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Abstract

Warming water temperatures as a result of climate change pose a major threat to

coldwater organisms. However, the rate of warming is not spatially uniform due to

surface-ground-water interactions and stream and watershed characteristics. Cold-

water habitats that are most resistant to warming serve as thermal refugia and identi-

fying their locations is critical to regional aquatic conservation planning. We

quantified the thermal sensitivity of 203 streams providing current and potential hab-

itat for brook trout (Salvelinus fontinalis) across nearly 1000 linear km of their native

range in the southern and central Appalachian Mountains region, USA, and character-

ized their spatial variability with landscape variables available in the National Hydrog-

raphy Dataset. Using the Bayesian framework, we calculated the maximum slope of

the logistic function relating paired weekly mean air temperature and stream temper-

ature as an index of stream thermal sensitivity. Streams differed greatly in thermal

sensitivity and those with more resistant water temperature regimes (i.e., thermal

refugia) were consistently characterized by southerly latitudes and groundwater

input. Landscape variables derived from a principal component analysis explained

16% of the variation in thermal sensitivity, indicating that the existing landscape vari-

ables were modestly successful in explaining spatial thermal heterogeneity. Using our

model and spatial interpolation, we predicted thermal sensitivity at 8695 stream seg-

ments potentially suitable for brook trout in the study region. Thermal refugia were

more common southward presumably due to higher elevations, but elsewhere they

were also clustered at finer spatial scales. Our analysis informs prioritizing habitat

conservation and restoration of this native salmonid and other aquatic organisms that

depend on coldwater habitats in a warming world.
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1 | INTRODUCTION

Water temperature is a key component of lotic ecosystems, determin-

ing species composition, organismal metabolism, and ecosystem func-

tions and productivity (Caissie, 2006; Poff et al., 2002). Stream

temperatures have risen in the last few decades (Kaushal et al., 2010)

and will continue to rise as global climate change accelerates (Pörtner

et al., 2022; van Vliet et al., 2013). Warming water temperature poses

a major threat to the persistence of coldwater organisms, but warming

rates are not spatially homogeneous due to surface-groundwater

interactions and watershed and localized landscape characteristics

(Lisi et al., 2013; Winfree, 2017). Identifying characteristics of stream

habitats that offer refuge from climate warming and predicting their

locations is critical to coldwater conservation planning (Ebersole

et al., 2020).

However, challenges lie in locating climate refugia for coldwater

organisms over a broad geographic extent. Stream temperature is

chiefly influenced by radiative and convective heat fluxes with the

atmosphere (Webb et al., 2008; Webb & Zhang, 1999). Nonetheless,

generalized air temperature models are insufficient for predicting cli-

mate refugia and biotic responses to warming, as a multitude of atmo-

spheric, hydraulic, and landscape characteristics and processes

mediate the relationship between air and water temperatures (Cais-

sie, 2006; Kirk & Rahel, 2022; Lisi et al., 2015; Poole & Berman, 2001).

Physical models aim to overcome this by approximating solar radia-

tion, air-water heat transfer, evapotranspiration, and groundwater

input (Caissie, 2006; Kelleher et al., 2012; Lalot et al., 2015; Sinokrot &

Stefan, 1993). However, these processes may differ spatially due to

local hydrology, topography, and landcover (Chang & Psaris, 2013;

Dugdale et al., 2018; Garner et al., 2015; Mayer, 2012). These pro-

cess-based modeling approaches are difficult to replicate at many

sites, especially for predicting temperatures at unsampled sites and

consequently strategizing landscape and regional conservation efforts.

Alternatively, statistical approaches based on the relationships

between stream and air temperatures have proliferated to character-

ize thermal variation among streams (e.g., Crisp & Howson, 1982;

Mackey & Berrie, 1991; Mohseni & Stefan, 1999; Stefan & Preud'-

homme, 1993; Zhu et al., 2018). Stream-air temperature relationships

have been represented by linear (Beaufort et al., 2020; Erickson &

Stefan, 2000) or nonlinear (i.e., logistic) regression (Mohseni

et al., 1998; Mohseni & Stefan, 1999). The nonlinear approach is best

suited to regions characterized with low (<0�C) and high (>25�C) air

temperatures. Specifically, stream temperature typically remains

above 0�C when surface ice forms in winter, and at elevated air tem-

perature in summer, evaporative cooling mitigates warming rates

(Mohseni et al., 1998; Mohseni & Stefan, 1999). Stream-air tempera-

ture relationships have been modeled from hourly to annual time

scales (Caissie et al., 2001; Sinokrot & Stefan, 1993; Stefan & Preud'-

homme, 1993; Webb & Nobilis, 1997), with the time lag between

stream and air temperature diminishing over longer temporal scales

(Kelleher et al., 2012). The sensitivity of stream temperature relative

to changes in air temperature can be used as an indicator of ground-

water input, where more temporally stable stream temperature amid

air temperature fluctuations signifies this buffered input (Beaufort

et al., 2020; Hare et al., 2023; Kelleher et al., 2012). Thermal sensitiv-

ity and average water temperature are often strongly negatively cor-

related (Devine et al., 2021; Luce et al., 2014). As a result, thermal

stability can provide an important signal in identifying thermal refuge

for coldwater organisms.

Recently, more studies have aimed to elucidate trends in stream

temperature and identify climate refugia. Most notably, NorWeST

(Isaak et al., 2017) is a comprehensive project aimed at combining

stream temperature observations across the western USA with the

goal of interpreting and predicting climate impacts on streams and riv-

ers. This work has identified potential climate refugia and predicted

thermal habitat change across their study area (Isaak et al., 2015,

2016). Other works have been more limited in their geographic extent

(i.e., individual US states or watersheds) and have focused on predict-

ing spatial and temporal variation in water temperature at specific

locations of interest, instead of identifying what factors determine the

variation (Carlson et al., 2019; Carlson, Bowman, et al., 2017; Carlson,

Taylor, et al., 2017; Kirk et al., 2022; Snyder et al., 2015). Key to

broad-scale analyses is the growing body of publicly available national

and regional watershed and hydrological data (e.g., US Environmental

Protection Agency StreamCat or National Hydrography Dataset

[NHD] in the USA), and few studies have been undertaken to explain

or predict spatial variability using readily available watershed and

hydrological data at broad spatial scales (Isaak et al., 2017;

Mayer, 2012; Trumbo et al., 2014). For example, the NHD contains

hydrologic data at the stream segment scale, defined as the length of

streams between two confluences or from the headwater to the first

confluence downstream. Thus, spatial heterogeneity within stream

segments and highly localized processes (i.e., groundwater seepage)

could be missed, limiting our ability to locate thermal refugia. Despite

potential limitations, some studies of limited geographic extent have

attributed spatial variability in thermal sensitivity to coarse-scale met-

rics such as riparian conditions, stream size, and geology (Beaufort

et al., 2020; Chang & Psaris, 2013; Kirk et al., 2022; Mayer, 2012;

Tague et al., 2007; Toffolon & Piccolroaz, 2015). As broad-scale

stream data become increasingly available, it is important to test their

ability to explain and predict thermal sensitivity over a broad geo-

graphic extent to inform management of coldwater species of conser-

vation concern.

The brook trout (Salvelinus fontinalis) is a coldwater salmonid

whose native distribution covers much of eastern North America.

Brook trout populations have declined greatly, particularly in their

southern native range, due to anthropogenic factors such as habitat

loss and fragmentation, non-native species, and introgression with

hatchery fish (Hudy et al., 2008; Kazyak et al., 2022). As a coldwater

species, they cannot withstand prolonged periods of water tempera-

tures exceeding 22–24�C (Eaton et al., 1995; Hartman & Cox, 2008;

Wehrly et al., 2007). Riverscapes characterized by cool stream tem-

peratures allow brook trout to persist through heat waves and

droughts (Hitt et al., 2017; Petty et al., 2012; Trego et al., 2019). Thus,

the ability to identify and predict thermally suitable brook trout habi-

tat over a long period (i.e., thermal refugia) is of great importance for
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prioritizing streams for conservation and restoration action such as

habitat improvement, physical barrier removal, non-native trout

removal, and brook trout translocations (Kanno et al., 2016; White

et al., 2023). Stream temperatures have been modeled for brook trout

streams in their native range, including the use of paired stream-air

temperature measurements (Kanno et al., 2014; Letcher et al., 2016;

Snyder et al., 2015; Trumbo et al., 2014). However, these studies

were limited in their geographical extent and we are not aware of pre-

vious work that combined paired stream-air temperature measure-

ments with readily available watershed and hydrological data to

describe and predict thermal sensitivity of streams at the regional

scale within the native range of brook trout.

We characterized landscape influences on stream thermal sensi-

tivity across nearly 1000 km of the native range of brook trout in the

southern and central Appalachian Mountains region, USA, using a

multi-year dataset of paired stream and air temperature measure-

ments. Located at their southernmost native range, the study area has

experienced the greatest declines of brook trout populations (Hudy

et al., 2008). Our study objectives were twofold. First, we used widely

available landscape and hydrologic metrics to identify determinants of

stream thermal sensitivity with a Bayesian hierarchical model of non-

linear relationships between weekly average stream and air tempera-

tures. Second, we used this model to predict thermal sensitivity at

unsampled brook trout habitats throughout the study area. In addres-

sing these objectives, we aimed to quantify how much thermal sensi-

tivity varied among streams in the study area and its correlation with

landscape characteristics and identify locations of thermal refugia for

brook trout in a warming world.

2 | METHODS

2.1 | Study area and dataset

We collected paired air and water temperature data from 203 stream

segments in the southern and central Appalachian Mountains region

of the USA (Figure 1). The mean elevation was 655.8 m (SD: 250.2 m)

with a mean channel slope of 3.8% (SD: 4.1%) and a mean catchment

area of 5.2 km2 (SD: 8.1 km2). The average Strahler stream order was

2. Stream segments in the southern Appalachians were generally

F IGURE 1 Locations of 203 stream segments where paired air and stream temperature data were collected from 2011 to 2015. Light green
shading represents forested areas, and dark green shading indicates protected areas. The north and south halves of the study region were divided
at 37.13� latitude. [Color figure can be viewed at wileyonlinelibrary.com]

1244 VALENTINE ET AL.

 15351467, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rra.4305, W

iley O
nline L

ibrary on [18/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


situated at higher elevations than stream segments in the central

Appalachians (mean 734 m vs. 563 m when divided at 37.13� lati-

tude). Stream segments were located in randomly selected water-

sheds identified as capable of supporting populations of brook trout

to represent a range of their habitats in the study region (Eastern

Brook Trout Joint Venture, 2006; Li et al., 2016). Located at the

downstream outlet of the watersheds, at each segment, a logger

underwater was paired with a logger affixed to the bank or a tree.

Stream and air temperatures were measured every 30 min between

2011 and 2015 using remote loggers (Onset Computer Corporation,

Bourne, MA 02532). We summarized temperatures to weekly aver-

ages for data analysis.

A common drawback of studies of thermal sensitivity is that air

temperatures are derived from model outputs or the closest meteoro-

logical station (Beaufort et al., 2020; Hare et al., 2021; Kelleher

et al., 2012). This implies that trends in air temperatures used for anal-

ysis may not reflect the true trends influencing stream temperature at

the local scale (Isaak et al., 2024; Kanno et al., 2014). Solar radiation

and the influence of local topography have been shown to substan-

tially influence variation in the microclimate across the landscape, par-

ticularly in mountainous areas (Aalto et al., 2017; Tscholl et al., 2022).

Furthermore, weather stations are commonly situated in open, flat

areas where they miss the thermal effects of topography and tree

cover (De Frenne & Verheyen, 2016; Graae et al., 2012). We over-

came this problem by using air temperatures measured in situ at the

same locations where water temperatures were measured. Using

these paired air and water temperature loggers, our study design

allowed the consideration of highly local atmospheric influence on

stream temperature.

Each segment was linked using a GIS to the NHD (NHDplus v2.1,

U.S. Geological Survey, 2016) stream segment on which it was

located. Using the NHDplus common identifier (COMID) code for

each segment, we then accessed landscape metrics from the NHDplus

and the US Environmental Protection Agency StreamCat database

(Hill et al., 2016). The NHDplus includes stream segment data such as

coordinates, elevation, slope, Strahler order, length, and drainage area,

as well as metrics of monthly and annual flow and velocity. The

StreamCat database includes metrics of landcover, geology, soil

makeup, and climate at the watershed and stream segment catchment

scale. Watersheds are defined here as the contributing area of land

that drains to the outlet of the stream segment, while catchments are

defined as portions of landscape that drains directly to a stream seg-

ment, excluding upstream contributions (Hill et al., 2016). A key to

definitions for NHDplus and StreamCat variables can be found in

Appendix A.3. Together, these two sources contributed 174 variables

for each stream segment. Previous studies have identified groundwa-

ter, elevation, stream size, and channel slope as having a strong influ-

ence on stream thermal sensitivity (Beaufort et al., 2020; Chang &

Psaris, 2013; Isaak et al., 2016; Mayer, 2012). Generally, shaded or

headwater streams with small watersheds and groundwater inflows

have the most stable thermal regimes. We considered additional met-

rics from the NHDplus and StreamCat to test an array of variables for

their influences on thermal sensitivity and to improve predictive

ability.

2.2 | Principal components analysis

We performed a Bayesian principal components analysis (PCA) of the

174 NHDplus and StreamCat predictors at 8695 stream segments of

current and potential brook trout habitat identified in the USGS

EcoSHEDS (www.usgs.gov/apps/ecosheds) by the Eastern Brook

Trout Joint Venture (Eastern Brook Trout Joint Venture, 2006). The

203 segments with paired stream-air temperature measurements

were included in the 8695 segments. We excluded segments with

stream orders greater than five. Continuous variables were centered

and scaled. We used a Bayesian PCA due to its ability to take missing

values as inputs (Bishop, 1998; Nounou et al., 2002). Analysis was

completed using the “pcaMethods” package in R (R Core Team, 2022;

Stacklies et al., 2007). We then extracted the top 10 loadings by abso-

lute value for the first five principle components (PCs; cumulative R2:

0.60). Lastly, we extracted PCA scores for each of the 203 stream seg-

ments where temperature was measured.

2.3 | Hierarchical model

We used a Bayesian hierarchical logistic model to infer stream thermal

sensitivity and the effects thereupon of local hydrology and landscapes.

The regression slope at the inflection point of the function represents

a first-order estimate of the relationship between air and water tem-

peratures (Kelleher et al., 2012; Mohseni et al., 1998; Morrill

et al., 2005). We omitted observations where water or air temperatures

were missing. Following Mohseni et al. (1998), we fit weekly mean

water temperature TW (�C) at stream segment i¼1,…,203 and week

n¼1,…,N as a function of weekly mean air temperature TA (�C) with:

TWi,n �normal αiþ ζi�αi
1þeϕi κi�TAi,nð Þ,σ

2

� �
, ð1Þ

where ζi is the maximum weekly mean stream temperature (�C) at

stream segment i, αi is the minimum weekly mean stream temperature

(�C), κi is the estimated air temperature at the inflection point of the

function (�C), and ϕi is a measure of the slope of the function at

the inflection point. Furthermore, ϕi was modeled as a random effect

that varies with the PC scores:

ϕi �normal θ0þθ1PC1,iþθ2PC2,iþθ3PC3,iþθ4PC4,iþθ5PC5,i,σ
2
ϕ

� �
,

ð2Þ

where θ represents the contribution of each PC to thermal sensitivity

over space. The slope of the function at the inflection point (thermal

sensitivity; βi) at stream segment i is related to ϕi using the equation

βi ¼
ϕi � ζi�αið Þ

4
: ð3Þ

We also estimated thermal sensitivity using linear regression

(Appendix A.1), and inferences of thermal sensitivity were nearly
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identical to those of the nonlinear approach. Logistic regression slopes

were also correlated with slopes from the linear regression (r = 0.95;

Figure S2). We derived c to quantify the proportion of variance in

thermal sensitivity among the 203 stream segments explained by

landscape variables. c compares posterior samples of the residual vari-

ance in thermal sensitivity (σ̂2ϕ) to the variance in posterior samples of

thermal sensitivity (ϕ̂):

c¼1� σ̂2ϕ

var ϕ̂
� � : ð4Þ

Values of c range between 0 and 1, with larger c values indicative

of more variance explained by the principal components of landscape

variables. In addition to evaluating variable loading in the PC and the

posterior distribution of θ for that PC, we used Pearson correlation

between segment-specific thermal sensitivity (β from Equation (3))

and landscape variables at each stream segment because some vari-

ables had loadings in more than a single PC. We chose landscape

determinants of stream thermal sensitivity by identifying those vari-

ables that were both in the most significant PC loadings as defined by

their posterior distributions and had the highest absolute correlation

coefficients.

We conducted posterior predictive checks for the test statistics

of mean and coefficient of variation to evaluate model performance

(Conn et al., 2018). These checks test for lack of fit using Bayesian p-

values, defined as the probability that simulated data are more

extreme than the observed data (Gelman et al., 2004). Models that fit

well result in Bayesian p-values that are not close to zero or one. We

also evaluated the model using the root mean square error (RMSE)

and R2. Lower RMSE values indicate better model fit, and higher R2

values indicate greater variance explained. We implemented the

model with Markov Chain Monte Carlo sampling using JAGS with the

“jagsUI” package in R (Kellner, 2024). We provide code in online sup-

plements and report noninformative priors in Appendix A.2. After a

burn-in period of 1000 samples, three chains were run until 5000 iter-

ations were reached. We considered convergence as an R̂ value of 1.1

or less (Gelman et al., 2004). We report posterior means as point esti-

mates and 95% highest posterior density intervals (HPDIs) as

estimates of uncertainty. We considered posterior distributions to be

statistically significant when 95% HPDIs did not overlap with zero.

We specified diffuse priors for all model parameters and used poste-

rior mean predicted temperatures for subsequent analyses.

2.4 | Thermal sensitivity predictions and gap
analysis

We predicted thermal sensitivity at unsampled brook trout habitat

throughout the study region. In Section 2.2, we calculated principal

components for 8695 stream segments of current and potential brook

trout habitat. Using these principal components and posterior distri-

butions for θ from Equation (2) and (3), we calculated βi for each seg-

ment. We interpolated minimum and maximum water temperatures at

stream segments by kriging using the spPredict function in the

“spBayes” package (Finley et al., 2015). The minimum and maximum

water temperatures were modeled using a linear combination of lati-

tude, longitude, and elevation (m); and the spatial structure was mod-

eled using an exponential covariance function based on pair-wise

Euclidean distances.

Finally, we performed a gap analysis (Jennings, 2000) to evaluate

the proportion of thermally buffered habitat that lies in protected

areas and compared this to the proportion of total brook trout habitat

that occupies conserved areas. Gap analyses allow the identification

of valuable habitat that is unconserved. We accessed a shapefile of

protected areas in the study area from the US Geological Survey Pro-

tected Areas Database (Gap Analysis Project (GAP), 2022; Figure 1).

We included protected areas with USGS Gap Analysis Project Status

Codes 1–3. This included at the least protection from conversion of

natural land cover and at the most National Park or Wilderness Area

designation. In a GIS (QGIS Development Team, 2023), we clipped all

NHDplus stream segments that were at least partially located in these

protected areas. We then defined resistant thermal habitat as the low-

est 25th percentile of predicted thermal sensitivity values. We calcu-

lated the percentage of resistant thermal habitat segments that were

located on these stream segments within protected areas. Finally, we

compared this percentage to that of all brook trout habitats located in

stream segments within protected areas using a Chi-squared test.

3 | RESULTS

There was considerable thermal variability between stream segments.

Average weekly air temperature across segments was 10.99�C (SD:

7.74�C) and ranged from �15.03 to 28.07�C. Average weekly water

temperature across stream segments was 11.41�C (SD: 5.75�C) and

ranged from 0 to 27.83�C. Some segments had thermally resistant

water temperatures, but others were sensitive (Figure 2). Air and

water temperatures generally were coolest in late January and early

February, and peaked in mid-July. Minimum stream temperatures gen-

erally followed a latitudinal gradient, with the coolest minimums

located in northern areas (Figure S1), however, maximum tempera-

tures did not. Some of the coolest maximum stream temperatures

were recorded at segments at southerly latitudes but located at higher

elevations.

3.1 | Logistic model

The posterior predictive checks suggested little evidence of a lack of

fit between model estimates and data. The mean Bayesian p-values

for mean and standard deviation were 0.52 and 0.26. The nonlinear

model had a mean R2 of 0.91 and an RMSE of 1.73.

Thermal sensitivity differed greatly among the 203 segments,

with evidence of thermal stability and thus thermal refugia. Logistic

regression slopes (β) varied from 0.21 (95% HPDI: 0.18–0.25) to 1.24

(95% HPDI: 1.19–1.29), with an average slope of 0.85 (Figure 2).
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Smaller β values indicated less sensitivity in stream temperature to

changes in air temperatures. These values were highly correlated with

the minimum, maximum, and range of stream temperatures

experienced among segments, indicating the robustness of this metric

to evaluate spatial thermal heterogeneity (Figure S2). A latitudinal gra-

dient in slopes was apparent, with less steep slopes (i.e., more
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F IGURE 2 Logistic regression fits for (a) Ewin Run near Laurel Branch, WV, USA (low thermal sensitivity; β = 0.21) and (b) the Blackwater
River near Cortland, WV, USA (high thermal sensitivity; β = 1.24). Black dots represent paired weekly average temperatures and red lines
represent logistic regressions. [Color figure can be viewed at wileyonlinelibrary.com]
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figure can be viewed at wileyonlinelibrary.com]
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resistant to changes in air temperature) generally present at southerly

segments (Figure 3). Geographically confined pockets of thermal refu-

gia were also present at northern latitudes. Thermal sensitivity was

spatially structured, where nearer segments had more similar thermal

sensitivity than farther segments (Figure 3).

3.2 | Landscape effects on thermal sensitivity

Spatial variability in thermal sensitivity was explained by landscape

and hydrologic variables. In the PCA, the first five principal compo-

nents explained 60% of the variance in these variables (Table 1) and

16% of spatial variance in thermal sensitivity (i.e., ϕ in Equation (1)).

Spatial thermal sensitivity was not significantly explained by PC1

(metrics of monthly and annual stream flows), but significantly

explained by PC2 (spring to summer water velocity), PC3 (coordinates,

baseflow index, precipitation, and air temperature), PC4 (winter water

velocity), and PC5 (landcover and geology) (Figure 4). Specifically,

stream temperature was more buffered from (less sensitive to) air

temperature fluctuations at stream segments characterized by low

spring to summer water velocity (PC2: 95% HPDI = �0.007 to

�0.0015), southern latitudes with higher baseflows (PC3: 95%

HPDI = �0.004 to �0.0001), high winter velocity (PC4:

95% HPDI = �0.006 to �0.002), high soil permeability, and predomi-

nantly colluvial sediment and deciduous forest (PC5: 95%

HPDI = 0.0004 to 0.004).

TABLE 1 Top five principal components (PCs) and percent variance explained (R2).

PC1: 29.0% PC2: 12.2% PC3: 8.2% PC4: 7.7% PC5: 3.2%

Variable Loading Variable Loading Variable Loading Variable Loading Variable Loading

QC_11 �0.99 VC_07 �0.69 Lat 0.88 VC_01 0.76 WetIndexWs 0.54

QE_11 �0.99 VE_07 �0.68 Long 0.83 VE_01 0.76 PermWs �0.52

QC_MA �0.98 VC_05 �0.68 BFIWs �0.76 VA_02 0.76 PermCat �0.50

QC_10 �0.98 VE_05 �0.68 BFICat �0.76 VA_01 0.72 PctUrbLo2016Ws 0.49

QC_06 �0.98 VA_06 �0.66 PrecipWs �0.68 TmeanCat 0.65 PctColluvSedCat �0.48

QE_MA �0.98 VC_06 �0.66 PrecipCat �0.67 VC_02 0.65 PctColluvSedWs �0.48

QA_11 �0.98 VA_05 �0.66 TminWs �0.64 VE_02 0.65 PctUrbOp2016Ws 0.45

QA_MA �0.98 VA_07 �0.65 TminCat �0.63 TmaxCat 0.65 PctUrbMd2016Ws 0.45

QE_05 �0.98 VE_06 �0.65 VC_02 0.61 TmaxWs 0.64 PctDecid2016Ws �0.45

QE_04 �0.98 VE_11 �0.64 VE_02 0.61 TmeanWs 0.63 PctDecid2016Cat �0.44

Note: The top 10 contributing variables for each principal component are listed based on their loadings. “Q” variables refer to stream flow metrics during

specified periods of the year (numbers = months and MA = mean annual), and “V” variables refer to stream velocity. Variable definitions are available in

Appendix A.3, and further descriptions may be found in the NHDPlus User Guide and EPA StreamCat database.

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050

PC1 PC2 PC3 PC4 PC5

F IGURE 4 Violin plot trimmed at
95% highest posterior density
intervals (HPDIs) for θ values, which
represent the contributions of
principal components 1–5 to ϕ, the
measure of maximum slope of the
nonlinear equation (Equation (1)).
Significant distributions do not
overlap with zero.
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To complement the PCA, correlation analysis of individual vari-

ables showed that stream temperature was more buffered from air

temperature fluctuations when baseflow index was high (Pearson

r = �0.45), segments were located farther south (r = 0.44) and in

smaller catchments (r = 0.40), and where segments were character-

ized with lower stream flows in March (r = 0.40). Taken together, lati-

tude and baseflow index (i.e., a metric of groundwater) were

consistently identified as determinants of spatial thermal sensitivity in

the two analyses.

3.3 | Predictions of thermal sensitivity

Predicted thermal sensitivity varied greatly among unsampled stream

segments, with values of β ranging from 0.45 (95% CI: 0.23–0.68) to

1.08 (95% CI: 0.93–1.23; Figure 5). Our predictions identified several

areas most likely to serve as thermal refugia. Among others, the Pen-

dleton County, West Virginia, Nantahala National Forest in North Car-

olina, and the Great Smoky Mountains in North Carolina and

Tennessee were predicted to have particularly stable stream tempera-

tures. These pockets of potential climate refugia may also reflect the

spatial interpolation techniques used in our predictions (Figure S1).

Defining resistant thermal habitat as the lowest 25th percentile of

predicted thermal sensitivity values, we found that 63% (1367

of 2175) of thermally resistant stream segments lay within protected

areas. This is compared to 54% (4697 of 8695) of all segments evalu-

ated. The proportion of protected thermally resistant segments was

significantly greater than the proportion of overall habitat (Chi-

squared p < 0.001).

4 | DISCUSSION

Our insights and predictions fit into a growing body of research

leveraging large networks of water temperature loggers to inform

conservation at regional and national scales (Isaak et al., 2017; John-

son et al., 2020; Mayer, 2012; Snyder et al., 2015). We build on this

framework by combining these data with paired, in situ water temper-

ature measurements and broad-scale landscape and hydrological data

that allow predictions at unsampled locations and by expanding ana-

lyses of thermal sensitivity into the underrepresented southern and

central Appalachian Mountains region of the southeastern USA. To

our knowledge, our work represents one of the most geographically

extensive analyses of thermal habitat for an aquatic species of

F IGURE 5 Predicted stream thermal sensitivity (β) at 8695 stream segments of brook trout habitat in the southern and central Appalachian
Mountains region, USA. Thermal sensitivity was predicted using posterior estimates from Equations (6) and (1), as well as spatially interpolated
minimum and maximum stream temperatures. Lower values of β indicate stream segments with less sensitive stream temperatures in relation to
air temperature variation (i.e., thermal refugia). [Color figure can be viewed at wileyonlinelibrary.com]
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conservation concern in the southeastern USA. The paired stream-air

temperature data showed much thermal variation among 203 stream

segments distributed along ca. 1000 km of habitat, including some

segments where stream temperatures were stable over time (weekly

average �10�C; Figure 2) and others where stream temperatures

warmed readily with increasing air temperatures. Such spatial thermal

variability has been observed in other brook trout studies conducted

over more geographically confined areas (Kanno et al., 2014; Snyder

et al., 2015; Trumbo et al., 2014). Given the thermal heterogeneity

over space and upper thermal limits of brook trout (22–24�C: Eaton

et al., 1995; Hartman & Cox, 2008; Wehrly et al., 2007), our study

demonstrates that some current brook trout streams will likely main-

tain their thermal habitat suitability over a long period of time and

may serve as climate refugia. Principal components derived from land-

scape variables in the NHD explained only a moderate amount of vari-

ation in thermal sensitivity among stream segments, showing that

coarse scale landscape data have limited abilities in describing why

thermal heterogeneity exists among stream segments. Despite some

limitations, our analysis revealed latitudinal patterns of thermal refugia

locations and should serve as a basis in quantifying climate change

impacts on aquatic species over a broad spatial extent. Overall, our

study highlights the importance of embracing spatial thermal variabil-

ity for identifying thermal refugia and using this knowledge in maxi-

mizing the chance of sustaining coldwater species in a large

landscape.

We found a latitudinal pattern of thermal refugia locations, where

thermally resistant stream segments were clustered in the southern

area (i.e., North Carolina and Tennessee) of the study region. Our find-

ing contrasts with those of Flebbe et al. (2006), who did not account

for spatially heterogeneous stream-air temperature relationships and

projected a nearly complete eradication of southern Appalachian

brook trout populations under future warming scenarios. Studies

employing these generalized air temperature models often over-pre-

dict stream thermal and biotic responses to warming because water

temperatures are often buffered by local landscape and hydrologic

factors (Carlson et al., 2019; Carlson, Taylor, et al., 2017; Kirk &

Rahel, 2022; Mitro et al., 2019). More thermally resistant stream seg-

ments were characterized with cooler maximum average weekly tem-

peratures, and this correlation between different thermal metrics

provided additional support for the robustness of our thermal refugia

predictions. The latitudinal pattern of thermal sensitivity was likely

due to spatial gradients of elevation in this study area, where eleva-

tion peaks in the southern area and decreases northward (elevation

and latitude were negatively correlated: Spearman's ρ = �0.4). Eleva-

tion has previously been linked to thermal regimes that differ over

space (Isaak et al., 2017; Maheu et al., 2016; Trumbo et al., 2014). The

predominance of thermally resistant segments in the southern part of

the brook trout range may also be explained by the legacy of anthro-

pogenic impacts which have led to severe declines in the area (Hudy

et al., 2008; Larson & Moore, 1985). Extant populations may already

be confined to the most thermally resistant segments that represent a

subset of their historical habitat range. In this sense, additional loss of

brook trout habitat due to warming temperatures may occur more

frequently at thermally sensitive stream segments located farther

north in our study area. We also identified geographically confined

clusters of thermal refugia in central Appalachian Mountains region

areas such as eastern West Virginia and eastern Maryland. We located

several segments with the least sensitive stream temperatures and

logistic regression slopes <0.5. Overall, stream thermal sensitivity in

our study area (mean slope = 0.85) was within the range reported by

other authors (Beaufort et al., 2020; Krider et al., 2013; Webb, 1992).

In general, the thermal sensitivity of stream temperatures was spa-

tially autocorrelated, although this was not always the case in our

dataset and previous studies (Kanno et al., 2014; Snyder et al., 2015).

Our work is useful for identifying general clusters where thermal refu-

gia mostly likely occur, to guide where conservation and restoration

might be prioritized.

In addition to the latitudinal pattern in thermal refugia, the princi-

pal components of landscape variables and correlation analysis

revealed complexities of thermal controls over space. In general,

water temperature was more buffered against changes in air tempera-

ture where streams had low spring to summer velocities, smaller

watersheds, and groundwater input. The degree of groundwater influ-

ence, represented by baseflow index, has consistently been identified

as a determinant of thermal sensitivity (Beaufort et al., 2020; Briggs

et al., 2018; Carlson, Bowman, et al., 2017; Johnson et al., 2017; Kel-

leher et al., 2012; Tague et al., 2007). The importance of groundwater

input at these segments can be inferred qualitatively by inspecting the

geographic situations of thermally stable stream segments. As with

Ewin Run in West Virginia (Figure 2), which is situated downstream of

a noted spring, or Dumpling Spring Run in West Virginia, groundwater

inflows appear to be responsible for their stability. In our study, met-

rics of water velocity (second and fourth axes of PCA) also explained

spatial variation in thermal sensitivity. We surmise that water velocity

may be a surrogate for latent determinants of thermal sensitivity such

as channel slope and morphology, which regulate solar radiation and

surface-groundwater exchange (Caissie, 2006; Hauer et al., 2016).

Urban landcover and soil permeability and wetness also explained

thermal sensitivity, but to a more limited extent. Sediment, geology,

and landcover may be linked to processes that affect stream tempera-

ture resilience such as the water table depth and water retention in

soils (Monk et al., 2013; Ryan, 1991; Snyder et al., 2015). As correla-

tional evidence, the principal components of landscape variables can-

not robustly identify ecological processes that generate spatial

heterogeneity in stream temperature. Irrespective of the process

uncertainties, these statistical relationships contribute to predicting

thermal sensitivity for all stream segments potentially occupied by

brook trout in the study area. Previous research has used a limited

number of landscape covariates to characterize spatial thermal vari-

ability (Beaufort et al., 2020; Carlson et al., 2019; Kelleher

et al., 2012; Kirk et al., 2022; Tague et al., 2007), and multivariate

approaches using large, publicly available datasets should be consid-

ered more frequently, and especially for predictive purposes.

The spatial grain of our thermal sensitivity predictions was for

NHD stream segments, given the landscape data availability for the

large geographic extent of this study. However, landscape covariates
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at this scale were limited in their ability to explain spatial variation in

thermal sensitivity (c = 0.16). This result was not surprising, and previ-

ous studies have similarly found that coarse-scale landscape data have

limited abilities to explain spatial thermal heterogeneity (Chang &

Psaris, 2013; Kelleher et al., 2012). Furthermore, thermal heterogene-

ity can occur within stream segments (Fullerton et al., 2017; Kalbus

et al., 2006; Selker et al., 2006) and aquatic organisms may cue in

highly localized areas of cold stream temperature to avoid unsuitably

high temperatures in summer (Matthews & Berg, 1997; Sullivan

et al., 2021). Additional research is warranted to investigate the avail-

ability of spatially confined thermal refugia in stream segments whose

stream temperatures were predicted to respond sensitively to air tem-

peratures, and this requires methods to characterize fine-scale ther-

mal heterogeneity (e.g., fiber-optics cable, Selker et al., 2006) and

habitat use by aquatic organisms (e.g., temperature tags, Hahlbeck

et al., 2022). In the meantime, stream segments identified as thermal

refugia in our study should be validated and this could be accom-

plished by deploying additional temperature loggers.

In conclusion, this study demonstrates that some brook trout habi-

tats will likely serve as thermal refugia in a changing climate, but that

existing landscape data do not precisely predict their locations. This

knowledge is critical for managing coldwater species in a warming cli-

mate and prioritizing conservation actions based on locations of

climate refugia (Jones et al., 2014). Importantly, climate refugia should

be defined and located based on stream thermal regimes in conjunction

with other key factors. Resistance and resiliency of aquatic populations

under climate change depend not only on stream thermal regimes but

also vulnerability of habitat to extreme wet (i.e., floods) and dry events

(i.e., droughts) and habitat patch size and connectivity which affects

post-disturbance recolonization and recovery of the populations (Eber-

sole et al., 2020). Such an integrative approach to identifying climate

refugia is similarly important to strategizing landscape-level conserva-

tion of brook trout and other coldwater-dependent organisms in the

southern and central Appalachian Mountains region.
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APPENDIX A

A.1 | Linear temperature model

For the linear regression, we omitted observations where air tempera-

tures were less than 0�C. We then fit weekly mean water temperature

TW (� C) at site i¼1,…,203 and week n¼1,…,N as a function of

weekly mean air temperature TA (�C) with

TWi,n �normal αiþβiTAi,n,σ2
� �

; ð5Þ

where βi is modeled as

βi � normal θ1þθ2PCA1,iþθ3PCA2,iþθ4PCA3,iþθ5PCA4,iþθ6PCA5,i,σ
2
β

� �
:

ð6Þ
Priors for the linear model were

αi �normal 0,1000ð Þ,
σ�uniform 0,10ð Þ,
θ�normal 0,100ð Þ,
σβ �uniform 0,10ð Þ,

ð7Þ

for site i¼1,…,203.

We implemented and evaluated the linear model using the same

Bayesian framework described for the logistic model. All parameters

converged at R̂ values of 1.1 or less. The model had an RMSE of 1.66

and a mean R2 of 0.9. Posterior predictive checks showed little evi-

dence for lack of fit, with mean Bayesian p-values for mean and stan-

dard deviation of 0.51 and 0.26. Linear regression slopes varied from

0.22 (95% HPDI: 0.19–0.24) to 1.02 (95% HPDI: 0.99–1.05), with an

average slope of 0.72. For comparison, the nonlinear model had a

mean R2 of 0.91, an RMSE of 1.73, and an average slope of 0.85.

A.2 | Prior distributions

For the logistic temperature model,

αi �normal minWaterTempi,100ð Þ,
ζi �normal maxWaterTempi,100ð Þ,

κi �normal 20,100ð Þ,
σ�uniform 0,10ð Þ,
θ�normal 0,100ð Þ,
σϕ �uniform 0,10ð Þ,

where minWaterTempi is the observed minimum water temperature

(�C) and maxWaterTempi is the observed maximum water tempera-

ture (�C) at site i¼1,…,203.

A.3 | Variable definitions

Hydrologic variables sourced from the USGS' NHDplus v2.1 (U.S.

Geological Survey, 2016) follow the form YZ_XX. The first letter of

the variable code (Y) represents the type of hydrologic variable, with

“Q” representing flow predictions and “V” representing stream

velocity predictions. The second letter of the variable code

(Z) represents the origin of the hydrologic variable, with “A” repre-

senting cumulative runoff, “C” representing reference gauge regres-

sion, and “E” representing gauge flow. XX indicates the time period

of record, with “MA” representing the mean annual statistic and

numbers representing monthly statistics. Landscape variables

sourced from the Environmental Protection Agency StreamCat data-

base (Hill et al., 2016) are classified at either the watershed (“Ws”)
or catchment (“Cat”) level. The NHDplus includes stream segment

details such as coordinates, elevation, slope, Strahler order, length,

and drainage area, as well as metrics of monthly and annual flow and

velocity. The StreamCat database includes metrics of landcover,

geology, soil makeup, and climate at the watershed and stream seg-

ment catchment scale. Watersheds are defined here as the contrib-

uting area of land that drains to the outlet of the stream segment,

while catchments are defined as portions of landscape that drain

directly to a stream segment, excluding upstream contributions (Hill

et al., 2016). StreamCat abbreviations are as follows: BFI, baseflow

index; PctColluvSed, % cover of colluviated sediment; PctDe-

cid2016, % cover of deciduous landcover as measured from 2016

LandSat dataPctUrbLo2016, % cover of low-density urban landcover

as measured from 2016 LandSat data; PctUrbMid2016, % cover of

mid-density urban landcover as measured from 2016 LandSat data;

PctUrbOp2016, % land cover of developed open space as measured

from 2016 LandSat data; Perm, mean soil permeability; precip, pre-

cipitation; Tmax, maximum air temperature; Tmean, mean air tem-

perature; Tmin, minimum air temperature; and WetIndex, soil

wetness index. Further variable descriptions may be found in the

NHDPlus User Guide and EPA StreamCat database metrics and

definitions page.
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