Journal of Fish and Wildlife Management

Patterns of Florida Bonneted Bat Occupancy at the Northern Extent of Its Range --Manuscript Draft--

Manuscript Number:	JFWM-22-055R1
Article Type:	Article
Keywords:	Eumops floridanus; Florida bonneted bat; forest cover; longleaf pine; red-cockaded woodpecker
Corresponding Author:	Robert A. Schorr Colorado State University, CNHP Fort Collins, Colorado UNITED STATES
First Author:	Robert A. Schorr
Order of Authors:	Robert A. Schorr
	Kristopher A. Pitcher
	Robert A. Aldredge
	Paul M. Lukacs
Abstract:	The Florida bonneted bat Eumops floridanus is a rare, endemic bat of south Florida, which roosts in woodpecker cavities, and anthropogenic structures, such as roofing tiles, chimneys, and bat houses. The northern-most occurrences of the bonneted bat are from mature pine forests at the Avon Park Air Force Range, Florida. We used ultrasonic acoustic recorders to understand bonneted bat activity and habitat occupancy. We modeled occupancy using a hierarchical Bayesian analysis, and included site- and time-specific covariates of detection probability, and site-specific covariates of occupancy. Probability of detection was low throughout Avon Park Air Force Range, but increased with Julian date. In most habitats, occupancy was poorly estimated, except for flatwood mature pinelands where occupancy was low (0.23 \pm 0.06). As distance from red-cockaded woodpecker colonies increased occupancy decreased (β = -1.19 \pm 0.26 SD). At the northern-most extent of the range, and throughout much of the historic range, increasing the expanse of mature, firemaintained forest systems will increase habitat for the bonneted bat, and lead to faster population recovery.

1	Schorr
---	--------

	Running Heading: Florida bonneted bat occupancy
1	Patterns of Florida Bonneted Bat Occupancy at the Northern Extent of Its Range
2	
3	Robert A. Schorr,* Kristopher A. Pitcher, Robert A. Aldredge, Paul M. Lukacs
4	
5	R.A. Schorr
6	Colorado Natural Heritage Program, Colorado State University, Fort Collins, CO 80523
7	K.A. Pitcher, R.A. Aldredge
8	U.S. Fish and Wildlife Service, Avon Park Air Force Range, Avon Park, FL 33825
9	P.M. Lukacs
10	Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of
11	Montana, Missoula, MT 59812
12	
13	*Corresponding author: robert.schorr@colostate.edu
14	

15

16	Abstract
17	The Florida bonneted bat <i>Eumops floridanus</i> is a rare, endemic bat of south Florida, which roosts
18	in woodpecker cavities, and anthropogenic structures, such as roofing tiles, chimneys, and bat
19	houses. The northern-most occurrences of the bonneted bat are from mature pine forests at the
20	Avon Park Air Force Range, Florida. We used ultrasonic acoustic recorders to understand
21	bonneted bat activity and habitat occupancy. We modeled occupancy using a hierarchical
22	Bayesian analysis, and included site- and time-specific covariates of detection probability, and
23	site-specific covariates of occupancy. Probability of detection was low throughout Avon Park
24	Air Force Range, but increased with Julian date. In most habitats, occupancy was poorly
25	estimated, except for flatwood mature pinelands where occupancy was low (0.23 \pm 0.06). As
26	distance from red-cockaded woodpecker colonies increased occupancy decreased (β = -1.19 ±
27	0.26 SD). At the northern-most extent of the range, and throughout much of the historic range,
28	increasing the expanse of mature, fire-maintained forest systems will increase habitat for the
29	bonneted bat, and lead to faster population recovery.
30	

Key words: *Eumops floridanus*, Florida bonneted bat, forest cover, longleaf pine, red-cockaded
woodpecker

33

Received: September 2022; Accepted: May 2023; Published Online Early: July 2023; Published:
December 2023

36

37	Citation: Schorr RA, Pitcher KA, Aldredge RA, Lukacs PM. 2023. Patterns of Florida bonneted
38	bat occupancy at the northern extent of its range. Journal of Fish and Wildlife Management
39	14(2):xx-xx; e1944-687X. https://doi.org/10.3996/JFWM-22-055
40 41	This Online Early paper will appear in its final typeset version in a future issue of the Journal of
42	Fish and Wildlife Management. This article has been accepted for publication and undergone full
43	peer review but has not been through the copyediting, typesetting, pagination, and proofreading
44	process, which may lead to differences between this version and the Version of Record. The
45	findings and conclusions in this article are those of the author(s) and do not necessarily represent
46	the views of the U.S. Fish and Wildlife Service.
47	
48	Introduction
49	The Florida bonneted bat <i>Eumops floridanus</i> (herein called "bonneted bat") is a federally
50	endangered species endemic to south Florida, with a limited range in seven counties (US
51	Endangered Species Act (ESA 1973, as amended); USFWS 2013). It is a large (40 – 65 g; Figure
52	1) bat that is active year-round and roosts in anthropogenic structures, such as tile roofing,
53	chimney structures, or bat houses, and in palms, and woodpecker cavities of live mature pines
54	and dead pine snags (Angell and Thompson 2015; Gore et al. 2015; Braun de Torrez et al. 2016;
55	Webb et al. 2021). The bonneted bat roosts in small colonies, which makes studying its
56	population ecology and habitat needs challenging (Gore et al. 2015; Bailey et al. 2017a).
57	Bonneted bats will roost in red-cockaded woodpecker Picoides borealis (RCW) cavities, and
58	likely used these more frequently when distribution of mature southern pines, such as longleaf
59	pine <i>Pinus palustris</i> and slash pine <i>Pinus elliottii</i> was greater (Walker 2000). These fire-adapted

60	ecosystems provided ideal open forests for bonneted bats to forage and roost (Angell and
61	Thompson 2015; Braun de Torrez 2018a; Braun de Torrez et al. 2018b).
62	The northern-most roosts of the bonneted bat occur at Avon Park Air Force Range (APAFR),
63	where there are stands of mature longleaf forest (Angell and Thompson 2015). Five active and
64	inactive bonneted bat roosts at APAFR are in RCW cavities. As with RCWs, bonneted bats may
65	have been more prevalent at APAFR when mature longleaf and slash pine forests were
66	ubiquitous in south-central Florida (Belwood 1992). The bonneted bat roosts at APAFR are
67	considerable distances from the nearest bonneted bat population along the Peace River
68	approximately 40 km southeast. The isolation of populations provides representation, and
69	conservation of these populations is critical for recovering bonneted bat populations and delisting
70	the species (Smith et al. 2018; Austin et al. 2022). The discovery of bonneted bats at APAFR
71	(Angell and Thompson 2015) gives promise that other roosts exist in similar forested systems in
72	south-central Florida, and it heightens the importance of conserving each isolated, small
73	population.
74	Current land management at APAFR is a balance between maintaining historic habitat types,
75	managing pine plantations, conserving native species, reducing natural fuel hazards, and
76	conducting daily military activities. The APAFR actively conserves habitat for rare species, like
77	the RCW, Florida scrub jay Aphelocoma coerulescens, and Florida grasshopper sparrow
78	Ammodramus savannarum, and bonneted bats. To accommodate the varied land use demands,
79	APAFR needs to understand where these rare species are, how they use the available habitats,
80	and how to minimize land management activities that threaten the species and their habitats. For
81	bonneted bats, biologists identify habitat use by collecting ultrasonic acoustic records throughout
82	the range. In this study, we use those recordings to estimate bonneted bat habitat use, and use

83	environmental and location-specific covariates to inform habitat occupancy and detection
84	probability.

- 85
- 86

Study site

87	We conducted this study at APAFR that is a 42,900-ha air-to-ground training complex
88	with 40,000 ha undeveloped lands in Polk and Highland counties, Florida (elevation = 37 m)
89	(Figure 2). Wildfires regularly occur at APAFR, ignited by lightning strikes and unintentionally
90	by on-going military training. In addition, prescribed fire is used to reduce fuel loads and
91	maintain pyrogenic-adapted land cover types, such as longleaf pine forest, oak Quercus scrub,
92	and dry prairie. The application of prescribed fire at APAFR contrasts the surrounding lands
93	where fire was suppressed in past decades. The wet season of APAFR typically lasts from mid-
94	May to November with warm temperatures (18-32°C) and ample precipitation (89 ± 27 cm/yr),
95	and the dry season (November to mid-May) has comparatively cooler temperatures and less
96	precipitation (12-25°C, 42 ± 15cm/yr; Duever et al. 1994; Slocum et al. 2010).
97	Roosting areas for the bonneted bat at APAFR are a mosaic of hydric flatwoods of south
98	Florida slash pine P. e. densa and pine flatwood-savannahs of longleaf pine (Figure 1). The
99	understory vegetation of hydric flatwoods is dominated by cutthroat grass Panicum abscissum,
100	while longleaf pine flatwoods and savannahs are dominated by wiregrass Aristida beyrichiana
101	and patchy woody shrubs, such as saw palmetto Serenoa repens. Other abundant land cover of
102	APAFR includes managed mixed pine plantations of north Florida slash pine, south Florida
103	slash, and long leaf pine, swamps of pond cypress <i>Taxodium ascendens</i> and bald cypress <i>T</i> .
104	distichum, hardwood hammocks, oak and pine scrublands, marshes, and grassland prairies

(Figure 2). Less than 1% of APAFR is developed lands that include a cantonment area, roads,and a runway.

- 107
- 108

Methods

109 Acoustic call collection and analysis

We conducted acoustic surveys from November 21, 2018, to March 10, 2020, deploying 110 autonomous recording units (ARU) with ultrasonic microphones (SM4BAT acoustic recorders 111 and SMM U2 microphones; Wildlife Acoustics, Inc., Maynard, MA) at 508 sites. We focused 112 our surveys in areas that had high potential for bonneted bat roosting habitat and areas with 113 higher potential for tree cavities or snags. We surveyed hydric flatwoods, pine flatwoods and 114 savannahs, pine plantations over 15 years old, cypress swamps, hardwood hammocks, and oak 115 116 and pine scrub, with some random points occurring in nearby grasslands, which encompassed 21,000 ha. We randomly selected ARU deployment locations that were separated by >100 m. 117 We mounted ARUs on a pole and tripod, with microphones at the top of the pole (4.9 m) and 118 119 started recording 30 minutes before sunset and ended 30 minutes after sunrise. We set ARUs to record with a minimum trigger frequency of 8 kHz because bonneted bats emit low frequency 120 calls between 10 to 18 kHz (Belwood 1992). Also, we set ARUs at a sample rate of 256 kHz, 121 volume trigger level at 12dB, minimum trigger window to 2 seconds, and minimum call duration 122 of 2 msec (Braun de Torrez et al. 2018a). We deployed each ARU for >3 consecutive nights. 123 To analyze recorded call files we used Kaleidoscope Pro 5.4.1 (Wildlife Acoustics, Inc.) 124 and the Bats of North America 5.4.0 classifier for Florida (Agranat 2013). We processed call 125 files using the Balanced or Neutral setting to filter out noise, low-quality calls, or non-bat call 126 127 files (Reichert et al. 2018), then used the auto-identification function software to identify

128	bonneted bats. We defined a call file as a recording that had at least three distinct pulses (bat-
129	emitted ultrasound) lasting between 2 and 15 seconds. We manually vetted all call files identified
130	as bonneted bats, removing any false positives and removing bat social calls, insect noise, and
131	bird vocalizations. We classified a call as coming from bonneted bat when the call had a
132	characteristic frequency of 10-18 kHz, a maximum frequency of 16-22 kHz, average call
133	duration of 10.2ms, and an average call per second of 5.5.
134	
135	Temporal and habitat-specific analysis covariates
136	We collected regional precipitation and temperature covariates from a weather station on
137	APAFR, and collected site-specific temperature using the summary files generated by the ARU
138	at each survey location. We calculated habitat covariates for each survey location in ArcGIS Pro
139	2.6.5 (ESRI, Redlands, California) using land cover feature layers, and used remote-sensed Light
140	Detection and Ranging (LIDAR) data (October 2018) in R (v 3.5.0) to determine tree stand
141	covariates within 100 m of each ARU (Beucher and Meyer 1993; Popescu and Wynne 2004; R
142	Core Team 2018; Plowright 2020). We identified individual trees and their canopy in the "Forest
143	Tools" package by setting the minimum tree height to 2 m and defining the dynamic window
144	size (lin \leftarrow function(x){x*0.05+2}; Popescu and Wynne 2004). Using burn history data, we
145	determined the date since last burn at each ARU location.
146	For modeling detection probability (p), we used weather covariates of maximum,
147	minimum, and mean overnight temperature range on ARU environmental data and from a nearby
148	weather station (Avon Park, FL; 27.61°N 81.51°W). We used weather station data of total
149	nightly precipitation, and maximum, minimum, and mean wind speed. We used ARU-specific
150	covariates of total number of call files auto-identified as Brazilian free-tailed bat Tadarida

151	brasiliensis (TABR) calls and noise. Also, we used habitat covariates that aggregated the major
152	habitat types at APAFR, including mature flatwood pinelands (flatwoods, which included hydric
153	flatwoods and pine flatwoods), pine plantations (plantations), scrubby flatwoods and sandhills
154	(scrub), oak hammock (oak), and cypress swamplands (swamp). An additional habitat type
155	(prairies) was not included in the original sampling design; however, some ARUs were placed in
156	pine plantations that had been clearcut and resembled grassland prairies. We used Julian date
157	because bonneted bats have increased detection probability later in the year, and we created a
158	covariate for mid-winter and mid-summer months when dominant male bonneted bats show
159	higher activity (January – March, July - August; Braun de Torrez et al. 2020).
160	For modeling occupancy, we used covariates of the six major habitat types used to model
161	p, and distances to and sizes of particular land features (Table 1). We used distance to nearest
162	RCW cluster, distance to nearest orange Citrus sinensus grove, area of nearest orange grove,
163	distance to nearest wetland, and area of nearest wetland. Also, we used ARU specific landscape
164	measurements within 100-km radius pertaining to forest canopy cover, forest crown area, tree
165	heights, and canopy radius (Table 1). In addition, we used days since last fire as a covariate. To
166	test if bonneted bat detections are lower during periods of high TABR activity, we calculated the
167	number of call files auto-identified as TABR at each ARU and used those as ARU-specific
168	covariates of detection. To detect if high levels of insect noise interfered with our ability to
169	detect bonneted bats, we calculated the number of noise call files recorded at each ARU location.
170	

171 Models and Analysis

We used Bayesian hierarchical occupancy models to estimate occupancy probabilityassuming imperfect detection (Royle and Darazio 2008; Bailey et al. 2017). We mean-centered

174	and standardized occupancy and detection covariates to speed Markov chain Monte Carlo
175	(MCMC) convergence and modeled detection probability first, while holding occupancy time
176	dependent (Morin et al. 2020). We used JAGS v 4.3.0 launched from RStudio v 1.3.1073 with
177	the R2jags library (Su and Yajima 2021) for Bayesian estimation of model parameters via
178	MCMC samples of posterior distributions. We input each covariate as a random effect using a
179	vague, normally distributed [$N(0,0.01]$ prior on logit-scale parameters (Kery and Royle 2015).
180	Posterior samples were ranged on 50,000 MCMC samples of posterior distributions of three
181	chains, following a burn-in of 10,000. We assessed convergence of MCMC chains using trace
182	plots and Gelman-Rubin diagnostics (\hat{R}). Convergence was reached for all parameters according
183	to the criteria $ \hat{R} - 1 < 0.1$ (Ntzoufras 2009). We standardized all covariates to speed MCMC
184	convergence.
185	We evaluated models using an indicator variable selection process (Hobbs and Hooten
186	2015). We built parameter weights for covariates, which depict the percentage of time a
187	particular covariate was included in the model iteration (Kuo and Mallick 1998). We ran models
188	with the full suite of covariates and removed any covariates that were included in less than 50%
189	of the iterations. We reran the analysis with covariates that were included in \geq 50% of iterations.
190	

191

Results

We conducted acoustic recording at 498 sites at APAFR and deployed ARUs from 3 – 25 nights
(mean: 5 nights). Acoustic analysis was not conducted at nine ARUs because of recording errors.
Some ARUs recorded for multiple weeks because weather and military activity prevented
retrieval. We recorded bonneted bats at 128 locations, and estimated that bonneted bats could be
at 166 locations (95% credible interval (CI): 149 – 188). The best model for detection probability

197	included covariates of Julian date and habitat type. Detection probability was comparably low in
198	all habitat types (p = $0.07 - 0.10, \pm 0.01 - 0.04$ SD), but detection probability was substantially
199	lower in oak habitats (p = 0.02 ± 0.01 SD, Table 2). Including the covariate Julian date increased
200	p ($\beta = 0.41 \pm 0.07$ SD).
201	The best model for occupancy included three habitat types, including pine plantations,
202	prairies, and flatwoods. Occupancy was greatest in plantations ($\psi = 0.39 \pm 0.33$ SD), then
203	prairies ($\psi = 0.38 \pm 0.32$ SD), and flatwoods ($\psi = 0.23 \pm 0.06$ SD), but was poorly estimated in
204	all but flatwood habitats ($CV > 50\%$). Occupancy decreased as distance to a RCW colony
205	increased (β = -1.19 ± 0.26 SD, Figure 3). Also, occupancy decreased as the area of nearest
206	wetland increased (β = -0.26 ± 4.01 SD), and as distance to nearest orange grove increased (β = -
207	0.42 ± 3.05 SD), but these impacts are poorly estimated.
208	

209

Discussion

Bonneted bats were detected in all the APAFR habitat types included in this analysis, including 210 211 scrub, swamp, flatwoods, prairies, and pine plantations, but only occurred in pine plantations, flatwoods, and prairies often enough to produce estimates of occupancy. Additionally, only 212 occupancy estimates in flatwoods habitats produced reasonable estimates of variability. 213 Flatwoods habitats include all native, old-growth longleaf and slash pine where bonneted bat 214 roosts occur at APAFR. It is these mature pine stands where RCWs and the cavities they build 215 are more available as bonneted bat roosts. Thus, it is not surprising that two of the best predictors 216 217 of bonneted bat occupancy are the presence of flatwoods habitat types and the distance to RCW clusters. At APAFR there are 45 active clusters and 8 inactive clusters, with 229 artificial 218 219 cavities and 119 natural cavities in 348 cavity trees. The land cover throughout the bonneted

bat's range includes developed and undeveloped lands, and Bailey et al.'s (2017b) range wide 220 analysis did not find bonneted bats preferentially using pinelands. We believe our analysis at 221 APAFR showed bonneted bat occupancy closely associated with flatwood pinelands because 222 223 bonneted bats roost in tree cavities of mature pines, and our analysis did not include developed areas that were a minor land cover at APAFR. Although we did not include developed areas as a 224 habitat type for this study, there were multiple ARUs near developed areas that likely would 225 have detected bonneted bats if they occurred in developed areas. We would like to include a 226 covariate of distance to developed lands that includes areas off APAFR as a follow-up analysis. 227 The inclusion of prairie habitats for bonneted bat occupancy may allude to bonneted bats' 228 need for open foraging habitat (Voigt and Holderied 2012). Bonneted bats frequently use 229 agricultural lands, likely as feeding habitats, and the most-similar, open habitat types on APAFR 230 231 are prairie grasslands (Bailey et al. 2017b). The nearest agricultural lands at APAFR are orange groves, and distance to nearest orange grove was an informative, albeit poorly estimated, 232 covariate for estimating bonneted bats occupancy. We believe that prairie habitats and nearby 233 234 orange groves provide necessary, proximate insect-rich feeding sites (Simanton 1960; Swengel 2001). The loss of southern longleaf and slash pine forests, and suppression of low-intensity, 235 short-return fire intervals that limited understory development in most remaining forests, has 236 greatly reduced the availability of open prairies in mature forests (Croker 1987). Broad swaths of 237 recently-burned forest, with limited vegetative clutter, may have been the primary hunting 238 grounds of bonneted bats. Agricultural lands may now act as surrogate hunting resources for 239 molossid bats (Cleveland et al. 2006; Noer et al. 2012), which may explain their inclusion in 240 bonneted bat occupancy analyses. However, agricultural lands may not provide lepidopteran 241 242 prey that molossid bats prefer (Krauel et al. 2018). These habitats may not include as much moth

243 diversity and biomass as natural, fire-maintained southern pine grasslands (Armitage and Ober244 2012).

Pine-dominated landscapes cover a large proportion (84%) of APAFR, but only a small 245 fraction (~ 13%) of these pinelands have the mature longleaf and slash pines that would provide 246 roosting habitat for bonneted bats. Currently, there is one active bonneted bat roost, one inactive 247 roost, and three roosts that are no longer viable. All roosts are in woodpecker cavities in mature 248 longleaf pines, except a temporary roost that was under loose bark. The inviable roosts are in 249 trees damaged by hurricanes, in cavities degraded by woodpecker activity, or in use by other 250 species, such as big brown bats *Eptesicus fuscus* or Brazilian free-tailed bats. Efforts to increase 251 bonneted bat habitat at APAFR will require expanding the availability of mature pinelands for 252 the woodpeckers that create bonneted bat roosts. Actively managing forests with historic burning 253 254 regimes will increase forest types and structure that supports habitat for bonneted bats and other rare species (Van Lear et al. 2005; Braun de Torrez et al. 2018a; 2018b). Restoration of longleaf 255 pine forests at APAFR using natural fire regimes and appropriate silviculture practices 256 257 (Brockway et al. 2005) will increase habitat suitability for bonneted bats by increasing expanses of mature pines for roost availability, open space for hunting prey, and the insect communities 258 they feed on (Braun de Torrez 2018b). 259

Interestingly, all active and inactive bonneted bat roosts are only along the northern edge of APAFR where mature pinelands are most abundant. Bonneted bat distribution models suggest additional habitat exists in the southern sections of APAFR and Polk County (Bailey et al. 2017b). Expanding mature longleaf forests southward would increase the availability and viability of habitat for bonneted bats, and RCW that create cavity roosts. Contiguous forests would increase the success of recovery efforts by connecting bonneted bat habitat and

266	populations, and increasing security from stochastic weather events, such as the increasing
267	frequency and severity of hurricanes (Zampieri et al. 2020). Besides creating forests more
268	attractive to the woodpeckers that create natural cavities, artificial bat boxes have proven to be
269	viable bonneted bat roosting alternates (Bailey et al. 2017a). However, even in areas where bat
270	boxes have been successful, there is an abundance of flatwood forests similar to the mature pine
271	stands of APAFR (FWC 2014). Installation of bat boxes in mature pine stands may provide
272	roosting alternatives for bonneted bats when RCWs are unavailable to build natural roosts.
273	This study is the first to assess bonneted bat habitat use at APAFR; however, because we did
274	not deploy ARUs in all available habitats we cannot assess habitat use in unsampled land cover
275	types (developed areas). Although bonneted bats tend to avoid developed areas (Bailey et al.
276	2017b), future effort should include sampling in these habitats to understand use patterns at
277	APAFR. As further acoustic sampling refines bonneted bat habitat use at APAFR, sampling tools
278	that optimize detection of rare or clustered species can increase efficiency of future sampling
279	design (Brown et al. 2013).

280

Supplemental Material

Data S1. Florida bonneted bat *Eumops floridanus* (EUFL) ultrasonic acoustic data from 2018 –
2020 from Avon Park Air Force Range, Polk and Highland counties, Florida. The first column
represents the location label, and each subsequent column is the detection (1) or failure to detect
(0) nightly EUFL acoustic file detection history. Data file (.xlsx)

285

Data S2. Site-specific landscape and vegetation covariates from 2018 – 2020 used for modeling
Florida bonneted bat *Eumops floridanus* occupancy at Avon Air Force Base, Polk and Highland
counties, Florida. The first column represents the location of acoustic recording, and each

289	column represents the landscape- or vegetation-specific attributes of that site. There is a separate		
290	tab in the worksheet to define the covariates and their abbreviations. Data file (.xlsx)		
291			
292	Reference S1. Brockway DG, Outcalt KW, Tomczak DJ, Johnson EE. 2005. Restoration of		
293	longleaf pine ecosystems. U.S. Forest Service General Technical Report SRS-83. U.S.		
294	Department of Agriculture, Forest Service, Southern Research Station. Asheville, North		
295	Carolina. 34 pp.		
296	Available: https://www.srs.fs.usda.gov/pubs/20672		
297			
298	Reference S2. Croker TC. 1987. Longleaf pine: a history of man and a forest. United States		
299	Department of Agriculture, Forest Service, Forestry Report R8-FR7. U.S. Forest Service,		
300	Atlanta, Georgia.		
301	Available: https://www.fs.usda.gov/research/treesearch/59547		
302			
303	Reference S3. Florida Fish and Wildlife Conservation Commission (FWC). 2003. A conceptual		
304	management plan for Fred C. Babcock – Cecil M. Webb Wildlife Management Area. Florida		
305	Fish and Wildlife Conservation Commission, Tallahassee.		
306	Available: https://chnep.wateratlas.usf.edu/upload/documents/cmp-babcock-webb.pdf		
307			
308	Reference S4. Plowright A. 2018. ForestTools: Analyzing Remotely Sensed Forest Data. R		
309	package version 0.2.0.		
310	Available: <u>https://CRAN.R-project.org/package=ForestTools</u> .		
311			

312	Reference S5. Reichert B, Lausen C, Loeb S, Weller T, Allen R, Britzke E, Hohoff T, Siemers J,
313	Burkholder B, Herzog C., Verant M. 2018. A guide to processing bat acoustic data for the North
314	American Bat Monitoring Program (NABat): U.S. Geological Survey Open-File Report 2018-
315	1068, 33 pp.
316	Available: https://pubs.er.usgs.gov/publication/ofr20181068
317	
318	Reference S6. Su Y, Yajima M. 2021. R2jags: using R to run 'JAGS' R package. Version 0.7-1.
319	Available: https://cran.r-project.org/web/packages/R2jags/index.html
320	
321	Reference S7. [USFWS] U.S. Fish and Wildlife Service. 2013. Endangered species status for the
322	Florida bonneted bat. Federal Register 78:61003-61043.
323	Available: https://www.federalregister.gov/documents/2013/10/02/2013-
324	23401/endangered-and-threatened-wildlife-and-plants-endangered-species-status-for-the-florida-
325	bonneted-bat.
326	
327	Acknowledgments
328	We are grateful to Emily Angell, Aline Morrow and Katrina Pawlaczyk for their invaluable help
329	in deploying the 500+ bat monitors across APAFR, and Brendan Myers and Troy Hershberger
330	for their role in helping to fund and initiate the acoustic monitoring of bats at APAFR. This
331	research was funded through Fiscal Year 2018 Air Force project AFCW50979318 award to the
332	US Fish and Wildlife Service.
333	Any use of trade, product, website, or firm names in this publication is for descriptive purposes
334	only and does not imply endorsement by the U.S. Government.

335	References
336	Agranat I. 2013. Bat species identification from zero crossing and full spectrum echolocation
337	calls using HMMs, Fisher scores, unsupervised clustering, and balanced pairwise classifiers.
338	Journal of the Acoustical Society of America 133:331. doi.org/10.1121/1.4799403 (March
339	2023).
340	Angell EN, Thompson G. 2015. Second record of natural Florida bonneted bat (Eumops
341	floridanus) roost in a longleaf pine (Pinus palustris). Florida Field Naturalist 43:185-188.
342	Armitage DW, Ober HK. 2012. The effects of prescribed fire on bat communities in the longleaf
343	pine sandhills ecosystem. Journal of Mammalogy 93:102-114. doi.org/10.1644/11-MAMM-
344	A-169.1 (March 2023).
345	Austin JD, Gore J, Hargrove J, Braun de Torrez E, Carneiro C, Ridgely F, Wisely S. 2022.
346	Strong population genetic structure and cryptic diversity in the Florida bonneted bat (Eumops
347	floridanus). Conservation Genetics 23:495-512. doi.org/10.1007/s10592-022-01432-y
348	(March 2023)
349	Bailey AM, McCleery RA, Ober HK, Pine WE. 2017a. First demographic estimates for
350	endangered Florida bonneted bats suggest year-round recruitment and low apparent survival.
351	Journal of Mammalogy 98: 551-559. doi.org/10.1093/jmammal/gyw198 (March 2023)
352	Bailey AM, Ober HK, Sovie A, McCleery RA. 2017b. Impact of land use and climate on the
353	distribution of the endangered Florida bonneted bat. Journal of Mammalogy 98:1586–1593.
354	doi.org/10.1093/jmammal/gyx117 (March 2023).
355	Belwood, J.J. 1992. Florida mastiff bat, Eumops glaucinus floridanus. Pages 216 – 232 in
356	Humphrey SR, editor. Rare and endangered biota of Florida. Volume I. Mammals.
357	Gainesville, Florida: University Press of Florida.

358	Beucher S, Meyer F. 1993. The morphological approach to segmentation: the watershed
359	transformation. Mathematical Morphology in Image Processing. Baton Rouge, Louisiana:
360	CRC Press.
361	Braun de Torrez EC, Gore JA, Ober HK. 2020. Evidence of resource-defense polygyny in an
362	endangered subtropical bat, Eumops floridanus. Global Ecology and Conservation
363	24:e01289. doi.org/10.1016/j.gecco.2020.e01289 (March 2023).
364	Braun de Torrez EC, Ober HK, McCleery RA. 2016. Use of a multi-tactic approach to locate an
365	endangered Florida bonneted bat roost. Southeastern Naturalist 15:235-242.
366	doi.org/10.1656/058.015.0204 (March 2023).
367	Braun de Torrez EC, Ober HK, McCleery RA. 2018a. Activity of an endangered bat increases
368	immediately following prescribed fire. Journal of Wildlife Management 82:1115–1123.
369	doi.org/10.1002/jwmg.21481 (March 2023).
370	Braun de Torrez EC, Ober HK, McCleery RA. 2018b. Restoring historical fire regimes increases
371	activity of endangered bats. Fire Ecology 14:9. doi.org/10.1186/s42408-018-0006-8 (March
372	2023).
373	Brockway DG, Outcalt KW, Tomczak DJ, Johnson EE. 2005. Restoration of longleaf pine
374	ecosystems. U.S. Forest Service General Technical Report SRS-83. U.S. Department of
375	Agriculture, Forest Service, Southern Research Station. Asheville, North Carolina. 34 pp.
376	(see Supplemental Material, Reference S1).
377	Brown JA, Salehi MM, Moradi M, Panahbehagh B, Smith DR. 2013. Adaptive survey designs
378	for sampling rare and clustered populations. Mathematics and Computers in Simulation
379	93:108-116. doi.org/10.1016/j.matcom.2012.09.008 (March 2023).

380	Cleveland CJ, Betke M, Federico P, Frank JD, Hallam TG, Horn J, Lopez, Jr., JD, McCracken
381	GF, Medellín, Moreno-Valdez A, Sansone CG, Westbrook JK, Kunz TH. 2006. Economic
382	value of the pest control services provided by Brazilian free-tailed bats in south-central
383	Texas. Frontiers in Ecology and the Environment 4:238-243. doi.org/10.1890/1540-
384	9295(2006)004[0238:EVOTPC]2.0.CO;2 (March 2023).
385	Corcoran AJ, Conner WE. 2014. Bats jamming bats: food competition through sonar
386	interference. Science 346:745–747. DOI: 10.1126/science.125951 (March 2023).
387	Croker TC. 1987. Longleaf pine: a history of man and a forest. United States Department of
388	Agriculture, Forest Service, Forestry Report R8-FR7. U.S. Forest Service, Atlanta, Georgia.
389	(see Supplemental Material, Reference S2).
390	Duever MJ, Meeder JF, Meeder LC, McCollom JM. 1994. The climate of South Florida and its
391	role in shaping the Everglades ecosystem. Pages 225-248 in Davis SM, Ogden JC, editors.
392	Everglades: the ecosystem and its restoration. Delray Beach, Florida: St. Lucie Press.
393	[ESA] US Endangered Species Act of 1973, as amended, Pub. L. No. 93-205, 87 Stat. 884 (Dec.
394	28, 1973). Available at: https://www.fws.gov/endangered/esa-library/pdf/ESAall.pdf
395	Florida Fish and Wildlife Conservation Commission (FWC). 2003. A conceptual management
396	plan for Fred C. Babcock – Cecil M. Webb Wildlife Management Area. Florida Fish and
397	Wildlife Conservation Commission, Tallahassee. (see Supplemental Material, Reference S3).
398	Gore JA, Robson MS, Zambrano R, Douglass NJ. 2015. Roosting sites of a Florida bonneted bat
399	(Eumops floridanus). Florida Field Naturalist 43:179-184.
400	Hooten MB, Hobbs NT. 2015. A guide to Bayesian model selection for ecologists. Ecological
401	Monographs 85:3-28. doi.org/10.1890/14-0661.1 (March 2023).

402	Jones TK, Wohlgemuth MJ, Conner WE. 2018. Active acoustic interference elicits echolocation
403	changes in heterospecific bats. Journal of Experimental Biology 221:jeb176511.
404	doi.org/10.1242/jeb.176511 (March 2023).
405	Kery M, Royle JA. 2015. Applied hierarchical modeling in ecology: analysis of distribution,
406	abundance, and species richness in R and BUGS. Academic Press, London, United
407	Kingdom.
408	Krauel JJ, Ratcliffe JM, Westbrook JK, McCracken GF. 2018. Brazilian free-tailed bats
409	(Tadarida brasiliensis) adjust foraging behavior in response to migratory moths. Canadian
410	Journal of Zoology 96:513-520. doi.org/10.1139/cjz-2017-0284 (March 2023).
411	Kuo L, Mallick B. 1998. Variable selection for regression models. The Indian Journal of
412	Statistics: Special Issue on Bayesian Analysis 60:65-81.
413	https://www.jstor.org/stable/25053023 (March 2023)
414	Morin DJ, Yackulic CB, Diffendorfer JE, Lesmeister DB, Nielsen CK, Reid J, Schauber EM.
415	2020. Is your ad hoc model selection strategy affecting your multimodel inference?
416	Ecosphere 11:e020997. doi.org/10.1002/ecs2.2997 (March 2023).
417	Noer CL, Dabelsteen T, Bohmann K, Monadjem A. 2012. Molossid bats in an African agro-
418	ecosystem select sugarcane fields as foraging habitat. African Zoology 47:1-11.
419	doi.org/10.1080/15627020.2012.11407517 (March 2023).
420	Ntzoufras, I. 2009. Bayesian modeling using WinBUGS. Wiley, Hoboken, New Jersey.
421	Plowright A. 2018. ForestTools: analyzing remotely sensed forest data. R package version 0.2.0.
422	(see Supplemental Material, Reference S4).
423	Popescu SC, Wynne RH. 2004. Seeing the trees in the forest. Photogrammetric Engineering &
424	Remote Sensing 70:589-604. doi.org/10.14358/PERS.70.5.589 (March 2023).

- R Core Team. 2018. *R: A language and environment for statistical computing*. R Foundation for
 Statistical Computing, Vienna, Austria.
- 427 Reichert B, Lausen C, Loeb S, Weller T, Allen R, Britzke E, Hohoff T, Siemers J, Burkholder B,
- 428 Herzog C., Verant M. 2018. A guide to processing bat acoustic data for the North American
- 429 Bat Monitoring Program (NABat): U.S. Geological Survey Open-File Report 2018–1068, 33
- 430 pp. (see *Supplemental Material*, Reference S5).
- 431 Royle JA, Dorazio RM. 2008. *Hierarchical modeling and inference in ecology*. Elsevier,
- 432 London, United Kingdom.
- 433 Simanton WA. 1960. Seasonal populations of citrus insects and mites in commercial groves. The
- 434 *Florida Entomologist* 43:49-57. doi.org/10.2307/3492379 (March 2023).
- 435 Slocum MG, Platt WJ, Beckage B, Orzell SL, Taylor W. 2010. Accurate quantification of
- 436 seasonal rainfall and associated climate–wildfire relationships. *Journal of Applied*
- 437 *Meteorology and Climatology* 49:2559–2573. doi.org/10.1175/2010JAMC2532.1 (March
- 438 2023).
- 439 Smith DR, Allan NL, McGowan CP, Szymanski JA, Oetker SR, Bell HM. 2018. Development of
- 440 a Species Status Assessment process for decisions under the U.S. Endangered Species Act.
- Journal of Fish and Wildlife Management 9:302-320. https://doi.org/10.3996/052017-JFWM-
- 442 041 (March 2023)
- 443 Su Y, Yajima M. 2021. R2jags: using R to run 'JAGS' R package. Version 0.7-1. (see
- 444 *Supplemental Material*, Reference S6).
- 445 Swengel AB. 2001. A literature review of insect responses to fire, compared to other
- 446 conservation managements of open habitat. *Biodiversity and Conservation* 10:1141-1169.
- 447 doi.org/10.1023/A:1016683807033 (March 2023).

440 - 1051 w 5 10.5 . This and when the Service, 2015. Entrangence species status for the Th
--

- bonneted bat. Federal Register 78:61003-61043. (see *Supplemental Material*, Reference S7).
- 450 Van Lear DH, Carroll WD, Kapeluck PR, Johnson R. 2005. History and restoration of the
- 451 longleaf pine-grassland ecosystems: implications for species at risk. *Forest Ecology and*
- 452 *Management* 211:150-165. doi.org/10.1016/j.foreco.2005.02.014 (March 2023).
- 453 Voigt CC, Holdereid MW. 2012. High manoeuvring costs force narrow-winged molossid bats to
- 454 forage in open space. *Journal of Comparative Physiology B* 182:415-424.
- 455 doi.org/10.1007/s00360-011-0627-6 (March 2023).
- 456 Walker KJ. 2000. Historical ecology of the southeastern longleaf and slash pine flatwoods: a
- 457 southwest Florida perspective. *Journal of Ethnobiology* 20:269-299.
- 458 https://ethnobiology.org/sites/default/files/pdfs/JoE/20-2/Walker.pdf (March 2023).
- 459 Webb, EN, Ober HK, Braun de Torrez EC, Gore JA, Zambrano R. 2021. Urban roosts: use of
- 460 buildings by Florida bonneted bats. Urban Naturalist 42:1-11. https://eaglehill.us/urna-pdfs-
- 461 regular/urna-042-Ober.pdf (March 2023).
- Zampieri NE, Pau S, Okamoto DK. 2020. The impact of Hurricane Michael on longleaf pine
- habitats in Florida. *Scientific Reports* 10:8483. doi.org/10.1038/s41598-020-65436-9 (March

464 2023).

465

466	Figure 1. Photographs of the Florida bonneted bat <i>Eumops floridanus</i> and bonneted bat habitat
467	from southern Florida, including (A), a Florida bonneted from Fred C. Babcock/Cecil M. Webb
468	Wildlife Management Area, Florida, 2018, (B), typical longleaf pine Pinus palustris forest at
469	Avon Park Air Force Range (APAFR), Florida, including, and (C) biologists looking into a
470	bonneted bat roost, APAFR, 2019. Photographs taken by RAS, KAP.
471	
472	Figure 2. Map of Avon Park Air Force Range location in Florida and the landcover types and
473	autonomous recording unit (ARU) locations on Avon Park Air Force Range, 2018 – 2020.
474	
475	Figure 3. Florida bonneted bat Eumops floridanus occupancy and distance to red-cockaded
476	woodpecker Picoides borealis colony at Avon Park Air Force Range, Florida, 2018-2019.
477	
478	
479	Table 1. Covariates and their predicted impact on occupancy and detectability of Florida
480	bonneted bat Eumops floridanus at Avon Park Air Force Range, Avon Park, Florida, 2018 -
481	2019.
482	
483	Table 2. Covariates with \geq 50% inclusion in variable selection runs and estimated effect size (β)
484	and 95% credible interval (CI) for occupancy and detectability of Florida bonneted bats Eumops
485	floridanus at Avon Park Air Force Range, Florida, 2018 - 2019.
486	

<Fig. 1>

<Fig. 2>

<Fig. 3>

distance to RCW colony (m)

Table 1. Covariates and their predicted impact on occupancy and detectability of F Air Force Range, Avon Park, Florida, 2018 - 2019.

Covariate	How applied
ARU Nightly Temperature (mean, maximum, minimum)	Daily
Scotophase	Daily
Nightly Temperature (mean, maximum, minimum)	Daily
Nightly Precipitation	Daily
Nightly wind (mean, maximum, minimum)	Daily
Tadarida brasiliensis activity	Daily
Acoustic noise	Daily
Distance from nearest Picoides borealis cluster	Site
Distance from nearest Citrus sinensis grove	Site
Area of nearest Citrust sinensis grove	Site
Distance from nearest wetland	Site
Area of nearest wetland	Site
Habitat type	Site
Distance from nearest tree within 100 m	Site
Height of nearest tree within 100 m	Site
Canopy radius (m) of nearest tree within 100 m	Site
Canopy cover within 100 m	Site
Percent canopy cover within 100 m	Site
Crown area (m^2) within 100 m (mean, maximum,	
minimum)	Site
Height of trees within 100 km (mean, maximum,	
minimum)	Site
Canopy radius (m) of trees within 100 km (mean,	
maximum, minimum)	Site
Days since last forest fire	Site

Predicted impact			
Occupancy	Detectability		
-	increase		
-	decrease		
-	increase		
-	decrease		
decrease	-		
decrease	-		
increase	-		
increase	increase		
increase	increase		
decrease/increase	decrease/increase		
increase	-		
increase	-		
decrease	-		
decrease	-		
decrease	-		
decrease	-		
decrease	-		
decrease	-		
decrease	_		

lorida bonneted bat Eumops floridanus at Avon Park

Table 2. Covariates with \geq 50% inclusion in variable selection runs and estimated effect size (β) and 95 (CI) for occupancy and detectability of Florida bonneted bats *Eumops floridanus* at Avon Park Air For 2018 - 2019.

Detectability	Percent inclusion	в (95% CI)
Habitat - Flatwoods	100	-2.52 (-2.74, -2.32)
Habitat - Grass/Prairie	50	-2.67 (-3.11, -2.28)
Habitat - Oak	100	-4.19 (-5.54, -2.84)
Habitat - Pine Plantation	100	-2.65 (-3.04, -2.28)
Habitat - Scrub	100	-2.39 (-2.89, -1.93)
Habitat - Swamp/Marsh	100	-2.33 (-3.24, -1.58)
Julian Date	100	0.41 (0.27, 0.55)
Occupancy		
Habitat - Flatwoods	100	-1.25 (-1.72, -0.72)
Habitat - Grass/Prairie	57	-0.55 (-8.80, 8.82)
Habitat - Pine Plantation	53	-0.47 (-8.87, 8.92)
Area of nearest wetland	50	-0.26 (-8.80, 9.00)
Distance to nearest Citrus sinensus grove	72	-0.43 (-8.17, 8.15)
Distance to nearest Picoides borealis colony	100	-1.19 (-1.70, -0.72)

% credible interval ce Range, Florida,

parameter (95% CI)
0.08 (0.06, 0.09)
0.07 (0.04, 0.09)
0.02 (0.00, 0.06)
0.07 (0.05, 0.09)
0.09 (0.05, 0.13)
0.10 (0.04, 0.17)
0.60 (0.57, 0.63)
0.23 (0.15, 0.33)
0.38 (0.00, 1.00)

 $\begin{array}{c} 0.38 \ (0.00, \ 1.00) \\ 0.39 \ (0.00, \ 1.00)) \\ 0.44 \ (0.00, \ 1.00) \\ 0.40 \ (0.00, \ 1.00) \\ 0.24 \ (0.15, \ 0.33) \end{array}$

Supplemental Material Data S1

Click here to access/download Supplemental Material S1.xlsx

Supplemental Material Data S2

Click here to access/download Supplemental Material S2.xlsx

Click here to access/download **Supplemental Material** Brockway et al. 2005 restoration of longleaf pine ecoystems.pdf

Click here to access/download **Supplemental Material** Croker 1987 Longleaf pine a history of man and a forest.pdf

Click here to access/download Supplemental Material FWC 2003 Conceptural management plan BWMA.pdf

Click here to access/download **Supplemental Material** Reichert et al 2018.pdf

Click here to access/download Supplemental Material R2jags.pdf

Click here to access/download Supplemental Material USFWS ES status Florida bonneted bat.pdf Response to Reviewers.

Click here to access/download **Response to Reviewers.** JFWM Response to Reviewers.docx