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A geospatial model of ambient sound pressure levels in the
contiguous United States

Daniel Mennitt,a) Kirk Sherrill, and Kurt Fristrup
Natural Sounds and Night Skies Division, National Park Service, 1201 Oakridge Drive, Suite 100,
Fort Collins, Colorado 80525

(Received 21 March 2013; revised 2 October 2013; accepted 21 March 2014)

This paper presents a model that predicts measured sound pressure levels using geospatial features
such as topography, climate, hydrology, and anthropogenic activity. The model utilizes RANDOM

FOREST, a tree-based machine learning algorithm, which does not incorporate a priori knowledge of
source characteristics or propagation mechanics. The response data encompasses 270 000 h of
acoustical measurements from 190 sites located in National Parks across the contiguous United
States. The explanatory variables were derived from national geospatial data layers and cross
validation procedures were used to evaluate model performance and identify variables with
predictive power. Using the model, the effects of individual explanatory variables on sound
pressure level were isolated and quantified to reveal systematic trends across environmental
gradients. Model performance varies by the acoustical metric of interest; the seasonal L50 can be
predicted with a median absolute deviation of approximately 3 dB. The primary application for this
model is to generalize point measurements to maps expressing spatial variation in ambient sound
levels. An example of this mapping capability is presented for Zion National Park and Cedar
Breaks National Monument in southwestern Utah.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4870481]

PACS number(s): 43.50.Rq, 43.28.Js, 43.28.Hr, 43.50.Vt [SF] Pages: 2746–2764

I. INTRODUCTION

The atmospheric environment is filled with sounds that
vary in number, structure, and magnitude across time and
space. Natural phenomena such as time of day, seasonality,
location, terrain, weather, temperature, and animal distribu-
tion and behavior influence the structure and complexity of
the natural acoustical environment.1–3 For example, there are
more than a thousand species of grasshoppers, crickets, and
other Orthopera in North America. Each species of this so-
niferous order contributes a unique voice to the natural cho-
rus, a voice modulated by season, time of day, and
temperature. The wealth of ecological information revealed
by natural sounds—as well as the high public value placed
on soundscape preservation—has motivated diverse efforts
to measure, understand, and manage acoustical
environments.4–14

The U. S. Congress required the National Park Service
(NPS) to focus on acoustic resource conservation in 1975
identifying “natural quiet” as a resource and a value to be
protected in Grand Canyon (Public Law 93–620). Since
then, over 250 000 h of acoustical monitoring data have been
collected from hundreds of sites in NPS units.4 These exten-
sive data, acquired at substantial cost, represent an extremely
sparse spatial sample of the 34 � 106 hectares of land and
730 000 hectares of aquatic habitats managed by the NPS.
These site data can be generalized into maps of predicted
sound levels, with accompanying estimates of predictive ac-
curacy, by determining the relationships between measured

sound levels and geospatial data sets having continental cov-
erage. The resulting maps will clarify the range of resource
conditions within park units, and support resource manage-
ment across regional scales and multiple management
authorities.15 This approach parallels a proposal by Ferrier
for addressing gaps in spatial monitoring of biodiversity.16

This paper presents a model relating expected sound
pressure levels to geospatial data quantifying biological,
geophysical, climatic, and anthropogenic variables. The
measurements that are predicted are long term seasonal val-
ues of one-third octave band levels and full spectrum
weighted and unweighted levels. Finer time scales are not
addressed. Numerous approaches to regression analysis
exist, each with affinities for particular data sets. Machine
learning methods are desirable in situations where the form
of the dependency between variables is unknown, or if a
given variable has any predictive power at all. In this paper,
relationships between the acoustic and geospatial data were
discovered using RANDOM FOREST, a tree-based machine learn-
ing algorithm.17 Section II introduces the acoustic and geo-
spatial data sets used to train the models in more detail.
Section III presents an overview of the RANDOM FOREST algo-
rithm and the methods used for construction and evaluation
of the geospatial model. Results of the modeling effort show
that non-acoustic geospatial information can help predict
sound pressure levels. These explanatory variables have
been identified using a method that imposes a strict criterion
based on exhaustive leave-one-out cross validation error.
The collective structure of the measured soundscapes is dis-
cussed in Sec. IV. The influence of important explanatory
variables on sound pressure level was quantified. The rela-
tive contributions across the spectrum show how geospatial
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variables represent acoustic sources and drive sound pressure
levels. Section V focuses on applications of the optimized
models to produce visual representations of the acoustical
landscape, using the example of a region in southeastern
Utah region including Zion National Park. Scenarios were
processed to estimate the relative contributions of anthropo-
genic and natural sounds to ambient sound levels.

A digression is merited to distinguish the approach
taken in this paper from the many noise modeling tools that
are routinely utilized for transportation and land use plan-
ning. In general, these models specify the noise output of a
source and predict the attenuation of that energy as it propa-
gates to hypothetical receiver locations.18 These models
incorporate varying amounts of information about the
physics of propagation and pertinent environment factors
(e.g., terrain, ground cover, and windspeed).19–21 This
approach is convenient when noise can be approximated as
originating from a point or a line, as when vehicles or ma-
chinery have a high acoustic power relative to their size, and
the number of sources is small. An atypical application of
this modeling framework is Miller’s treatment of sounds
from wind blowing through vegetation. A-weighted sound
levels were predicted given wind speed and observer dis-
tance; trees were considered sources with strength increasing
with visible surface area.11 Semi-empirical analytical models
have been developed to predict the one-third octave spectra
generated by wind in deciduous and coniferous forests.8–10

In natural environments, explicit source modeling will
usually be impractical because of the indefinite number of
sources and their dispersed spatial distribution. Instead,
some studies have focused on empirical relationships and
parametric models utilizing a diffuse field concept, where
over a given area there is a uniformly distributed source and
the sound level is assumed to be homogenous. For example,
Boersma7 has shown frequency piecewise linear relation-
ships between the L95 and logarithm of wind velocity in
remote, flat, uniformly open agricultural grassland during
the summer. Miller11 formulated a relationship between the
rate of rainfall and sound pressure level for an area with con-
sistent ground conditions and vegetation. In general, obser-
vations suggest that there are consistent trends in the
spectrum of the sound given geospatial features such as to-
pography, vegetation, wind, and water action.1 These charac-
teristics influence both propagation and the type and
intensity of sources present. A recent study6 documented
consistent, distinctive spectral profiles in different forest
types attributed to multiple habitat-dependent sound sources.
The potential influence of ecological gradients on geophysi-
cal, biological, and anthropogenic contributions to the
soundscape has been discussed in a special issue of
Landscape Ecology.2 The approach presented in this paper is
based on the diffuse field concept cited above but allows for
contributions from multiple overlapping fields.

II. DATA

A. Acoustical data

The sound pressure level data used as the dependent var-
iables in in this study come from the archive of NPS

acoustical measurements collected in National Park units
during the years from 2000 to 2011. For this study, seasonal
daytime exceedance levels were derived from one second
Leq measurements in 33 one-third octave bands from
12.5–20 000 Hz. For example, the L90 exceedance level is
the sound pressure level exceeded 90% of the hour (repre-
senting the quietest 10% of the hour). Different exceedance
values are influenced by different sources: the L90 will
include the consistent roar of river rapids but omit contribu-
tions from sparse animal vocalizations.

These measurements were made using ANSI type 1
sound level meters using 1.27 cm measurement microphones
deployed 1.5 m above ground, with the microphone enclosed
in a cylindrical foam windscreen measuring 10 cm in diame-
ter by 20 cm in length. Audio recordings were also collected
to enable identification of sound events. Equipment configu-
rations evolved as battery and electronics technology created
opportunities for longer and higher quality recordings with
fewer interruptions.4 Figure 1 depicts a typical site location
and the associated equipment.

These data were censored to reduce artifacts of the mea-
surement process. Outdoor recordings, especially in low
sound level conditions, are susceptible to spurious levels
generated by turbulence around the microphone itself as it
obstructs the flow of wind.7 Although windscreens are
designed to mitigate the magnitude of the turbulent wake
created, these artifacts are not eliminated. Accordingly, data
collected during wind speeds greater than 5 m/s were
removed. Data containing other artifacts due to technician
interruptions for site maintenance, faulty equipment, etc.,
were also removed.

In total, 270 316 h from 190 geographically unique sites
were incorporated. These sites were distributed across 41
national parks in the contiguous United States, see Fig. 2.
Although the sites were located at a wide range of latitudes
and longitudes, the Colorado Plateau—especially Grand
Canyon National Park—was disproportionately sampled
because much of the data were collected to support air tour
management.

Ambient sound pressure levels change with time, exhib-
iting cycles on daily, seasonal, and annual scales. To obtain

FIG. 1. Typical equipment configuration of a long term acoustical monitor-
ing site.
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a consistent estimate of seasonal conditions, studies have
shown that a 25 day monitoring period is required to yield a
standard error of approximately 3 dB for summary statis-
tics.22 Twenty-five days from a single season are generally
sufficient to capture a representative sample of seasonal
weather conditions at a site. All available daytime hours
(defined as the hours between 7 a.m. and 7 p.m.) from each
deployment were aggregated to yield an estimate of daytime
levels. Initially, the sound pressure level (SPL) exceedance
values are calculated for each hour. The daytime hour values
from a given season are aggregated via the median to yield
an estimate for the season. Up to four seasonal measure-
ments per site were available, yielding a total of 291 meas-
urements for the dependent variables.

The 291 daytime L50 spectra are plotted in Fig. 3. A wide
range of level and some consistent trends are apparent in these
spectra. Although 33 degrees of freedom were available, sin-
gular value decomposition revealed that these spectra had less
than 10 significant modes. The most prominent was the 1/f
trend below 1 kHz, commonly observed in soundscapes and
other complex systems in which multiple interacting elements

coalesce into a group behavior.3 This stems from the presence
of many acoustic sources with low frequency content (e.g.,
wind, water, and transportation noise) and that the low fre-
quency energy of any source propagates farther than high fre-
quencies due to air absorption, diffraction, ground effects,
etc.23 Other prominent modes represent characteristic site
spectra. At frequencies above 1 kHz, limitations in the mea-
surement microphones can be seen: the dark groupings are de-
scriptive of the noise floor of each of the equipment
configurations used. The spectra containing one-third octave
band values below 0 dB were acquired with low-noise systems
in consistently very quiet environments. The data were not
corrected for the effects of the instrument noise floor. Noise
floor corrections, which degrade the integrity of type 1 sound
level meter measurements, are not needed in the range of fre-
quencies most affected by anthropogenic noise.

B. Explanatory variables

The explanatory variables include geospatial data layers
and measurement metadata. For each of the 190 study site
locations, potential explanatory variables for sound pressure
level were identified and derived based on the literature,
authors’ previous experience, and data availability (Table I).
These explanatory variables have been organized into seven
groups: location, climatic, landcover, hydrological, anthro-
pogenic, temporal, and equipment. The majority of explana-
tory variables originate from geospatial data layers that are
readily available across the contiguous United States. The
remaining variables, such as time of year and equipment
configuration, were recorded during each deployment.
Detailed information regarding preparation of explanatory
geospatial variables has been published elsewhere.24

Location variables included latitude and longitude, ele-
vation derived from a 10 m resolution digital elevation
model, slope, and topographic position index (TPI). TPI
classifies proximate landform into six categories: flat, ridge,
upper slope, middle slope, lower slope, and valleys.

Climatic variables included local precipitation, tempera-
ture, and wind power data. Maximum, minimum, and mean
temperature and precipitation variables at yearly, summer
(June, July, August) and winter (December, January,
February) time steps were derived using parameter-elevation
regressions on independent slope model climatic data 30-yr
average metrics at a 4 km spatial resolution. Wind power cat-
egorical potential densities at a height of 50 m (W/m2) were
obtained from the Natural Resource Energy Laboratory state
level high resolution wind products.

Land cover variables were derived from Anderson level
I 2006 National Land Cover Data at 30 m spatial resolution.
Level II cover types for forest were also used, to address the
sounds produced by wind flowing through trees.8,9 Land
cover variables were represented as the proportion of land-
cover type within an area of analysis (AOA) surrounding the
measurement site (Table I).25 Multiple AOAs were evaluated
for variables in the landcover and anthropogenic categories.
Noise from road traffic can travel many kilometers, so at
least one AOA had to span this distance. Biological sound
sources are more complicated. It is possible to estimate the

FIG. 2. Locations of the 190 contiguous U.S. site locations.

FIG. 3. Seasonal daytime L50 spectrums of all 291 measurements.
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range at which the song from a particular bird may be
detected given its strength and the background level, but the
AOA must be large enough to account for the animal’s

capacity to range outside its nominal core habitat. For the
results presented here, circular areas of interest with radii of
200 m and 5 km were chosen for the land cover data.

TABLE I. Initial potential explanatory variables spatial resolution and description by regression group. Area of interest distances indicate radius of circular
area or cylindrical volume centered at site that was considered.

Variable Area of analysis Description Units

Location
Latitude Point Latitude deg.
Longitude Point Longitude deg.
Elevation Point Digital elevation, height above sea level m
TPI Point Topographic position index (e.g., ridge, slope, valley) categorical
Slope Point Rate of change of elevation deg.
Climatic
PPTSummer Point 30 year average summer precipitation mm
PPTWinter Point 30 year average winter precipitation mm
PPTNorms Point 30 year average yearly precipitation mm
TMaxSumm Point 30 year average summer maximum temperature �C
TMaxWinter Point 30 year average winter maximum temperature �C
TMaxNorms Point 30 year average yearly maximum temperature �C
TMinSumm Point 30 year average summer minimum temperature �C
TMinWinter Point 30 year average winter maximum temperature �C
TMinNorms Point 30 year average yearly minimum temperature �C
Wind Point Wind power class potential density at 50 m W/m2

Landcover
Dev 200 m, 5 km Proportion of developed landcover %
Barren 200 m, 5 km Proportion of barren landcover %
Forest 200 m, 5 km Proportion of forest landcover %
Deciduous 200 m, 5 km Proportion of deciduous forest landcover %
Evergreen 200 m, 5 km Proportion of evergreen forest landcover %
Mixed 200 m, 5 km Proportion of mixed forest landcover %
Shrub 200 m, 5 km Proportion of shrubland landcover %
Herbaceous 200 m, 5 km Proportion of herbaceous landcover %
Cultivated 200 m, 5 km Proportion of cultivated landcover %
Wetland 200 m, 5 km Proportion of wetlands landcover %
Water 200 m, 5 km Proportion of water (only) landcover %
Snow 200 m Proportion of snow landcover %
Hydrology
SSlope 16 km Mean, range and standard deviation of stream slopes ratio
SSlopeWeight 16 km Mean, range, and standard deviation of stream slope weighted by DistStreams ratio/m2

DistanceCoast Point Distance to nearest coastline m
DistWaterBody Point Distance to nearest body of water m
DistStreams Point Distance to nearest stream m
DistStreamC Point Distance to nearest stream with a Strahler order greater than 1, 3, or 4 m
Anthropgenic
RddAll 200 m, 5 km Road density, sum of road lengths (all roads) divided by area of interest km/km2

RddMajor 200 m, 5 km Road density, sum of road lengths (major roads only) divided by area of interest km/km2

RddWeighted 200 m, 5 km Road density, sum of road lengths (weighted by class) divided by area of interest km/km2

DistRoadsAll Point Distance to nearest road (all roads) m
DistRoadsMaj Point Distance to nearest road (major roads) m
Naturalness Point, 5 km Minimum, maximum, mean, range and standard deviation of naturalness Naturalness
DistMilitary Point Distance to nearest military flight path m
MilitarySum 40 km Sum of designated military flight paths count
FlightFreq 25 km Total weekly flight observations count
Wilderness 16 km Sum of designated wilderness in area of interest m2

Temporal
dayLength Point Average length of day during deployment hours
circDayY Point Annual position, winter/summer radians
circDayX Point Annual position, spring/fall radians
Equipment
nf Point Noise floor of measurement equipment dB SPL
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Landcover data provided the first indications that geo-
spatial modeling was likely to be successful. Figure 4 dis-
plays the smoothed probability densities of the A-weighted
L50 measurements by majority landcover. Most sites are rep-
resented by multiple landcover types, but this plot simply
assigns each site to the most common local landcover cate-
gory. The landcover categories are quite broad; however,
snow and cultivated types are not included in Fig. 4 due to
especially small sample sizes.

The overall trend in the data is an increasing of sound
pressure levels with increasing moisture. Water contributes
to the acoustic energy of a soundscape in many ways, most
directly through the flow noise of moving water and wave
action in larger bodies of water. Water generally promotes
vegetative and animal diversity, which introduces new sour-
ces of sounds. Last, human settlement is generally associated
with water, and human noise is the greatest source of vari-
ability in sound levels. This simple example illustrates the
potential for geospatial modeling of sound levels, and the
substantial variation of sound levels within these landcover
classes affirms the need for a multivariate model to incorpo-
rate other influential factors and their potential interactions.

Distance to coastline and water bodies were derived
from National Hydrography Dataset and NPS Hydrographic
Impairment Data. Distances to stream segments by Strahler
Calculator stream orders greater than 1, 3, and 4 were
derived in GIS using Euclidean distance functions and NHD
Plus datasets.25 GIS was used to derive stream slope mean,
range and standard deviation values at a 16 km AOA using
NHD Plus stream segments and slope measurements.

Anthropogenic, or human caused, sound is ubiquitous
and anthropogenic sources are relatively loud compared to
natural sources. This includes transportation noise from air-
craft, roadways, railways, snow machines, and water craft,
and noise from energy development, resource extraction,
cultivation, and communities. The measurements in this
study were influenced by anthropogenic noise generated
inside and outside park unit boundaries. In addition to the

developed landcover layer, additional geospatial variables
were extracted to improve the model’s capacity to predict
anthropogenic noise. Distances to all roads and major roads
were obtained from NPScape roads measure data which is
based on source roads data compiled from ESRI39.25 The
sum of road density (1 km spatial resolution) values for all,
major, and weighted roads were derived in GIS at several
AOA, see Table I. Distance to military flight paths and the
sum of designated military flight paths within a 40 km AOA
were derived in GIS from department of defense flight path
data. Using flight frequency observation data (7 km spatial
resolution) sums of weekly flight observations were derived
at 25 km AOA. A naturalness index26 based upon land use,
housing density, and road and highway traffic was summar-
ized (maximum, mean, minimum, range, standard deviation,
and sum) at 1 and 5 km AOA. Last, the total designated wil-
derness area was derived at a 16 km AOA.

Much anthropogenic noise, especially energy develop-
ment and motorized recreation, is not directly captured by
the available data layers. For example, visitors contribute to
a wide variety of sounds, including hikers walking and talk-
ing, motorized recreation and air tours. However, some of
this may be captured indirectly. Visitation is correlated with
population and developed landcover. Increased visitor activ-
ity is also more likely near roads, in moderate climates, and
during the summer.

The measurements span the entire year and three tempo-
ral variables were included. The dayLength variable repre-
sents the average amount of daylight during a measurement;
it was derived from the latitude of the site and the time of
year of the measurement. The day of year for the measure-
ments has been represented as circular variables, preserving
the continuity between December 31 and January 1, by
including circDayX … sin 2p � day=365ð Þ and circDayY
… cos 2p � day=365ð Þ as covariates.

Finally, some crucial information comes directly from the
equipment configuration used to make a given measurement.
The combined system noise floor was the lowest expected level
for any particular measurement. The equivalent sound pressure
level of the noise floor was derived from one-third octave
bands measurements and manufacturer’s specifications.

III. METHODS

A. Random forests

Most regression models estimate a conditional expecta-
tion, E yjXð Þ, where y represents the response or dependent
variable (sound level measurements) and X represents the
explanatory or independent variables (geospatial quantities
and measurement metadata). This analysis presented several
challenges. Many potential explanatory variables were spec-
ulative, and multiple variants of some variables were intro-
duced with the intent of identifying the variants with highest
predictive power. Nonlinearities and interactions among var-
iables were anticipated. Given uncertainties about the struc-
tural form of the best model, and the likelihood that some
explanatory variables were irrelevant or redundant, machine
learning methods were explored that imposed very few
assumptions. Note that these machine learning methods do

FIG. 4. Probability densities of the A-weighted L50 measurements catego-
rized by majority landcover. A Gaussian kernel was used to compute the
smoothed density estimates.
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not fit model parameters in the framework of an assumed
structural relationship between the dependent and independ-
ent variables.

Under the umbrella of machine learning, many techni-
ques exist with varying degrees of nominal predictive power,
interpretability, tunable parameters, robustness, and capacity
to deal with mixed data types and potentially irrelevant
inputs. In this study, exploratory analyses were investigated
with linear models, generalized additive models, support
vector machines, and tree-based methods including random
forest and boosted regression trees.27 Preliminary results
suggested that tree-based methods had more promise than
other methods. Part of this promise was the absence of
requirements regarding a priori information concerning the
form of relationship and interaction among variables.

A random forest is an ensemble of many individual deci-
sion trees, as shown in Fig. 5. A decision tree is a statistical
model that relates the response y to explanatory variables X
by recursive binary partitioning of the input data X. At each
node, the data is partitioned into two self-similar subsets, or
branches, using simple rules (e.g., elevation greater or less
than 1000 m). Binary partitioning is repeated for each new
subset until some stopping criterion is reached, such as homo-
geneity. The classification and regression tree algorithm
(CART) creates these partitions by choosing the predictor and
criterion to maximize the aggregate response purity in the
resulting subsets.28 The final tree model has J terminal nodes,
or leaves, corresponding to the disjoint regions Rj that collec-
tively cover the space of all values of the explanatory varia-
bles X. The response f Xð Þ is predicted with a constant bj for
X 2 Rj. This is represented by the following additive form:

f Xð Þ …
XJ

j…1
bjI X 2 Rjf g; (1)

where the indicator function I �f g has the value 1 if its argu-
ment is true and zero otherwise. Because any instance of X
will fall in a single region, f Xð Þ is essentially predicted by a
single constant bj. The constant bj is obtained by averaging
over all the response values of the training data in the leaf,
Rj. Decision trees do not possess coefficients like those
found in the general linear model.

The simple decision rules allow for a wide range of rela-
tionships to be captured and the hierarchical structure of the
tree provides some capacity to account for interactions
among the independent variables. However, the locally opti-
mal choice of variables and split criteria may not lead to a
globally optimal tree, and decision trees can capture idiosyn-
cratic distinctions in the training data that will not generalize
to new data from the same system. Methods such as pruning,
boosting and bagging are used to mitigate these problems.
Bootstrap aggregating, or bagging, is a type of ensemble
learning in which T decision trees are generated, each with a
different bootstrapped sample of the training data.29 The
final prediction, ŷ, is the average over all the individual tree
predictions, i.e., aggregating. This mitigates the instability of
individual trees and can reduce both bias and variance. By
including the fits from an entire ensemble, it is also possible
to produce a very flexible model that is able to respond to
highly specific, yet systematic features in the data. Finally,
by generating a new bootstrapped sample to train each tree a
subset of samples that is not used is also created, called out-
of-bag (OOB). These samples can be useful for calculating
measures of prediction accuracy and variable importance.

One of the most severe drawbacks to ensemble techni-
ques such as bagging is that the direct relationship between
input and output of an individual tree is lost in the process.
A method for revealing the relationships between explana-
tory variables and the response variable is addressed in Sec.
IV. A random forest is an ensemble of bagged decision trees
that has been further randomized by splitting a subset of m
randomly drawn predictor variables at each node.17 This
exploits the benefits of ensemble learning by decreasing cor-
relation between individual tree predictions, i.e., each tree is
more independent of the others in the forest. In addition, ran-
dom forests are able to handle a very large number of ex-
planatory variables, including more independent variables
than dependent variable observations. This study utilized the
RANDOM FOREST algorithm as it was implemented in R.30

B. Model construction and evaluation

The model construction process included three stages:
assessment of independent variable importance, identifica-
tion of optimal variable sets, and model parameter tuning.

FIG. 5. Conceptual diagram of the
RANDOM FOREST algorithm. On the left,
trees are trained independently by re-
cursive binary partitioning of a boot-
strapped sample of the input data, X.
On the right, test data is dropped down
through each tree and the response
estimate is the average over the all the
individual predictions in the forest.
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This sequence was used to identify variables that were elimi-
nated without significant degradation in the model’s ability
to predict sound levels at a new location. Random forests are
relatively insensitive to superfluous variables, but unneces-
sary variables can reduce predictive power. Furthermore,
GIS calculation of excess variables is burdensome, and extra
variables will complicate interpretation of model results. A
simple exhaustive evaluation of all explanatory variable
combinations proved computationally infeasible, so a multi-
stage process was used.

A separate model was built for each response variable of
interest [e.g., L90 dB(A), L50 500 Hz one-third octave band]
for a total of 105 models. The methods outlined in this section
were applied to all models. Developing separate models for
each response variable identified suites of explanatory varia-
bles that provided the best predictions of exceedance statistics
for each one-third octave band. Model performance and vari-
able importance measures were challenging to develop for
these data. The RANDOM FOREST algorithm calculates an esti-
mate of the mean squared error for each tree using the OOB
samples, but this can be misleading.

While RANDOM FOREST error estimates were informative, it
was necessary to utilize explicit segmentation of our data to
avoid optimistic results. For example, we constructed a ran-
dom forest model that predicted one-third octave band sound
levels, and incorporated frequency as an explanatory parame-
ter. This model revealed that missing one-third octave band
measurements could be predicted very accurately from other
measurements taken at the same site and time. However,
achieving this predictive accuracy required some measure-
ments from every site, so it could not be applied to map sound
levels across areas where no measurements had been made.

These correlations extended across time at each site. For
example, a site’s summer sound pressure level is easier to pre-
dict if the winter level is known. Including multiple measure-
ments of a given location in the training data dramatically
increases predictive performance. These data are useful for
studying how levels change with time or predicting a specific
exceedance level at a given location. However, these correla-
tions do not support a spatial model as they overstate the pre-
dictability of new locations outside of the training set. A
training set that explicitly excluded multiple seasonal measure-
ments from individual sites was needed to identify the predic-
tive value of geospatial variables and provide an unbiased
measure of the accuracy of sound level predictions for unmeas-
ured locations. The accuracy of geospatial model performance
was assessed by leaving each location out of a model develop-
ment process, and comparing the predicted and measured val-
ues for the omitted location. Unique aspects of the cross
validation process are detailed in the following subsections.

1. Variable order of importance

The first step in assessing the contributions of variables
was to remove highly correlated variables. The linear de-
pendence between all variable pairs was evaluated via the
Pearson correlation coefficient. For pairs with correlation
greater than 0.95, the variable with the largest absolute mean
correlation relative to the entire set was removed.

One method of estimating the relative importance of ex-
planatory variables is to permute the values of a predictor
and calculate the change in model performance. This is con-
veniently implemented within the RANDOM FOREST algorithm
as the bagging process generates a test set for each tree.
Each variable is permuted in turn while the remaining varia-
bles are held constant. The change in error compared to the
original OOB error is indicative of the permuted variable’s
importance. Because the permutation destroys association
with other explanatory variables, the importance of multivar-
iate interactions is also taken into account. However, this is a
relative measure; no formal inference such as a p-value is
available. Also, determination of the significance of weakly
important variables is difficult, as correlations among predic-
tor variables will also influence the variable importance.31

Therefore, the importance measure was calculated in con-
junction with the following process.

Variable importance was determined by an extensive
random forest model averaging process. First, the data were
divided into four subsets to ensure that no site was repre-
sented by more than one seasonal measurement in any of the
sets. Random forest models were repeatedly fitted to each of
the four data subsets using the default algorithm parameters.
Each model iteration within a data subset generated unique
variable importance scores, because there are stochastic
components in the RANDOM FOREST algorithm. The resultant
variable importance measures were averaged across all four
data subsets, and averaged across the iterations within each
subset. This fitting process was iterated until the mean of the
importance measures stabilized. The variable with the lowest
importance was removed from the set and the process
repeated with the remaining variables. Estimating the weak-
est variable can be done with more confidence than estimat-
ing the entire order concurrently and sequentially dropping
variables removes any confounding effects due to correlation
with weaker input variables while retaining interactions
among useful variables. This stepwise elimination process
was not guaranteed to yield the most effective subsets, but it
was computationally tractable. Tables III(a)–III(c) show the
seven most important variables for the L10, L50, and L90 mod-
els, respectively. Interpretation of the covariate rankings in
regard to the structure of acoustic environments is discussed
in Sec. IV.

2. Optimal variable sets

Having ordered the explanatory variables by average
importance scores, the next task was to determine how many
variables were needed to obtain the most accurate prediction
of sound levels at a new site. Thresholds have been proposed
to determine the best explanatory variable set using the vari-
able importance measures provided by the RANDOM FOREST

algorithm, but these approaches are susceptible to bias and
may be misleading.31 Instead, the variable set that mini-
mized the root-mean-square (rms) error of a leave-one-out
(LOO) cross-validation (CV) process was defined as optimal.
The LOO CV was implemented by training a random forest
model that omitted a measurement, and then comparing the
prediction from that model to the omitted measurement. In
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contrast to the subsets used during the variable order of im-
portance step, the training data contained all available meas-
urements during this step. Therefore, measurements from
other seasons or years at the location of the omitted measure-
ment were also removed from the training set to avoid mis-
leadingly optimistic results from temporal correlation across
observations. This procedure was repeated exhaustively and
then averaged over every available measurement, such that
the rms error of a variable set was defined as

erms …

�������������������������������
1
N

XN

i…1
yi � ŷið Þ2

vuut ; (2)

where i represented a measurement site and N was the number
of sites. The measurement and prediction has units of dB SPL.

An example of the variable optimization process is
shown in Fig. 6 for the L50 model of the 8 kHz band. The
prediction accuracy of the model decreases as variables are
removed from the training data. These variables, while

assessed a finite importance during the ordering step, are su-
perfluous. The global minimum—the most parsimonious
model—occurs at eight variables. Error increases rapidly
with fewer than eight variables. The number of important
variables as identified by this criterion ranged from 1 to 59
depending on the frequency and exceedance value of inter-
est. The amount of variables is indicative of the both the
complexity of the response and the quality of the information
available to describe it. For models in which many variables
were deemed significant, the majority of predictive power
was still carried by the first few variables.

One complication for this process was the role of sea-
sonal variables. The LOO CV process included sites that had
measurements from two or more parts of the year. The role
of these variables was explicitly omitted from the variable
importance assessment, but there are good reasons to antici-
pate seasonal changes in sound levels. The seasonal varia-
bles were reintroduced to the optimal variable set and
retained if LOO CV rms error decreased.

3. Model parameter tuning

As a final step, the optimal variable set was used to tune
the parameters of the random forest model. Several parame-
ters govern the structure of a random forest model.30

Exhaustive combinations of five parameters were surveyed
again using the criterion of LOO CV error: the number of
trees in the forest (ntree), the sample size presented to each
tree (sampsize), the number of variables to evaluate at each
split (mtry), the minimum node size (nodesize), and sam-
pling with or without replacement (replace). The best param-
eter value varied with the response of interest and was
related to the number of variables in the optimal model.
Overall, minor gains in performance (1% on average) over
the default parameters were realized.

4. Model performance

The performance of the optimal models after tuning is
shown in Fig. 7 by one-third octave bands for the L90

FIG. 6. Determining the optimal variable set for the L50 8 kHz model. The
minimum at N … 8 identifies useful variables to be included in the optimal
model.

FIG. 7. Performance of the optimal
one-third octave band random forest
models (rms of the LOO CV error) for
the L90 exceedance level. Performance
of null models are also shown for
reference.
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exceedance level. The performance of a null model, equal to
the mean of all the sound level measurements �y, is shown for
comparison. The mean approximates a maximum likelihood
estimator of location because the sound level measurements,
expressed in decibels, roughly approximate a Gaussian dis-
tribution. Results for the wideband A-weighted and
unweighted response data appear in Table II. Models fitted
to wideband measurements perform slightly better than
applying the results of the 33 one-third octave band models
to predict wideband levels. The median absolute deviation
(MAD) is included to provide a measure of scale that is re-
sistant to outliers. The difference between MAD and rms
error indicates the influence of outliers on the rms measure.

For the one-third octave band models, the rms error and
MAD followed the trends of the variance in the response
data. The magnitude of variation explained is defined as

R2 … 1 �

XN

i…1
yi � ŷið Þ2

XN

i…1
yi � �yð Þ2

: (3)

Figure 8 plots this measure by one-third octave band for the
L10, L50, and L90 exceedance levels. The geospatial model
explains progressively more variation in sound levels with

increasing frequency, even though there is more variation
across sites in the mid-frequency range (Fig. 7). Figures 3
and 8 suggest that there is substantial complexity of low fre-
quency soundscapes that cannot be explained by the geospa-
tial variables available to these models. Given the nature of
outdoor propagation attenuation, it is likely that more sour-
ces are present with decreasing frequency and these geospa-
tial models may be underestimating the spatial scale of
contributions to low frequency sound level measurements.

Figure 9 shows examples of measured spectra and
model predictions. The model fit for individual sites can be
quite close, capturing idiosyncratic trends in sound level
spectra as shown in Figs. 9(A) and Fig. 9(B). Model errors
include abnormal characteristics not well represented by the
explanatory variables [Fig. 9(C)] or reasonable agreement in
spectral shape with an offset in level [Fig. 9(D)].

These models have been constructed to predict aggre-
gate seasonal metrics of ambient sound pressure levels. The
geospatial input data available was of long term averages or
relatively constant features. The expected error of estimating
the seasonal value using the response data is 6 3 dB for the
25 days samples in the NPS archive. This sets the lower
bound for geospatial model error. The model error is remark-
ably close to this bound. The close agreement between model
and measurement is partly due to the simplifying, summary
characteristics of exceedance level metrics. For example, the
L10 is largely determined by transient events and is less sensi-
tive to background sound levels, while the L90 represents back-
ground levels and is relatively unaffected by transients.

One systematic trend emerged from the residual errors
in the geospatial model. Error increased as the prediction
diverged from the mean predicted value: loud sites were
underestimated and quiet sites were overestimated. Two fac-
tors explain this trend. First, extreme sites are often due to
factors that are not captured by the geospatial data set. For
example, the spectrum in Fig. 9(C) is a site in Zion National
Park near Zion Lodge. While the geospatial variables cap-
tured the site’s proximity to a road, the traffic on this road is
unusual: shuttle buses and a small number of administrative

TABLE II. Performance of the optimal random forest (RF) and null models
for the wideband response metrics in terms of rms error, median absolute
deviation (MAD), and percent variation explained.

RF rms Null rms RF MAD Null MAD % explained

L10, dB(A) 4.8 7.3 2.8 4.9 58
L10, dB 5.5 7.6 3.9 5.6 49
L50, dB(A) 4.8 8.1 2.8 5.6 65
L50, dB 5 6.9 3.0 4.5 48
L90, dB(A) 4.8 8.3 2.7 5.2 66
L90, dB 4.3 6.8 2.3 3.9 60

FIG. 8. The variation explained by the
optimal random forest models for each
one-third octave band and exceedance
level.
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vehicles. Furthermore, because the site was near a bus stop,
higher engine power levels were occurring as the buses
accelerated up to cruising speed. Other examples of excep-
tional conditions that were not captured by geospatial varia-
bles were construction projects and road closures.

Two characteristics of the RANDOM FOREST algorithm also
contribute to this “regression towards the mean.” The parti-
tions created within individual trees will necessarily lump
extreme sites with less extreme sites in the terminal nodes
Rj, introducing one bias towards the mean. Second, the aver-
aging process used to aggregate the predictions of individual
trees dilutes the influence of the extreme tree predictions
with many other tree predictions that are less extreme. Even
if some individual trees have terminal nodes corresponding
to extreme SPL, the average vote pulls away from these
extremes.

IV. THE STRUCTURE OF THE SOUNDSCAPE

A. Important geospatial variables

All variable categories (Table I) influence the sound-
scape in particular areas of the spectrum and time scale. The
prevalence of anthropogenic variables is evident by Table
III. Anthropogenic is the most common variable category,
accounting for about a third of the most powerful

explanatory variables across the spectrum, especially at low
frequencies. The sources inherent to developed areas, roads,
and aircraft flyovers such as rotating machinery have spec-
tral profiles dominated by low frequency energy. The L90,
which represents persistent sources, has a strong presence of
long range anthropogenic variables at low frequencies such
as NatMax5km (the maximum naturalness over a 5 km ra-
dius area). The L10, which represents very loud events and
short time scales, includes anthropogenic descriptors at
higher frequencies and closer ranges (e.g., Dev200m).
Although all of the sites are within national parks, acoustical
environments transcend park boundaries.

Climatic variables are the second most prevalent cate-
gory, and precipitation is the most important driver for long
term levels in the 200 to 1250 Hz range. In addition to the
sound directly generated by active precipitation, it has been
observed that wind-induced energy often dominates these
frequencies; the impact of wind on sound pressure levels is
largely dependent on the present vegetation or lack
thereof.1,6–11 Rustling leaves and other mechanical agitation
of plants generates sound in this frequency range, and the
quantity and variety of vegetation increases with precipita-
tion. It is likely that precipitation indirectly predicts the vol-
ume and diversity of biological choruses, as mesic habitats
often promote a greater diversity and concentration of plant

FIG. 9. Example comparisons of the response and model prediction spectra: a riparian area at Monocacy National Battlefield (A), a canyon rim at Grand
Canyon National Park (B), a road corridor in Zion National Park (C), and a developed frontcountry area at Vicksburg National Military Park (D).
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and animal species.32 The acoustical consequences of higher
ecological productivity and species diversity will often
include higher biological sound levels across a broad range
of frequencies.33

Although wind was not identified as a variable with sig-
nificant predictive power, wind related sound is a pervasive
natural phenomenon. Most models of outdoor sound pressure
levels have considered some aspect of wind. Wind generates
sound by several mechanisms. At low frequencies, high lev-
els can be generated due to the hydrodynamic pressure fluc-
tuations generated by turbulent flow. Sounds are generated
by flow over and around obstacles (e.g., buildings, tree
trunks, coniferous needles) as well as radiation from me-
chanical contact between elements excited into motion by
wind (e.g., rustling leaves, creaking branches).7

Two factors explain the absence of a wind variable from
our geospatial models. First, sounds caused by wind are prob-
ably responsible for some of the contributions of the landcover,
precipitation, temporal, and location variables to sound level
prediction. The spectral shape of wind-induced vegetation
sound can be independent of wind speed for some plant com-
munities.8,9 Second, the wind data layer addressed wind speed

at 50 m height above ground. Measured wind data at a height
of 1.5 m were available for a subset of the monitoring sites.
Exploratory random forest models using measured wind speed
at 1.5 m revealed significant contributions to one-third octave
bands below 100 Hz, and lesser effects at higher frequencies. If
a continental scale wind data layer addressing lower altitude
wind speeds or turbulent fluctuation strength were available, it
would likely improve the model performance.

In addition to natural sources of wind sounds, turbulent
flow around the microphone and windscreen contributes an
artifact to all sound level measurements. These artificial con-
tributions were mitigated in this study by using appropriate
microphone windscreens and removing acoustic measure-
ments during wind speeds of 5 m/s or greater.

One of the most salient characteristics of Table III is the
groupings of some variables in importance ranking across
adjacent one-third octave bands. This trend is directly con-
nected to the exploratory singular value decomposition anal-
ysis described in Sec. II: although 33 one-third octave bands
are available, a lower resolution is sufficient to capture the
dominant trends in the seasonal daytime soundscape. For
example, the DistStreamC3 (distance to a stream of Strahler

TABLE III(a). A subset of the explanatory variables for the 33 one-third octave band L10 models ranked by relative importance. The most important variable
is in column 1 and subsequent variables proceed in decreasing order to the right.

Frequency (Hz) 1 2 3 4 5 6 7

12.5 PPTNorms Forest200m Latitude SSlopeStd TMaxWinter Forest5km SSlopeMean
15.8 PPTNorms TMinWinter Latitude TMaxWinter Forest200m SSlopeStd SSlopeMean
20 Latitude TMinWinter TMaxWinter PPTNorms Forest5km TMinSumm Flights25km
25 TMinWinter Latitude TMaxWinter Flights25km TMinSumm PPTNorms nf4
31.5 Flights25km TMinSumm Latitude TMinWinter TMaxWinter Dev200m PPTNorms
40 Flights25km Latitude Dev200m TMinSumm TMinWinter TMaxWinter DistRoadsMaj
50 TMinSumm Dev200m Flights25km Latitude TMinWinter TMaxWinter NatMax5km
63 Dev200m TMinSumm NatMax5km NatPoint TMinWinter TMaxWinter Flights25km
80 Dev200m TMinSumm NatPoint TMaxSumm NatMax5km Flights25km DistRoadsMaj
100 Dev200m Flights25km TMinSumm RddMajor5km TMaxSumm DistRoadsMaj TMinWinter
125 Flights25km Dev200m Latitude RddMajor5km TMinSumm TMinWinter TMaxSumm
160 Flights25km Dev200m Latitude NatMax5km TMaxWinter NatPoint TMaxSumm
200 Flights25km Dev200m TMaxWinter NatMax5km NatPoint TMinWinter Latitude
250 Flights25km Dev200m NatMax5km TMaxWinter NatPoint TMinWinter Dev5km
315 Dev200m Flights25km NatMax5km NatPoint DistStreamC3 Latitude Dev5km
400 Dev200m Flights25km Shrub200m DistStreamC3 Shrub5km Dev5km RddMajor5km
500 Dev200m Shrub200m Flights25km DistStreamC3 Shrub5km Dev5km RddMajor5km
630 Dev200m Shrub200m Shrub5km DistStreamC3 Elevation NatMax5km Dev5km
800 Dev200m Shrub200m Shrub5km DistStreamC3 Elevation NatMax5km Forest5km
1000 Dev200m Shrub200m Shrub5km DistStreamC3 Elevation Forest5km SSlopeMean
1250 Dev200m Shrub200m Shrub5km DistStreamC3 Elevation DistRoadsMaj Forest200m
1600 Dev200m Shrub200m Shrub5km DistStreamC3 Elevation DistRoadsMaj Forest200m
2000 Dev200m nf23 Shrub200m Shrub5km Forest200m Elevation PPTNorms
2500 Dev200m nf24 Shrub5km PPTNorms Evergreen5km Elevation Shrub200m
3150 nf25 PPTNorms Longitude Dev200m dayLength Shrub5km Evergreen5km
4000 nf26 Elevation dayLength PPTNorms Longitude DistStreamC3 Shrub5km
5000 nf27 Longitude dayLength Elevation DistStreamC3 PPTNorms Shrub5km
6300 nf28 Longitude Elevation Deciduous5km dayLength DistStreamC3 Wetland200m
8000 nf29 Longitude Elevation Deciduous5km SSlopeMean Wetland200m DistStreamC3
10 000 nf30 Longitude Elevation DistStreamC1 Wetland200m Dev5km RddMajor5km
12 500 nf31 DistStreamC1 Dev5km RddMajor5km Wetland200m Elevation Longitude
16 000 nf32 NatRange5km NatMIN5km NatSTD5km Dev5km DistStreamC1 DistStreamC3
20 000 nf33 NatRange5km NatMIN5km NatSTD5km NatMax5km PPTSummer TMinSumm
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categorization class 3 or lower) variable is very important
for the 315–1000 Hz one-third octave bands. The importance
diminishes for groups of one-third octave bands at progres-
sively high frequencies.

The noise floor of the equipment used was the most power-
ful predictor of high frequency sound levels due to the quantity
of response data at the noise floor. The extent of the spectrum
explained by the noise floor increases with exceedance levels,
becoming most prominent in the L90 models. Properly account-
ing for artifacts introduced by varying equipment packages
allows for better model performance and interpretation.

The results discussed herein are a consequence of the
available sample. Variables identified as not important
through this process were not necessarily irrelevant to sound
level measurements. They simply did not make sufficient in-
dependent contribution to the predictive power of this model.
For example, distance to coastline is relevant to sound pres-
sure level over a limited range of distances. Beyond this dis-
tance, the acoustic energy from surf is negligible and the
variable is essentially noise. More measurements or alternate
formulations of the available GIS data may yield variables
that make a significant contribution in future models.

B. Quantifying the influence of variables across a
gradient

The RANDOM FOREST algorithm generates predictive models
that can encompass a wide range of relationships between the
independent and dependent variables. The structure of these
models responsible for this flexibility also inhibits the process
of diagnosing or interpreting the contributions of each inde-
pendent variable. One method for addressing this need is to
compute partial dependence functions for each of the inde-
pendent variables.31,34 Consider a subset of explanatory varia-
bles zs � X and the complement subset zc. The partial
dependence function is the average response of the model over
all of the available training data for permuted values of zs:

�̂y …
1
N

XN

i…1
ŷ zs; zc;ið Þ: (4)

The influence of the predictor zs across a gradient can be
quantified by specifying a sequence of values and calculating
ŷ for each. Plots of the partial dependence function show
how the average response varies with a given predictor while

TABLE III(b). A subset of the explanatory variables for the 33 one-third octave band L50 models ranked by relative importance. The most important variable
is in column 1 and subsequent variables proceed in decreasing order to the right.

Frequency (Hz) 1 2 3 4 5 6 7

12.5 TMinWinter SSlopeStd Longitude TMaxWinter Flights25km Latitude TMinSumm
15.8 Flights25km TMaxWinter Latitude TMinWinter SSlopeStd TMinSumm Longitude
20 TMinWinter Flights25km Latitude TMaxWinter SSlopeRange TMinSumm NatMax5km
25 TMinWinter NatMax5km Flights25km TMaxWinter SSlopeRange Dev200m TMinSumm
31.5 NatMax5km TMinWinter NatPoint Dev200m TMinSumm NatMIN5km Shrub5km
40 NatMax5km TMinWinter Dev200m NatPoint TMaxWinter NatMIN5km TMinSumm
50 NatMax5km TMinWinter Dev200m NatPoint TMaxWinter NatMIN5km TMinSumm
63 NatMax5km Dev200m TMinWinter NatPoint TMaxWinter Dev5km NatMIN5km
80 NatMax5km TMaxWinter NatPoint Dev200m TMinWinter NatMIN5km Dev5km
100 NatMax5km TMaxWinter Dev200m NatPoint TMinWinter Dev5km NatMIN5km
125 NatMax5km Dev200m TMaxWinter NatPoint TMinWinter Dev5km NatMIN5km
160 NatMax5km NatPoint TMinWinter Dev200m Flights25km NatMIN5km DistRoadsAll
200 NatMax5km Dev200m NatPoint TMinWinter Shrub5km Shrub200m NatMIN5km
250 NatMax5km Elevation Shrub200m Shrub5km NatPoint Dev200m Forest5km
315 DistStreamC3 Shrub200m Shrub5km Elevation NatMax5km NatPoint Forest200m
400 Shrub200m DistStreamC3 Shrub5km NatMax5km NatPoint PPTWinter Forest200m
500 Shrub200m DistStreamC3 Shrub5km NatMax5km NatPoint Forest200m PPTWinter
630 Dev200m Shrub200m Shrub5km DistStreamC3 Forest200m Elevation PPTWinter
800 Dev200m Shrub200m Shrub5km DistStreamC3 Forest200m Elevation PPTNorms
1000 PPTNorms Forest200m DistStreamC3 Elevation Shrub200m Dev200m Shrub5km
1250 PPTNorms DistStreamC3 Forest200m Dev200m Elevation Shrub200m Shrub5km
1600 nf22 Shrub5km Dev200m DistStreamC3 Forest200m PPTNorms Shrub200m
2000 nf23 Shrub5km Dev200m DistStreamC3 PPTNorms Forest200m Elevation
2500 nf24 Shrub5km DistStreamC3 Elevation PPTNorms Evergreen200m PPTSummer
3150 nf25 Longitude DistStreamC3 Shrub5km PPTSummer NatMax5km Evergreen5km
4000 nf26 Longitude DistStreamC3 PPTSummer NatMax5km Shrub5km Evergreen5km
5000 nf27 Longitude Elevation DistStreamC3 PPTSummer Wetland200m DistStreamC4
6300 nf28 Longitude Elevation Wilderness Wetland5km DistStreamC4 PPTSummer
8000 nf29 Elevation Longitude PPTSummer DistStreamC3 Dev5km DistStreamC1
10 000 nf30 PPTSummer DistStreamC3 Longitude DistStreamC1 Dev5km RddMajor5km
12 500 nf31 DistStreamC3 PPTSummer DistStreamC1 TMaxWinter TMinWinter TMaxSumm
16 000 nf32 DistMilitary MilitarySum TMinSumm TMaxSumm DistStreamC3 TMinWinter
20 000 nf33 PPTSummer NatMax5km TMaxSumm TMinSumm Longitude Shrub5km
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the values of all other predictors, zc, are fixed at their base
levels. The more the dependence of ŷ on zs is purely additive
or multiplicative, the more the partial dependence plot pro-
vides a complete description of the variable’s influence. In
any case, a causal relationship is not claimed. Interactions
can be analyzed by allowing the subset zs to include multiple
explanatory variables.

Partial dependence plots for the explanatory variables
have been calculated and examples appear in Fig. 10. The de-
pendence functions were calculated independently for each
one-third octave band model and then normalized by subtract-
ing the mean response. The functions from each band were
concatenated to yield the composite influence of the explana-
tory variable across the spectrum. Partial dependence plots
also suggest the possibility of manipulating variable values to
generate scenarios, as discussed further in Sec. V.

C. Interpreting the contributions of independent
variables

Geospatial variables have complex relationships with
measured sound levels, incorporating aspects of sound

generation and sound propagation. A single variable can
simultaneously influence many different, sometimes conflict-
ing drivers of the sound pressure level. For example, foliage
can attenuate propagating sound,23 wind flowing through
vegetation generates sound, and the biological habitats that
vegetation creates are home to animal sources of acoustic
energy. Diagnosing the aggregate spectral contributions of
geospatial variables helps identify the mechanisms involved,
and offers some qualitative assurance that the complex mod-
eling effort has yielded a plausible outcome.

Location, a deterministic variable that does not change
over time, is possibly the simplest predictor variable. In the
limit of sufficiently dense sampling, predictions could be
made based solely on interpolation from neighbors.14,35

While proximity does not play a role in sparsely sampled
data sets, ambient sound pressure levels are location depend-
ent. The primary longitudinal trend exhibited by the model
is increased levels on the east coast relative to the rest of the
country, likely due to increased human development.
Latitude, along with elevation, influences the presence and
type of vegetation and wildlife habitats. Elevation is also
correlated with wind speed and complexity of terrain. A

TABLE III(c). A subset of the explanatory variables for the 33 one-third octave band L90 models ranked by relative importance. The most important variable
is in column 1 and subsequent variables proceed in decreasing order to the right.

Frequency (Hz) 1 2 3 4 5 6 7

12.5 NatMax5km TMinWinter NatPoint Elevation NatMIN5km Mixed5km Shrub5km
15.8 Elevation NatMax5km TMinWinter NatPoint NatMIN5km Shrub5km Dev5km
20 Elevation NatMax5km TMinWinter NatPoint Shrub5km Dev5km RddMajor5km
25 Elevation NatMax5km NatPoint TMinWinter Dev5km RddMajor5km TMaxWinter
31.5 NatMax5km NatPoint Elevation NatMIN5km TMinWinter Dev200m Dev5km
40 NatMax5km NatPoint TMinWinter Dev5km NatMIN5km Elevation DistStreamC3
50 NatMax5km Elevation NatPoint Dev200m TMinWinter NatMIN5km Dev5km
63 Elevation NatMax5km Dev5km NatPoint Dev200m NatMIN5km TMinWinter
80 NatMax5km Elevation Dev200m NatPoint Dev5km NatMIN5km TMinWinter
100 NatMax5km Elevation Dev5km Dev200m NatPoint NatMIN5km RddMajor5km
125 NatMax5km NatPoint Elevation Dev200m Dev5km NatMIN5km Shrub5km
160 NatMax5km NatPoint Elevation NatMIN5km Shrub5km Shrub200m DistStreamC3
200 PPTNorms Elevation NatMax5km Shrub200m NatPoint Shrub5km DistStreamC3
250 PPTNorms Elevation Shrub200m DistStreamC3 NatMax5km Shrub5km NatPoint
315 PPTNorms DistStreamC3 Shrub200m Elevation NatMIN5km PPTWinter Forest200m
400 PPTNorms DistStreamC3 Shrub200m Elevation PPTWinter Forest200m NatMIN5km
500 PPTNorms DistStreamC3 Forest200m Elevation Shrub200m PPTWinter NatMIN5km
630 PPTNorms DistStreamC3 Forest200m Elevation PPTWinter Shrub200m NatMIN5km
800 PPTNorms DistStreamC3 Forest200m Elevation PPTWinter Shrub200m NatMax5km
1000 PPTNorms DistStreamC3 Forest200m Elevation PPTWinter Shrub200m Shrub5km
1250 PPTNorms nf21 DistStreamC3 Forest200m Elevation PPTWinter Shrub200m
1600 nf22 PPTNorms DistStreamC3 Forest200m Elevation PPTWinter Shrub5km
2000 nf23 Shrub5km DistStreamC3 PPTNorms Forest200m Elevation PPTSummer
2500 nf24 PPTSummer DistStreamC3 Shrub5km PPTNorms Elevation Forest200m
3150 nf25 PPTSummer DistStreamC3 Shrub5km NatMax5km Longitude Mixed5km
4000 nf26 Longitude PPTSummer DistStreamC3 Shrub5km NatMax5km Elevation
5000 nf27 Longitude PPTSummer DistStreamC3 Elevation Shrub5km Wetland5km
6300 nf28 Longitude PPTSummer DistStreamC3 Wetland5km Elevation Wilderness
8000 nf29 PPTSummer DistStreamC3 Dev5km Elevation Longitude SSlopeStd
10 000 nf30 TMaxSumm PPTNorms TMinSumm PPTWinter Latitude Dev5km
12 500 nf31 TMaxSumm TMinSumm MilitarySum Latitude DistMilitary TMinWinter
16 000 nf32 MilitarySum DistMilitary TMaxSumm TMinSumm TMinWinter Flights25km
20 000 nf33 Longitude Shrub5km TMaxSumm TMinSumm PPTSummer NatMax5km
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ridge top allows for greater wind exposure and unobstructed
propagation paths from acoustic sources whereas canyons
create sheltered areas that promote development of tempera-
ture inversions and have the ability to channel sound through
reflection and refraction.

Climatic variables influence sound levels due to propa-
gation and sound source effects. Sound propagation is modu-
lated by vertical sound speed profiles, especially temperature
inversions. Nights in the winter are much longer than nights
during the summer, so surface inversions are stronger and
more common during the winter months. Strong temperature
and pressure gradients also create seasonal variation in wind
speeds, with maxima in winter and spring and minima in
summer and autumn. Biological activity is affected by cli-
mate and time, with more abundant vegetation and more bio-
acoustical activity during warmer times of year. The partial
dependence of the L10 on circDayX appears in Fig. 10(A).
Increased levels during the fall (circDayX … �1) at very
high frequencies is consistent with the pattern of increased
insect activity until the first freeze. The partial dependence
of the L50 on circDayY appears in Fig. 10(B). Across a wide

range of frequencies, winter levels (circDayY … 1) are qui-
eter on average than summertime levels. This could be
attributed to the absorptive properties of snow, the loss of fo-
liage, and lower levels of wildlife and human activity (in
park settings). This trend is supported by the magnitude of
temperature during a given season. Partial dependence plots
of temperature variables, for example the L50 TMinWinter in
Fig. 10(C), also share a strong trend of increasing sound
pressure level with temperature. Higher temperatures corre-
lated with increased insect abundance and activity. Cicadas
are among the loudest insects, producing sounds up to
120 dB SPL, and their influence can be seen in Fig. 9(a)
around 5 kHz. Higher temperatures can lead to unstable
atmospheric profiles, which combine with moisture to create
thunderstorms. The low frequency sounds from these storms
can travel hundreds of kilometers and may be responsible
for the low frequency increase in Fig. 10(C) and the partial
dependence functions of other temperature variables, the
behavior of which is similar to TMinWinter.

Landcover can influence both acoustic propagation and
the geophysical, biological, and anthropogenic sources present.

FIG. 10. Partial dependence functions for all 33 one-third octave band models considering a single variable. Intensity represents the change from the mean
response, averaged over all samples in the training set. Examples are of the L10 circDayX (A), L50 circDayY (B), L50 TMinWinter (C), L90 PPTNorms (D), L10
PPTNorms (E), L10 DistStreamC3 (F), L90 Dev200m (G), L90 NatMin5km (H), and L10 NatMax5km (I).
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Landcover has often been used as the primary designator for
acoustic zones.5 Recent empirical studies have shown habitat-
dependent sound level characteristics where the spectrums of
sites within a landcover type are more similar than closer prox-
imity sites in an area of different landcover.6 Another study
showed statistically significant similarities between multiple
measurements within a habitat and differences across two habi-
tats (treed mountaintop and grassy hilltop).36

Most sites in the NPS archive were primarily composed
of forest or shrubland landcover types. Forest, shrubland,
and developed landcover types had the greatest influence on
sound levels. The partial dependence of Forest200m on L90
shows some increased energy in the range of wind induced
vegetation noise. The partial dependence is a relatively
minor effect. However, forest landcover sites were very
common in the sample, so they likely influenced the mean
spectrum and thereby reduced the direct influence of this
landcover factor. A forest effect may also explain aspects of
the partial dependence plot of L10 Shrub5km, as a shrubland
and forest cover are inversely related. Very low proportions
of shrubland predicted increased energy at 4 kHz, likely due
to an increase in forest cover (possibly deciduous trees).

Precipitation is a source of acoustic energy when it is
actively raining, hailing or thundering, although in cold cli-
mates (winter season, high elevations, and/or high latitudes)
the highly absorptive properties of soft snow can have the
opposite effect. The level of precipitation perhaps more
importantly influences the type of vegetation present and is
likely to add energy to the soundscape through wind-induced
vegetation noise. This energy is prominent in the 200 Hz to
2 kHz range for conifers and 5 kHz and higher for deciduous
trees.8,9 The precipitation variables have the strongest influ-
ence on the L90 metric, which represents background levels
and persistent sound sources. As evident from the partial de-
pendence plot of L90 PPTNorms, the amount of precipitation
has a strong influence in the mid frequency range [Fig.
10(D)], whereas L10 PPTNorms shows influence at higher
frequencies, perhaps due directly to rain, dripping water, or
other weather events [Fig. 10(E)]. In general, the L10 has
stronger high frequency content than the lower exceedance
levels. The loudest events are likely closer to the receiver
and therefore not subject to atmospheric absorption and
other effects of long-range propagation.

Although the amount of precipitation is proportional to
snowpack and subsequently related to the energy of flowing
water, that effect is distributed over a wide area often far
from the area of analysis. The distance to streams group of
predictors was the most influential hydrological variable.
The partial dependence plot of the L10 DistStreamC3 is
shown in Fig. 10(F) and contribution to both mid and high
frequency energy are clearly distinct (L50 similar). The par-
tial dependence function is not necessarily the spectrum of a
river, but the spectrum that explains the acoustic conditions
near a river considering all other sources and the interactions
with other variables. The high frequency energy is most
likely a result of increased birdsong in riparian areas and this
effect can be seen clearly in the spectrums of Figs. 9(A) and
9(D). The energy from the actual water action is lower in fre-
quency, e.g., the distant Colorado River is responsible for

the energy centered around 600 Hz in Fig. 9(B). Increased
levels during the spring in the frequency range centered
about 600 Hz is also likely a result of snowmelt [Fig. 10(A)].

The anthropogenic variables have a broad influence
across the spectrum. The consequence of increasing anthro-
pogenic activity is always increased sound pressure levels.
Generally, variables on shorter spatial scales (point and
200 m) are necessary to explain the energy at higher frequen-
cies in quieter exceedance levels [L90 Dev200m, Fig. 10(G)].
Again, frequency dependent attenuation is likely at play
here. Larger scale variables have a greater affect at lower
frequencies and the L90 NatMin5km [Fig. 10(H), L50 similar]
shows that an area must be completely free of unnatural con-
ditions to remain noise free. Regardless of the condition of
the majority of an area, the minimum naturalness has a dom-
inant effect affirming that quiet areas require a large buffer.
Although anthropogenic sources contribute heavily to the
soundscape below 1 kHz, transient events can have impacts
at high frequencies over a wide area as shown by the L10 de-
pendence on NatMax5km [Fig. 10(I)]. Low importance vari-
ables have minor effects, not necessarily representing entire
sources or propagation effect but perhaps a small frequency
niche left out by other variables. Less important variables of-
ten have effects confined to a narrow range of their values.

The relationships between these geospatial variables
and sound levels are undoubtedly complex, and the random
forest model introduces additional complications. RANDOM

FOREST will seize upon any consistent relationship between
the independent and dependent variables, so if the causal
input variable is inefficient or not available, the effect of that
factor may be attributed to another correlated variable.
However, as the soundscape is a collection of many inde-
pendent sounds that add incoherently, partial dependence
functions are appropriate to describe the mix of geospatial
features that combine additively and result in predicted spec-
trum. For example, the soundscape in Fig. 9(A) contains
many sources including vehicle traffic, heavy equipment
shipping operations, machinery for grounds care, human voi-
ces, air traffic, insects, and birdsong, to name a few.

Propagation effects on the other hand, are not necessarily
additive. Furthermore, representing and diagnosing the inter-
active effects of propagation is challenging because attenua-
tion factors are dependent on the path from source to receiver
whereas the model framework calculates a homogenous field
at each discrete location that is independent of other locations.
It is possible that variables disposed to explaining propagation
effects could be identified through interaction with source var-
iables. However this is not without uncertainty, for example
the effect due to reflection in the ground plane is tied to the
landcover variable, which also describes sources. This may be
mitigated through inclusion of more propagation-centric vari-
ables. Geometric spreading loss, a significant path effect, is
accounted for explicitly in some cases by the “distance to”
variables such as DistStreamC and DistRoadsMaj.

V. APPLICATION

This geospatial model can be used to generate predictive
maps of sound level variation on landscape and continental
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scales, and to evaluate changes in sound levels that would
occur under alternative scenarios. To demonstrate this appli-
cation, a 69 � 64 km rectangle was defined in southwestern
Utah containing Zion National Park, Cedar Breaks National
Monument, and the nearby towns of Hurricane and Cedar
City. Figure 11 shows the study area and some important ge-
ographic features including roads, streams, and major terrain
features. Explanatory variables were generated at a resolu-
tion of 30 m within this study area (4 921 004 point grid).
This section focuses on the predictions of four random forest
models of the following wideband metrics: the A-weighted
L10, the unweighted L10, the A-weighted L90, and the
unweighted L90. The performance of these models is item-
ized in Table II. The contrast between A-weighted and
unweighted sound levels emphasizes spatial changes in low
frequency sound levels. Predictions were made independ-
ently at each grid point and the resulting maps of the pre-
dicted existing sound pressure levels appear in Fig. 12.

The predictions of the L10 exceedance values illustrate
the effects of relatively frequent increases in sound level due
to transient events. The most prominent features in both the
A-weighted and unweighted plots are elevated levels near
the road network, with less marked increases in sound levels
associated with river corridors. The A-weighted plot [Fig.
12(A)] offers a more precise reflection of road and river

FIG. 11. The study area in southwestern Utah emphasizing some significant
geographic features and a subset of the acoustic monitoring sites.

FIG. 12. Predicted existing sound pressure levels across the study area: A-weighted L10 (A), A-weighted L90 (B), unweighted L10 (C), and unweighted L90 (D).
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geometry, because the higher frequency sounds emphasized
by A-weighting do not propagate as far across the landscape.
Note that this propagation effect is not due to explicit physi-
cal modeling; it reflects a generic pattern extracted from the
measurement sites. The unweighted L10 plot [Fig. 12(C)]
also reveals the effect of a military aircraft route that runs
through the northern section of the study area. Figures 12(B)
and 12(D) displays the same pair of maps for the L90 exceed-
ance value, which represents the background or residual
sound level against which other sounds are heard. Developed
areas dominate the unweighted map, which adds up to 14 dB
in developed areas and along major roads. River corridor
and road corridors have roughly equivalent effects in the
A-weighted map. This contrast reflects the low-frequency
emphasis of road noise.

Maps can also be generated to represent the consequen-
ces of changing geospatial inputs. The prevalence of anthro-
pogenic effects recommends developing scenarios that
predict what sound levels would be in the absence of noise.
In this model, natural scenarios were generated by minimiz-
ing the anthropogenic drivers and holding all other variables
constant. The accuracy of these predictions is limited by the

training data, but many of the NPS sites had very little
anthropogenic influence. For example, for the natural scenar-
ios NatMax5km was set to 0.9966357, the maximum value
in the training set (1.0 would be completely natural).
Another limitation of these predicted natural conditions is
our inability to predict what other geospatial variables would
change in the absence of the anthropogenic factors. For
example, these natural predictions do not replace the devel-
oped landcover sites with a presumed natural landcover,
they only remove the developed areas from the area of inter-
est calculations.

The maps of A-weighted and unweighted L90 natural
sound levels are displayed in Fig. 13. The A-weighted map
reveals much more spatial detail, because it emphasizes
higher frequency sounds that do not propagate as far across
the landscape. The brightest portions of the A-weighted map
are associated with streams and valleys. Landcover also
influences this map, with the quietest areas being shrubland
dominant (the southwest portion, including Hurricane) and
the louder areas having a higher proportion of forest cover
(primarily evergreen). High levels of precipitation increase
levels to the north and west of the park. In the unweighted

FIG. 13. Predicted sound pressure levels given a natural scenario: A-weighted L90 (A), unweighted L90 (B).

FIG. 14. Predicted impact (dB SPL) of anthropogenic noise on the natural scenario: A-weighted L90 (A), unweighted L90 (B).
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map, the illusion of sharp boundaries is an artifact of the
very fine gradations in SPL represented by color. Under nat-
ural conditions, low frequency sound levels are not predicted
to vary much across this landscape.

The net impact of anthropogenic noise can be mapped
as the difference between existing and predicted natural
sound levels and appear in Fig. 14. These L90 maps docu-
ment the chronic effects of anthropogenic noise on listening
conditions. The A-weighted map [Fig. 14(A)] reveals that
approximately half of the study area enjoys background
sound levels within 1 dB of the natural condition. However,
road corridors have extensive spatial influence. Interstate 15
outside the NW edge of Zion elevates background sound lev-
els more than 3 dB far inside the park boundaries. This effect
is accentuated in the unweighted map [Fig. 14(B)], which
emphasizes the long range effects of low frequency noise.
Small changes in L90 translate into substantial effects in au-
ditory awareness. A 3 dB increase in L90 translates to a 50%
reduction in listening area for sounds in the same portion of
the spectrum as the noise source, and a 6 dB increase trans-
lates into a 50% reduction in detection distance.37

The example presented here focused on historic, natural
conditions. Scenarios can be generated to express potential
effects of population growth, energy and transportation de-
velopment, or the effects of alternative management actions
within park boundaries. Geospatial models offer powerful
tools for resource stewardship within and well beyond park
boundaries.38,39

VI. CONCLUSION

This paper introduced a method to build regression tree-
based models that form relationships between measured
acoustical data and geospatial data to predict acoustical con-
ditions in environments with an unknown and potentially in-
numerable amount of acoustic sources and complex, long
distance propagation. Through this process, influential cova-
riates of sound pressure levels have been identified and their
effects quantified. These results amplify the value of envi-
ronmental sound level measurements. The National Park
Service has invested substantial effort and time to obtain
inventories of acoustical conditions across a variety of park
unit settings. The geospatial models presented here maxi-
mize the spatial applicability of those data by quantifying
the relationships between sound level measurements and
geospatial data layers that are available for the contiguous
48 states. These models also substantially improve upon the
previous treatment of landcover zones as though they had
uniform acoustical conditions. These models show that envi-
ronmental sound levels are a function of multiple factors like
landcover, climate, terrain, and even time of year.

These results compliment the established practice of
noise propagation modeling. Geospatial models predict sound
levels encompassing contributions from all sources, whereas
explicit physical models of noise propagation offer powerful
tools for predicting the effects of specific noise sources. The
spatial resolution and accuracy of noise propagation models
can now be complimented by geospatial maps of environmen-
tal ambient sound levels, yielding more precise and spatially

extensive prediction of noise to background ratios across land-
scape scales. For example, the high natural ambient levels
caused by wind can be a significant factor in evaluating the
potential effects of wind turbine noise.40

No physical models of propagation were incorporated in
the geospatial model; sound sources were not exhaustively
enumerated; source power, spectrum, and directivity were
not specified. However, the emergent patterns in the ambient
sound level maps are consistent with known properties of
environmental sound sources and fundamental principles of
acoustic propagation. These physical factors were mani-
fested indirectly. For example, a portion of the higher sound
levels near water likely reflects enhanced propagation due to
the high acoustic impedance of water. Elevation and TPI are
correlated with dissected landscapes where terrain shielding
is an important factor. It is striking that the spatial extent of
road noise effects displayed in Figs. 12 and 14 are consonant
with the spatial extent of noise propagation that would be
obtained from physically explicit models like TNM20 and
NMSim.21

This paper focused on sound level predictions, but the
same approach can be applied to other acoustical metrics
like the percent time that noise is audible, and statistics
describing the durations of noise-free intervals. Listening to
any soundscape, whether at the rim of the Grand Canyon or
at a table in a restaurant, is a very rich experience. Several
metrics are needed to characterize the diverse dimensions of
that experience. These models can also be adapted to look at
nocturnal conditions, or even consistent diel patterns.

It might seem reasonable to ask whether there is a great
need for geospatial models of acoustical condition. In the
United States, noise is arguably one of the fastest growing pol-
lutants.37 Since 1970, road traffic has tripled and population
has increased by a multiple of 1.5. Air traffic, both passenger
and freight, has grown faster than surface transportation.
Multinational scientific studies of public health and noise have
revealed that a significant fraction of the European population
is suffering chronic health consequences from noise
exposure,41–43 and the European Union has mandated produc-
tion of continental scale noise maps.44,45 The U.S. lags behind
Europe in this effort, though exploratory maps of noise expo-
sure have been generated at continental scales.39,43

As this paper and other studies document,4,26,39 noise
impacts are not limited to developed areas. Noise is a perva-
sive threat to ecological integrity and visitor experience in
U.S. National Parks and other protected natural areas. One
aircraft can broadcast audible noise up to 40 km from its
flight path, and a loud truck or motorcycle can cast noise up
to 10 km from a road if there is no intervening terrain. Many
National Parks enjoy extremely low background sound lev-
els, and like the dim glow of distant lights in a very dark
sky, far away noise sources can degrade otherwise outstand-
ing listening conditions for wildlife and park visitors.
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