),	and	
total	observed	monthly	winter	precipitation	(2008–2013).	Shading	indicates	95%	confidence	envelopes.	Dashed	lines	represent	average	
pairwise correlations. Climate data sources:	US	Geological	Survey	NHDPlus	v2.1,	US	Forest	Service,	National	Oceanic	and	Atmospheric	
Administration.

F I G U R E  3 Spline	correlogram	of	brook	
trout (Salvelinus fontinalis) log density by 
life	stage	and	sub-region.	Shaded	regions	
represent	95%	confidence	envelope.	
Dashed lines represent average pairwise 
correlations.
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air temperature and winter flow had negative effects on adult 
abundance. Winter high flow had the strongest negative effect on 
YOY	abundance	(mean = −0.22;	95%	HPDI = −0.3	to	−0.15),	closely	
followed	 by	 spring	 high	 flow	 (mean = −0.18;	 95%	HPDI = −0.27	 to	
−0.09)	and	high	temperatures	in	the	previous	summer	(mean = −0.1;	
95%	HPDI = −0.2	to	−0.01).

Covariate effects also varied by sub-region. As hypothe-
sized,	 summer	 air	 temperature	 had	 a	 stronger	 effect	 on	 YOY	 in	
the	south	 than	 in	 the	north	 (mean = −0.22;	95%	HPDI = −0.33	to	
−0.11	vs.	mean = −0.03;	95%	HPDI = −0.18	to	0.12).	In	the	north-
ern	sub-region	(symbolized	in	green	in	Figure 4),	YOY	abundance	
was	predominantly	driven	by	flow	(winter	flow	mean = −0.25	and	
95%	 HPDI = −0.36	 to	 −0.14	 and	 spring	 flow	 mean = −0.25	 and	
95%	 HPDI = −0.38	 to	 −0.13),	 with	 no	 significant	 effect	 of	 sum-
mer	 air	 temperature	 (mean = −0.03;	 95%	 HPDI = −0.18	 to	 0.12).	
In	 the	 southern	 sub-region	 (symbolized	 in	 orange	 in	 Figure 4), 
YOY	abundance	was	primarily	driven	by	summer	air	temperature	
(mean = −0.22;	95%	HPDI = −0.33	to	−0.11).	A	negative	effect	of	
summer	air	temperature	on	adult	abundance	(mean = −0.09;	95%	
HPDI = −0.13	to	−0.05)	was	detected	in	both	sub-regions.	Overall,	
stream	 flows	 were	 the	 primary	 driver	 of	 YOY	 abundance	 over	
time in the northern sub-region, whereas summer air temperature 
was	the	most	important	driver	of	YOY	abundance	in	the	southern	
sub-region.

3.2.2  |  Spatial	heterogeneity	in	climate	effects

Climate effects varied considerably among stream segments, a sign 
of local cross-scale interactions (Figure 5). The variance in local 
effects (�2

�
)	for	winter	stream	flow	on	YOY	abundance	(mean = 0.21;	

95%	 HPDI = 0.15–0.28)	 was	 smaller	 than	 that	 of	 spring	 stream	
flow	 (mean = 0.31;	 95%	 HPDI = 0.23–0.4)	 or	 summer	 temperature	

(mean = 0.37;	 95%	 HPDI = 0.27–0.48;	 Figure 5). These results 
showed that winter stream flow had the most spatially homogeneous 
effect	on	YOY	abundance.	Variances	in	local	climate	effects	on	adult	
abundance	were	comparable,	and	95%	HPDIs	overlapped	(summer	
temperature	 variance:	 0.06	 [95%	 HPDI = 0.04–0.08],	 winter	
stream	 flow	 variance:	 0.08	 [95%	 HPDI = 0.06–0.1],	 spring	 stream	
flow	 variance:	 0.09	 [95%	 HPDI = 0.07–0.12]).	 Correlation	 analysis	
demonstrated that there was little influence of local habitat (e.g., 
land cover, elevation, channel slope, watershed area) on segment-
specific responses to climate (� i; Table S2). There was also little 
spatial	structure	in	covariate	effects	on	YOY	brook	trout	abundance	
(segment-specific � i, Figure S5).

3.2.3  |  Synchrony

Estimates	 of	 segment-specific	 ICC	 values	 varied	 from	 0.02	 (95%	
HPDI = 0.001–0.05)	to	0.84	(95%	HPDI = 0.66–0.98)	for	YOY	brook	
trout	 and	 from	0.0014	 (95%	HPDI = 0.00007–0.004)	 to	0.55	 (95%	
HPDI = 0.09–1.0)	 for	 adult	 brook	 trout.	 YOY	 brook	 trout	 showed	
higher	 average	 ICC	 than	 adult	 brook	 trout	 (0.25	 vs.	 0.1),	 showing	
that	YOY	abundance	is	more	synchronous	across	populations	than	
adult	 abundance.	 On	 average,	 northern	 brook	 trout	 populations	
were	more	 synchronous	 than	 southern	 populations	 (average	 YOY	
ICC:	 0.53	 vs.	 0.26),	which	 conforms	with	 findings	 from	 the	 spline	
correlograms	 above.	 However,	 several	 of	 the	 most	 synchronous	
populations	 (highest	 YOY	 ICC)	 were	 in	 southern	 sub-region	
(Figure 6, but see Figure S7	for	adult	ICCs).	There	was	only	moderate	
correlation	between	ICC	and	local	habitat	variables	(Table S3). There 
was considerable geographic heterogeneity in spatial synchrony 
(Figure 6), and segment-specific synchrony showed moderate spatial 
structure (Figure S6), showing that populations nearer to each other 
are more similar in temporal abundance patterns than populations 

F I G U R E  4 Ninety-five	percent	highest	
posterior	density	intervals	(HDPIs)	for	
climate	effects	on	brook	trout	(Salvelinus 
fontinalis) log density by life stage and 
sub-region. Climate variables: average 
0.9Q	summer	air	temperature	(year	t − 1 ),	
max	0.9Q	winter	stream	flow	(year	t),	max	
0.9Q	spring	stream	flow	(year	t). Data 
sources:	US	Geological	Survey	NHDPlus	
v2.1,	National	Oceanic	and	Atmospheric	
Administration.
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farther from each other. Variability in average abundance across all 
stream segments was lower than in individual segments (Figure S8), 
indicating a portfolio effect among the sampled populations. The 

coefficient of variation for interannual observed pass 1 abundance 
for	YOY	brook	trout	averaged	across	segments	was	0.67,	compared	
to a mean of 1.16 for individual segments.

F I G U R E  5 Local	climate	effects	on	
brook	trout	(Salvelinus fontinalis) young-of-
the-year abundance (model � i). (a) Average 
0.9Q	summer	air	temperature	(year	t − 1

),	(b)	max	0.9Q	winter	stream	flow	(year	t), 
and	(c)	max	0.9Q	spring	stream	flow	(year	
t). Data sources:	US	Geological	Survey	
NHDPlus	v2.1,	National	Oceanic	and	
Atmospheric Administration.
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4  |  DISCUSSION

Our	 work	 synthesized	 count	 data	 from	 nine	 sources	 at	 144	 sites	
over	34 years,	which	represents	one	of	the	most	thorough	attempts	
to understand spatiotemporal variation of stream fish populations 
across a large geographic region (~1,000 km).	Count	data	of	this	spa-
tiotemporal coverage are few in freshwater fish populations (Comte 
et al., 2021).	Our	analysis	not	only	reinforced	previous	findings	that	
climate change would affect life stages differently via altered tem-
perature	and	 flow	patterns	 (Kovach	et	al.,	2016), but it also found 
that the magnitude of response heterogeneity of local popula-
tions	to	climate	variation	was	higher	than	previously	known	based	
on analysis of individual, more geographically restricted datasets 
(Cattanéo et al., 2003;	 Kanno	 et	 al.,	2016;	 Zorn	&	Nuhfer,	2007). 
Those populations that responded asynchronously to climate stress-
ors may hold unique conservation value as this species faces a mul-
titude	 of	 threats.	 Cross-scale	 interactions	 (Heffernan	 et	 al.,	2014) 
were also observed between and within sub-regions, resulting in 
modest spatial autocorrelation and population synchrony relative to 
highly spatially autocorrelated abiotic variables. These findings in-
dicate that climate change impacts on sensitive aquatic populations 
will	be	complex	and	that	not	all	populations	are	equally	vulnerable	
to these threats (Ebersole et al., 2020). Furthermore, they support 
the	 importance	 of	 population-level	 management	 for	 brook	 trout	
(Kazyak	et	 al.,	2022).	Our	work	highlights	 an	opportunity	 and	 the	
need for embracing spatially heterogeneous population responses in 
range-wide	planning	for	brook	trout	and	other	species	of	conserva-
tion concern.

Spatial	 synchrony	 in	 trout	 populations	was	 only	modest	when	
compared to highly synchronous temperature, precipitation, and 
stream flows, showing a first sign that the climate variables inter-
acted with local conditions to generate spatially heterogeneous 
population	responses.	Previous	studies	of	brook	trout	have	reported	
stronger magnitude of spatial population synchrony than the current 
study,	but	they	were	much	more	limited	in	geographic	extent	(Kanno	
et al., 2016;	 Zorn	 &	 Nuhfer,	 2007).	 Our	 new	 insight	 was	 gained	
only by synthetic analysis of multiple datasets at a broad spatial 

extent.	 Inferences	on	population	 synchrony	depend	 inherently	 on	
geographic	extent	of	 investigations	 (Levin,	1992; Wiens, 1989), as 
further demonstrated by our parallel analyses of regional versus 
sub-regional	data.	Likewise,	the	identification	of	asynchronous	out-
liers	depends	on	the	geographic	extent	and	distribution	of	sampling	
sites.	Still,	our	estimated	spatial	scales	of	trout	synchrony	are	compa-
rable	to	those	of	other	freshwater	species	(Copeland	&	Meyer,	2011; 
Myers	et	al.,	1997; Tedesco et al., 2004),	and	our	average	ICC	val-
ues (i.e., magnitude of synchrony) were similar to those reported 
for	 other	 freshwater	 fish	 species	 (e.g.,	Michaletz	&	Siepker,	2013; 
Midway	&	Peoples,	2019) and considerably lower than those for ter-
restrial species (e.g., Canu et al., 2015; Grosbois et al., 2009;	Lahoz-
Monfort	et	al.,	2011).	Weaker	synchrony	of	freshwater	populations	
versus terrestrial populations may be due to stronger cross-scale 
interactions arising from fine-scale aquatic habitat heterogeneity 
(Benda et al., 2004;	McCluney	 et	 al.,	2014) and physical isolation 
of habitats by watershed boundaries (e.g., headwater streams) that 
prevent movement of aquatic organisms (Liebhold et al., 2004; 
Ranta et al., 1995).	Additional	research	is	warranted	across	taxa	and	
ecosystems to elucidate relative strengths of these ecological mech-
anisms that determine magnitude and spatial scales of synchrony.

The most direct evidence of cross-scale interactions came from 
spatially	 heterogeneous	 climate	 effects	 on	 trout	 abundance.	 Our	
analysis	showed	that,	when	averaged	across	stream	segments,	YOY	
abundance was more sensitive than adult abundance to seasonal cli-
mate variation, a pattern commonly found in stream salmonids due 
mainly	 to	vulnerability	of	 the	early	 life	 stage	 to	 substrate-mobiliz-
ing high flows and its diminished swimming abilities to cope with 
those	disturbances	(Kanno	et	al.,	2016, 2017;	Kovach	et	al.,	2016). 
However,	there	was	much	variation	among	stream	segments	in	the	
effect	sizes	(i.e.,	regression	coefficients)	of	seasonal	climate	variables	
on	trout	abundance	in	this	study.	Importantly,	the	climate	variables	
differed by spatial consistency in their effects on trout populations. 
Winter and spring stream flow both had similar negative effects on 
YOY	 abundance	 in	 both	 sub-regions,	 and	winter	 stream	 flow	 had	
the	most	 spatially	 homogeneous	 effect	 on	 YOY	 abundance	when	
sub-regions	were	 combined	 in	 the	N-mixture	model.	 Additionally,	

F I G U R E  6 Intraclass	correlation	
coefficient	(ICC)	values	for	young-
of-the-year	brook	trout	(Salvelinus 
fontinalis) abundance in the southeastern 
United	States.	High	ICC	values	indicate	
synchrony relative to the temporal 
variation averaged across segments, while 
low	ICC	values	indicate	asynchrony.	The	
five	stream	segments	with	lowest	ICC	
(least synchronous) are indicated by “+”.
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the	 spline	correlogram	 for	YOY	density	exhibited	 the	most	 similar	
shape	 to	 that	of	winter	 flow,	with	a	defined	dip	at	around	100 km	
Euclidean	distance.	It	should	be	noted	that	as	a	modeled	covariate,	
autocorrelation	 in	 stream	 flow	 at	 near	 distances	 was	 likely	 over-
estimated.	Nonetheless,	we	reason	that	winter	 flow	was	 the	most	
important driver, among the three covariates tested, of the modest 
spatial	 autocorrelation	and	 synchrony	 in	YOY	 trout	populations	 in	
this	study.	This	inference	is	concerning	regarding	brook	trout	in	the	
study	area,	which	is	projected	to	experience	increased	total	precipi-
tation during most of the year including winter (Alipour et al., 2020; 
Ingram	et	al.,	2013; Pörtner et al., 2022). Wildlife managers could 
consider restoration that increases the natural resilience of stream 
systems to flooding such as improving riparian cover and in-channel 
habitat	complexity	(Giller,	2005).

With	the	exception	of	summer	air	temperature	effects	on	adults,	
climate effects were spatially heterogeneous between sub-regions. 
We	interpret	these	cross-scale	interactions	in	the	context	of	latitu-
dinal	gradients	between	the	north	and	south	sub-regions	(Maitland	
&	 Latzka,	 2022), where the southern sub-region was warmer in 
summer	 and	 the	 northern	 sub-region	 experienced	 higher	 magni-
tudes of winter and spring stream flows (Table 1).	YOY	abundance	
decreased following a hotter summer in the previous year in the 
southern but not in the northern sub-region. A potential mechanism 
for this decreased abundance is high adult mortality due to elevated 
summer temperature at more southern latitudes, which would lead 
to low spawner abundance in fall (Grossman et al., 2010;	Sweka	&	
Wagner, 2022).	However,	adult	 responses	to	summer	air	 tempera-
ture did not differ between sub-regions in this study. Alternatively, 
this	species	delays	or	skips	spawning	in	fall	and	gamete	development	
may be reduced following a hot summer due to stress or reduced 
body	condition	(Pankhurst	&	King,	2010; Warren et al., 2012), and 
these	sub-lethal	effects	could	lead	to	lower	YOY	abundance	in	the	
following year. We speculate that regional differences in spring flow 
or even latitudinal temperature shifts (see Table 1)	might	explain	why	
high	 spring	 flows	 resulted	 in	 lower	 YOY	 abundance	mostly	 in	 the	
northern	sub-region.	Specifically,	the	magnitude	of	maximum	spring	
flow was considerably higher in the northern sub-region, which 
would	more	 likely	 result	 in	 stream	bed	 scouring	 and	YOY	mortal-
ity in the northern versus southern sub-region. Plus, winter stream 
temperature during trout egg incubation was warmer in the south-
ern sub-region relative to the northern sub-region (G. Valentine, 
unpublished data), which accelerates egg development in salmo-
nids	 and	 generates	 latitudinal	 variation	 in	 hatch	 timing	 (Fitzgerald	
et al., 2021; Yamamoto et al., 1997).	Consequently,	body	size	of	YOY	
in the northern populations may be smaller and more often subject 
to mortality-causing high flow events in spring than those in the 
southern populations, a hypothesis that needs to be tested with 
broad-scale studies of early life histories.

Population asynchrony and response heterogeneity in climate 
variation	 may	 also	 be	 due	 to	 biological	 diversity	 of	 brook	 trout	
populations	 distributed	 along	 the	 1,000	 linear	 kilometers	 of	 their	
range	in	this	study.	Stream	organisms	become	locally	adapted	over	
evolutionary and ecological time scales (Fraser et al., 2011;	Moody	

et al., 2015), which can generate spatially heterogeneous responses 
to	environmental	variation	in	species	distribution	ranges.	For	exam-
ple, stream salmonid populations are differently adapted to thermal 
regimes	 based	 on	 their	 natal	 environment	 (Chen	&	Narum,	2021; 
Rogers et al., 2022), and life history traits such as age-at-matura-
tion	 and	 longevity	 differ	 among	 populations	 (Neville	 et	 al.,	2006; 
Rieman & Dunham, 2000). Biological and life history heterogeneity 
in salmonids can also produce a portfolio effect, where diverse re-
sponses	 lead	 to	 a	 stabilizing	 effect	when	 considered	 in	 aggregate	
(Schindler	et	al.,	2010, 2015).	Brook	trout	populations	in	our	study	
area are relegated to small headwater streams, where gene flow is 
limited among populations and populations are highly differentiated 
(Kazyak	et	al.,	2022). Plausibly, the biological heterogeneity among 
brook	trout	populations,	in	addition	to	abiotic	gradients	in	our	study	
region, may be responsible for the degree of population asynchrony 
and response heterogeneity. A mechanistic understanding of how 
spatial heterogeneity in animal population responses is generated 
should	offer	an	exciting	avenue	for	additional	research.

Although our analysis showed that climate effects on trout 
abundance differed among stream segments, our understanding is 
incomplete	as	to	why	the	effects	differed	among	them.	Specifically,	
our	exploratory	analysis	between	segment-specific	climate	effects	
(�) and spatial covariates (e.g., elevation, watershed area, channel 
slope)	did	not	establish	strong	linkages.	This	lack	of	correlation	sug-
gests that other factors may be responsible for the observed com-
plex	 cross-scale	 interactions	 (Soranno	 et	 al.,	 2014).	 For	 example,	
groundwater	discharge	 stabilizes	 temperatures	over	 time	and	buf-
fers	aquatic	habitat	from	warming	(Brunke	et	al.,	2003; Cartwright 
& Johnson, 2018). Groundwater influence can also provide suitable 
spawning and rearing habitat for fish (Blanchfield & Ridgway, 1997; 
Curry	&	Noakes,	1995).	However,	groundwater	remains	difficult	to	
measure and predict over broad spatial scales such as that of our 
study	(Kalbus	et	al.,	2006).	Likewise,	 locally	patchy	habitat	charac-
teristics such as riparian shading and in-stream wood availability 
can	be	readily	missed	when	characterizing	stream	habitat	at	broad	
scales (Fernandes et al., 2011; Wohl et al., 2018).	Localized	extreme	
precipitation events are another factor with the potential to affect 
populations	at	small	scales	(Hickey	&	Salas,	1995). We recommend 
fine-scale,	 long-term	 studies	 in	 representative	 networks	 through-
out the range to more fully understand climate effects on aquatic 
populations.

As predicted, the climate effects on trout populations were 
stronger	for	the	YOY	stage.	Life	stage-specific	responses	to	flows	are	
well documented in stream salmonids (Cattanéo et al., 2003;	Kanno	
et al., 2017;	Kovach	et	al.,	2016). Early life stages of trout suffer high 
mortality	when	elevated	 flows	mobilize	 stream	bed	 substrates,	 as	
corroborated	in	this	study	by	diminished	YOY	abundance	following	
wet	winter	 and	 spring	 in	 this	 fall-spawning	 species.	 Because	YOY	
abundance in the current year is a good predictor of adult abundance 
in	the	following	year	(Kanno	et	al.,	2016, 2017) and higher current 
adult	abundance	also	typically	leads	to	more	YOY	fish	in	the	follow-
ing year (Grossman et al., 2010;	Sweka	&	Wagner,	2022), climate ef-
fects on trout abundance could persist for more than a single year. 
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That said, heterogeneous responses to climate variables between 
life stages may provide a demographic portfolio effect (Diamond 
et al., 2013; Dybala et al., 2013;	Schindler	et	al.,	2015) to buffer trout 
populations from climate change as long as unfavorable seasonal 
temperature and flow conditions do not occur frequently over con-
secutive	years	(Kanno	et	al.,	2015).

Spatially	 heterogeneous	 and	 asynchronous	 population	 re-
sponses to climate have implications for the conservation of this and 
other threatened species at their range edges. Previous studies have 
assumed homogeneous and synchronous population responses to 
climate	change	in	salmonids	(Meisner,	1990; Rahel et al., 1996), and 
up	 to	97%	habitat	 loss	was	projected	 for	 brook	 trout	 populations	
in	the	southern	Appalachian	Mountain	streams	(Flebbe	et	al.,	2006), 
which corresponds to the southern sub-region of our current study. 
Although climate change is undeniably a major threat to the sensitive 
coldwater fish, our results demonstrate the importance of consider-
ing	spatial	heterogeneity	and	recognizing	that	some	populations	are	
more	likely	to	persist	than	others	in	a	changing	climate.	This	finding	
underscores the importance of maintaining connectivity between 
populations, as demographic responses to environmental changes 
can	vary	within	stream	networks	and	connectivity	increases	the	like-
lihood of demographic rescues (Tsuboi et al., 2022).	A	key	challenge	
lies in identifying a set of priority conservation populations in a land-
scape in an increasingly uncertain and non-stationary environment 
(Heller	&	Zavaleta,	2009;	Mejia	et	al.,	2023).	Our	results	inform	this	
challenge	 by	 identifying	 highly	 asynchronous	 populations.	 Using	
gradients of population synchrony and heterogeneity to climate 
variation, priority conservation populations may be identified so that 
a portfolio of populations with a range of climate responses could 
be targeted for protection and restoration to buffer against climate 
change impacts (Raiho et al., 2022; Rosenberg et al., 2000).	In	this	
study and others, asynchrony among local populations contributed 
to this portfolio, diminishing temporal variation in region-scale abun-
dance	when	local	populations	were	aggregated	(Hilborn	et	al.,	2003; 
Schindler	et	al.,	2010, 2015). This type of landscape-level planning 
is most effective when coupled with abiotic data to identify popula-
tions	that	are	most	likely	to	be	resilient	to	climate	change	(i.e.,	climate	
refugia) (Ashcroft, 2010; Cartwright & Johnson, 2018;	Larios-López	
et al., 2019;	Mejia	et	al.,	2023;	Morelli	et	al.,	2020). By investigating 
trends in population responses at multiple scales, our approach can 
inform conservation planning for an uncertain future. Finally, our 
methods are applicable to other wide-ranging aquatic species with 
spatially and temporally replicated datasets.
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