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Abstract: Program MARK provides a number of
sophisticated analyses beyond just providing parame-
ter estimates and their estimated conditional measures
of precision.  Advanced features include graphs of
parameter estimates from 1 or more models, models
constructed with the design matrix to estimate the
mean of a set of real parameters, quasi-likelihood pro-
cedures to correct for overdispersion of the data,
model averaging, variance components procedures to
separate sampling and process variance in a set of
parameter estimates, and use of the bootstrap proce-
dure to evaluate goodness of fit.
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Monitoring biological populations is receiving
increased emphasis even in less-developed areas of the
world (Likens 1989).  Estimation of survival probabil-
ities, how they vary by age, sex, and time, and how sur-
vival might be correlated with external variables are
difficult subjects.  Estimation of immigration and emi-
gration rates, population size, and the proportion of
age classes that first enter the breeding population are
equally important and difficult to estimate with preci-
sion for free-ranging populations.  Estimation of the
finite rate of population change (λ) and fitness (F) are
still more difficult to address in a rigorous manner.

Risk assessment in higher vertebrates can be done
in the framework of capture–recapture theory (Ander-
son et al. 1995).  Population viability analyses must
rely on estimates of vital rates of a population (Boyce
1992, White 2000); often these can be derived only
from the study of marked animals.  The richness com-
ponent of biodiversity can often be estimated in the
context of closed model capture–recapture (Nichols et
al. 1998, Boulinier et al. 1998).  Finally, the monitor-

ing components of adaptive management (Williams et
al. 1996) can be rigorously addressed by data analysis
from marked subpopulations.

Capture–recapture surveys have been used as a gen-
eral sampling and analysis method to assess population
status and trends in many vertebrate populations.  The
use of marked individuals is analogous to the use of
various tracers in studies of physiology, medicine, and
nutrient cycling.  Recent advances in technology allow
a wide variety of marking methods (e.g., Parker et al.
1990).  Problems involving parameter estimation for
threatened and endangered species and indicator spe-
cies are common (e.g., Burnham et al. 1996).  Banding
and recovery methods have been used in many more-
developed countries; these methods have many simi-
larities with the capture–recapture surveys.  Seber
(1982, 1986, 1992) and Seber and Schwarz (1999)
provide references on approximately 2,000 research
papers on modeling and parameter estimation based on
general capture methodology.

Program MARK (White and Burnham 1999) uni-
fies these techniques and provides parameter estimates
and associated standard errors for 17 classes of the
models developed from data on the encounter histories
of marked animals.  MARK is based on likelihood the-
ory (Edwards 1992), and all estimates are maximum
likelihood estimates (MLEs).  Models currently
included in MARK are the live-recapture or Cormack-
Jolly-Seber model (Cormack 1964, Jolly 1965, Seber
1965, Lebreton et al. 1992), dead recoveries or band
recoveries with the Brownie et al. (1985) and Seber’s
(1970) parameterizations, joint live and dead encoun-
ters with Burnham’s (1993) and Barker’s (1997) para-
meterizations, known fate or radiocollar models
(White and Garrott 1990), closed captures (Otis et al.
1978, White et al. 1982), robust design (Kendall and
Nichols 1995; Kendall et al. 1995, 1997), multi-strata
(Hestbeck et al. 1991, Brownie et al. 1993), and 3
parameterizations of Pradel’s (1996) models.  Input
data to MARK are encounter histories that can consist
of data from live recaptures, live resightings, or dead
recoveries of the marked animals.

Here, we discuss the advanced features of MARK
that allow sophisticated analyses of the parameter esti-
mates.  These features include graphs of parameter
estimates from 1 or more models, models constructed
with the design matrix to estimate the mean of a set of
real parameters, quasi-likelihood procedures to correct
for overdispersion of the data, model averaging to add
model selection uncertainty into estimates of preci-
sion, variance components procedures to separate sam-
pling and process variance in a set of parameter esti-
mates, and use of the bootstrap procedure to evaluate
goodness of fit.

GRAPHICAL ANALYSIS
Once parameter estimates have been obtained for 1 or
more models, estimates and their 95% confidence
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intervals can be displayed graphically.  The nested
menu choices OUTPUT > SPECIFIC MODEL OUTPUT >
INTERACTIVE GRAPHICS GS, or the Graphics Icon, will
present a list of parameters for the model highlighted
in the Results Browser window.  The user enters
indices of parameters to graph in an edit window; i.e.,
“1 to 9” or “15 to 17, 19 to 25,” or clicks on parame-
ters in the parameter list to select them to graph.  Other
options are available, such as combining the “to” oper-
ator with the “by” operator to select steps within the
range.  For example, 1 to 10 by 3,  would select the val-
ues 1, 4, 7, and 10.  Once parameters are selected, the
OK button is clicked to generate the graph.

One option available once the graph is displayed is
to add additional series of parameters to the graph.  For
example, the user might want to graph survival esti-
mates and then add the reporting rates for the same
years for estimates of encounter histories from dead
recoveries.  This graph would provide a display that
might show a negative correlation between the esti-
mates across time, suggesting that harvest of the
species is causing additive mortality if the sampling
covariance between estimates is accounted for by the
analysis.  A more likely scenario is that the user would
want to graph survival estimates from 2 different mod-
els to compare their values.  To specify the parameter
estimates for the second model, the user must first
highlight the desired model in the Results Browser
(which will be different than the first model that was
used to start the graph), and then click the Add Series
button.  The dialog window to specify parameters is
once again shown, allowing the user to select which
parameter values to graph.

The graphics display is produced by Graph Con-
trol™ published by Pinnacle Publishing Inc.  This
ActiveX control and its associated help file are in-
stalled in the \Windows\System subdirectory when
MARK is installed.  The icons displayed at the top of
the graph window lead to a tabbed dialog window that
allows extensive manipulation of the graph, including
changing the data or format of the graph, copying the
graph to the Windows clipboard, saving the graph and
data in a format for later retrieval by Graph Control,
and printing the graph.  The features of Graph Control are
extensive and allow the user complete control of the
format of the graphics display (Fig. 1). An extensive
help file is included with Graph Control to provide the
user with the information needed to use the software.

ESTIMATION OF MEAN VALUES WITH
DESIGN MATRIX CODING
Often the parameter of interest for a series of survival
estimates is an estimate of the mean survival rate.  If
the model with constant survival (i.e., S) fits the
observed data much better than the time-specific
model (St), then the constant survival estimate can be
used.  But, suppose that time-specific variation in the
data is significant.  In this section, we will demonstrate

how to code the design matrix to obtain the mean of
survival rates with time-specific variation.

To illustrate the technique, assume a design matrix
with 5 estimates of survival rate.  The default in
MARK for a time-specific estimate of survival would
be a 5 × 5 identity matrix.  Another alternative is an
intercept and 4 time effects:

In this design matrix, the intercept (β1) is the estimate
of survival for the fifth occasion after the inverse link
function is applied, i.e., Sˆ5.  The survival estimate for
the first occasion consists of the intercept and the off-
set provided by β2, again after transforming by the in-
verse link function.  Similarly β1 + β3 provides the
survival estimate for S2.  By modifying the coding of
the above design matrix, the intercept after back

Fig. 1.  Example of the graphics interface available in program
MARK.  The upper pane shows the plotted survival estimates for 2
models St and ST, whereas the lower pane provides the tools to manip-
ulate the graph. 

β1 β2 β3 β4 β5

Sˆ1 1 1 0 0 0  

Sˆ2 1 0 1 0 0  

Sˆ3 1 0 0 1 0 

Sˆ4 1 0 0 0 1  

Sˆ5 1 0 0 0 0 
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transformation can become the mean of the survival
estimates:

With this design matrix, the back-transformed β1 pro-
vides the mean of the survival estimates.  The estimates
of β2 through β5 provide the time variation around the
estimated mean. To see this result, compute the mean of
the rows of the matrix; i.e., [(β1 + β2) + (β1 + β3) + (β1 +
β4) + (β1 + β5) + (β1 – β2 – β3 – β4 – β5)]/5 = 5β1/5 = β1. 

To obtain the estimate of mean survival, the esti-
mate of β1 must be converted with the link function
used for the model.  For example, with the logit link,
S
–

= 1/(1 + e–β
1) with standard error SE(S

–
) =

v̂ar(βˆ1) e2β̂1 1/2( (1 + eβ̂
1)4 )

This SE provides the sampling variation of the esti-
mate of the mean and does not include the process
variance associated with the set of estimates.  That is,
this SE represents a fixed effects design, with the SE
providing the precision of the mean for the observed
time period.  An alternate estimator of mean survival
(discussed below) is developed as part of the variance
components analysis, with the SE of the mean from that
estimator including both sampling and process vari-
ance.  Thus, the variance components estimator repre-
sents a random effects design, and hence is always larg-
er than the SE provided by the approach presented here.

A nasty theoretical issue exists with this procedure—
bias of the estimate of the mean as a result of transform-
ing and back-transforming from the nonlinear link func-
tion.  Consider an example: Si are 0.5, 0.6, 0.7, 0.8, and
0.9, so that  S

– 
= 0.7.  With the logit link, the transformed

values are 0, 0.40547, 0.8473, 1.38629, and 2.19722,
giving an intercept of β1= 0.96726.  Back transforming
this value gives 0.7246, not 0.70.  Thus, all the link func-
tions in MARK except the identity link will provide
slightly biased estimates of the mean value.  Because the
identity link is a linear function, estimates of the mean
from the identity link will be unbiased.  Typically, stan-
dard errors of the estimates will dominate such transfor-
mation bias so that the bias is usually ignored.

QUASI-LIKELIHOOD ESTIMATION
The models considered in program MARK are based on
products of multinomial likelihoods.  An important,

implicit assumption of this statistical model is that events
are independent; i.e., death of 1 animal does not depend
on the fate of another.  Another assumption is that each
marked animal has the same survival probability.  If
these assumptions are violated, then a condition called
“overdispersion” results.  The survival rate is estimated
without bias, but the variance estimate from the sam-
ple is too small.  The observed data are more “dispersed”
than is expected under the model.  Quasi-likelihood esti-
mation (Wedderburn 1974) provides a procedure to cor-
rect the estimates of sampling variance of the parame-
ters and to allow for overdispersion in model selection.

A variance inflation factor, c, is estimated to correct
the estimates of sampling variances and covariances.
The parameter c can be estimated from a goodness-of-
fit chi-square statistic (χ2) and its degrees of freedom
as ĉ = χ2/df (Cox and Snell 1989, Lebreton et al. 1992,
Tjur 1998).  In MARK, the deviance of a model is
asymptotically χ2 and provides a goodness-of-fit sta-
tistic that can sometimes be useful for evaluating
goodness-of-fit and estimating c.  Deviance is defined
as –2 times the difference of the log likelihood of the
model of interest and the saturated model for the data
(McCullagh and Nelder 1989), where the maximum
possible log likelihood is associated with the saturated
model.  Each degree of freedom of the data in a satu-
rated model has an associated parameter, so that the
saturated model is a perfect fit to the data.  The
deviance/df ratio is an estimate of c for the dead recov-
ery models.  Unfortunately, for live recapture models,
deviance/df is a poor estimate of c, mainly because
there are so many potential encounter histories that can
be realized, but generally only a few are actually
observed and provided in the encounter histories file.
As a result, the deviance is not well approximated by
the asymtotic  distribution.  In the section on bootstrap
procedure below, we will consider how to obtain rea-
sonable estimates of c.  For now, assume that some
estimate of c is available.

When c is equal to 1, MARK uses AICc for model
selection (Burnham and Anderson 1998),

2K(K + 1)
n – K – 1

,

where log(L (βˆ)) is the log of the likelihood of the para-
meters (β) given the data, K is the number of parame-
ters estimated, and n is the finite sample size (see
Burnham and Anderson 1998 for additional discussion
of AICc).  When overdispersion exists in the data, i.e.,
c > 1, quasi-likelihood theory suggests the modifica-
tion (Burnham and Anderson 1998) as:

–2log(L (βˆ))              2K(K + 1)
QAICc =

ĉ
+ 2K +

n – K – 1 
.

In MARK, the value of ĉ is set with the ADJUSTMENTS >
C-HAT menu choices from the Results Browser window.

β1 β2 β3 β4 β5

Sˆ1 1 1 0 0 0  

Sˆ2 1 0 1 0 0  

Sˆ3 1 0 0 1 0 

Sˆ4 1 0 0 0 1  

Sˆ5 1 –1 –1 –1 –1 

AICc = –2log(L (βˆ) + 2K +
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You can tell when ĉ is >1 because the headings of the
columns in the Results Browser will be QAICc instead of
AICc, and the model ordering will reflect the value of ĉ.

The value of ĉ also will be used to inflate the vari-
ances and covariances of parameter estimates.  When
either real or beta parameter estimates are listed with
the OUTPUT > SPECIFIC MODEL OUTPUT > REAL ESTI-
MATES or OUTPUT > SPECIFIC MODEL OUTPUT > BETA

ESTIMATES from the Results Browser window (or their
associated icons), the output listing will include the
value of ĉ in headings, and the standard errors report-
ed will have been inflated by multiplying by !ĉ.  Note
that the correction for ĉ is applied to any further use of
the parameter estimates and their associated standard
errors, such as model averaging, variance components
estimation, or graphics.  However, the standard errors
in the full output for the model produced when the
parameters were originally estimated will not reflect the
value of ĉ because the numerical estimation output has
no knowledge of the value of ĉ.  Thus, if you set ĉ > 1,
the standard errors in the output window obtained by
the menu choice OUTPUT > SPECIFIC MODEL OUTPUT >
OUTPUT IN NOTEPAD will differ from the standard errors
reported by OUTPUT > SPECIFIC MODEL OUTPUT > REAL

ESTIMATES or OUTPUT > SPECIFIC MODEL OUTPUT > BETA

ESTIMATES.  Only the latter have been inflated by !ĉ.
Only 1 value of ĉ is used for all models in a set of

models.  This value should be estimated from the global
or most general model and applied to the remainder of the
models in the set of models considered in the analysis.

MODEL AVERAGING
Usually, several models seem plausible, based on the
AICc or QAICc values.  In this case, a formal way bases
inference on more than a single model. Model averag-
ing, available by the OUTPUT > MODEL AVERAGING

menu choices from the Results Browser window,
allows you to compute the average of a real parameter
from the models in the Results Browser.  By doing so,
you include model selection uncertainty in the esti-
mate of precision of the parameter, and thus produce
unconditional estimates of sampling variances and
covariances and standard errors.  Parameters that are to
be model-averaged are selected from the possible para-
meters available in the parameter index matrices
(PIMs).  Thus, only real parameters can be selected
because the beta parameters do not occur in the PIMs,
and a given βi does not occur in all models.

Model averaging entails a weighted average of the
estimates of a parameter for R models shown in the
Results Browser window.  Akaike weights, wi, are a
natural weight to use.  The Akaike weight for model
(Burnham and Anderson 1998) is defined as:

exp(–∆i /2)
wi  =  R

Σ
j = 1 

exp(–∆j/2)

where ∆i is the difference in AICc value for model i and
the minimum AICc model.  Both ∆i and wi are columns
in the MARK Results Browser.  If the Akaike weights
do not appear in the Results Browser, then change the
FILE > PREFERENCES menu choice to show the wi the
next time the Results Browser is started.  Alternative
weights can come from estimates of model selection
frequencies (e.g., weights based on the bootstrap tech-
nique; Burnham and Anderson 1998), but this option
currently is not available in MARK.

The precision of an estimator ideally should have 2
variance components: (1) the conditional sampling
variance, given a model Mi with sampling variance
vâr(θˆ |Mi) and (2) variation associated with model
selection uncertainty.  Buckland et al. (1997) provide
an effective method to estimate precision not condi-
tional on a particular model.  Assume that the scalar
parameter of interest is a real parameter, and hence,
must be common to all models considered (e.g., φ, or
N, or S).   If our focus is on a structural parameter of
the model (i.e., a beta parameter in MARK) that
appears only in a subset of our full set of models, then
we must restrict ourselves to that subset to make the
sort of inferences considered here about the parameter
of interest.  MARK will automatically model-average
real parameters, but the user must do the calculations
manually to model average beta parameters.

From Buckland et al. (1997) we will take the esti-
mated unconditional var(θ̂

−
) as:

vâr(θˆ−) = ( Σ
i = 1

R

wi  !vâr(θˆi |Mi) + (θˆi – θˆ
−
)
2))2

where θˆ
−

= Σ
i = 1

R

wi θ
ˆ
i, and the wi are the Akaike weights

scaled to sum to 1 as defined above.  The subscript i
refers to the ith model.  θ̂

− 
is a weighted average of the

estimated parameter over R models (i = 1, 2, ..., R).
This estimator of the unconditional variance is clearly
the sum of 2 components:  the conditional sampling
variance vâr(θˆ |Mi) and a term for the variation in the
estimates across the R models, (θˆ i – θ̂

−
)2.  The square

root of the sum of these terms is then merely weighted by
the wi.  The estimated unconditional ŜE(θ̂−) = !vâr(θ̂−).
(Burnham and Anderson (1998) found this estimator to
be robust to imprecise values of the weights, and sug-
gest it as appropriate for scenarios such as found in
program MARK.

A logical and simple (1 – α)100% unconditional
confidence interval when sample size is large is given
by the end points θ̂

− 
± z1–α/2ŜE(θ̂

−
), and is the default

confidence interval provided by MARK (Fig. 2).  Mod-
ifications were suggested by Burnham and Anderson
(1998).  We suggest incorporating additional informa-
tion into the confidence interval when possible, such as
the minimum number known alive (Mt+1) for estimates
of population size (N).  For example, the log-based con-
fidence interval used in program CAPTURE for Nˆ is:
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[Mt+1 + (Nˆ − Mt+1) / C, Mt+1 + Nˆ − Mt+1) × C],

where
vâr(Nˆ )C = exp(z1 − α/2 ! log[1 +

(Nˆ – Mt+1)2]).
This procedure requires Nˆ > Mt+1.

Another example is using the logistic transforma-
tion for survival estimates so that the confidence inter-
val is within the feasible interval of 0 to 1.  The vari-
ance of the logit(θ̂

−
) is 

vâr(θ̂
−
), 

θ̂
−2

(1 – θ̂
−
)2  

,

so that confidence intervals can be computed on logit(θ̂
−
)

and then back-transformed resulting in a bounded con-
fidence interval (Burnham et al. 1987:214), i.e.,

1

1 + exp[− (logit(θ̂
−
) – z1−α/2 !vâr[logit(θ̂

−
)])]

,

1

1 + exp[− (logit(θ̂
−
) + z1−α/2 !vâr[logit(θ̂

−
)])]

,

A different form of the same confidence interval that
may provide more insight into the equation is given by:

C = exp[z1−α/2!vâr[logit(θ̂
−
)]], so that

θˆ θˆθ̂L =
θ̂
−

+ (1 − θ̂
−
)/C  

and θ̂U =
θ̂
−

+ (1 – θ̂
−
)C

.

VARIANCE COMPONENTS
Program MARK can compute an estimate of the under-
lying process variance, σ2, for a set of parameter esti-
mates.  Either the real parameters or the beta parame-
ters may be used.  Select either VARIANCE COMPONENTS

REAL PARAMETERS or VARIANCE COMPONENTS BETA

PARAMETERS from the OUTPUT > SPECIFIC MODEL OUT-
PUT menu choice of the Results Browser window.  To
describe the method, we will assume that we are esti-
mating the process variance of a set of survival proba-
bilities.  The basic concept is that the S1, S2, ..., Sn,  are
considered a random sample from some distribution,
hence, have a mean (µ) and variance (σ2).  That is, the
values are assumed uncorrelated.  If we could directly
observe (i.e., measure without error) these survival
rates, then we would make use of the Si in our models on
population dynamics.  We would also compute a mean 

1 n
µ̂=

n i=1
Σ  Si and the usual estimate of

1  n
σ̂2 = 

n – 1 i=1
Σ (Si – S

−)2
.  However, we have instead a

type of  measurement error variation and covariation in
our estimated values Sˆi.  When that measurement (sam-
pling) variation is included into the inference methods,
we have more complicated estimators of these 2 “pop-
ulation” parameters.  Moreover, if the estimated sam-
pling variances and covariances in the real parameters
variance−covariance matrix (W) are too big then we
cannot reliably partition the total observed variance,

1  n

n – 1 i=1
Σ  (Si – Sˆ

– )2
,

into σ̂2 and the average of the diagonal elements minus
the average of the nondiagonal elements of the real
parameters variance−covariance matrix.

The method used in program MARK assumes that
the vector of parameter estimates (Sˆ) was generated
from a general model (i.e., the model did not put con-
straints on the parameter estimates that would affect
the process variance estimate).  First, we assume Sˆ= S +
δ, given S.  Conditional on S, δ has a variance–covari-
ance matrix W, hence, E(Sˆ|S) = S for large samples.
Second, unconditionally S is a random vector with
expectation Xβ and variance–covariance matrix σ2I,
where I is the identity matrix.  (The vector β is differ-
ent than the beta parameters of the MARK link func-
tion).  Thus, the process errors εi = Si – E(Si) are inde-
pendent with homogeneous variance σ2.  Also, we
assume mutual independence of sampling errors δ and
process errors ε.  We fit a model that does not constrain
Sˆ, e.g., {St}, and hence get the maximum likelihood

Fig. 2.  Example of model averaging output from program MARK.
The column labeled “Standard Error” is the estimate of sampling
standard error for the model.  The row labeled “Weighted Average” is
the model averaging estimate of the parameter value, and the next row
provides the unconditional SE of this estimate.  In this example,
13.71% (= 100 × (1 – 0.06156262/0.06627322) of the variance of the
model averaging estimate is attributable to model uncertainty.  If
inferences were made only from the estimate from the minimum AICc
model, the standard error of the estimate would have been 0.0463568,
compared to the unconditional standard error of 0.0662732, an infla-
tion of 43%. 
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estimates Sˆ and an estimate of W.  Let S be a vector
with n elements, and β have k elements.

Unconditionally,

Sˆ = Xβ + δ + ε, VC(δ + ε) = D = σ2I + W.

We want to estimate β and σ2, an unconditional vari-
ance–covariance matrix for βˆ , a confidence interval on
σ2, and to compute a shrinkage (i.e., empirical Bayes
or random effects) estimator of S (S

~
) and its condition-

al sampling variance–covariance matrix.  In this ran-
dom effects context the maximum likelihood estimator
is the best conditional estimator of S.  However, once
we add the random effects structure we can consider an
unconditional estimator of S (S

~
) and a corresponding

unconditional variance–covariance for S
~
, which incor-

porates σ2 as well as W and has n – k degrees of free-
dom (if we are assuming large df for W and “large” σ2).

For a given σ2 we have

βˆ = (X /D–1X)–1X /D–1Sˆ.

Note that here D, hence βˆ, is a function of σ2.  Now we
need a criterion that allows us to find an estimator of
σ2.  By the method of moments we have

n – k = (Sˆ – Xβˆ)–1X /D–1(Sˆ – Xβˆ).            (1)

The above equation defines a 1-dimensional numeri-
cal-solution search problem.  Pick a value of σ2, com-
pute D, then compute βˆ, then compute the right-hand
side of the equation (1); this process is repeated over
values of σ2 until the solution of equation (1), as S

~
, is

found.  This process also gives βˆ.  The process can be
simplified by eliminating βˆ from equation (1).  Define

A = X(X /D–1X)–1X /.

This is the “hat” matrix of linear regression, but we
choose to not call it H.  Now equation (1) is

n – k = – Sˆ/D–1 – D–1AD–1)Sˆ.

The unconditional variance–covariance matrix of βˆ is

VC(βˆ ) = (X /D–1X)–1.

A distributional assumption is needed to get a confi-
dence interval on σ2, although a bootstrap procedure
could be used.  One approach is to assume a pivotal

SRSS(σ2) = (Sˆ – Xβˆ ) /D–1(Sˆ – Xβˆ )

is a central χ2 on df = n – k.  A 95% confidence inter-
val on σ2 is found as the solution points (lower and
upper bounds on σ2, respectively) of SRSS = upper
97.5%-tile point of a central  and SRSS = lower 2.5%-
tile point of a central χ2

n–k.  The lower bound should be

taken as zero if the solution would otherwise be nega-
tive.  We expect the upper bound to always be finite.

Define another matrix as

H = σD–1/2 = σ(σ2I + W)–1/2 = (I +
σ2
1

W)–1/2;

we only need H at σ̂.  The shrinkage estimate of S used
in program MARK is

S
~ 

= H(Sˆ – Xβˆ) + Xβˆ ,
= HSˆ + (I – H)Xβˆ.

To get an estimator of the variance of these shrink-
age estimators (not exact as the estimation of σ2 is
ignored here, as it is for the variance–covariance
matrix of βˆ), we can write

S
~ 

= [H + (I – H)AD–1]Sˆ = GSˆ.

The conditional variance–covariance matrix of the
shrinkage estimator is then VC(S

~
|S) = GWG/, whereas

W = VC(S
~
|S).  Because S

~
is known to be biased and the

direction of the bias is known, a much improved
basis for inference is VC(S

~
|Sˆ) = GWG/ + (S

~ 
– Sˆ)(S

~ 
–

Sˆ)/.  The square roots of the diagonal elements of this
matrix are 

rm̂se(S
~
i |S) = !vâr(S

~
i |S) + (S

~
i – Sˆi)

2.  Confidence inter-
vals on Si should be based on this rm̂se(S

~
i |S), which is

what MARK does.  The term rm̂se(S
~
i |Si) can exceed

SE(Sˆi |Si), but on average rm̂se(S
~
i |S) is smaller.

This set of calculations has been fully programmed
in MARK.  To specify the estimates (Sˆi) to be used in
estimating σ̂2, the same type of dialog window as used
for selecting estimates to graph is used.  See the sec-
tion on selecting graph parameters above for details.

The default model for the Sˆi values is the mean (i.e., X
consists of a vector of 1’s).  To select a linear trend model,
click that model in the upper right corner of the dialog
window.  You also can specify your own design matrix for
X, instead of accepting 1 of the 2 predefined models.

The initial output from the variance component
estimation will be displayed from the numerical pro-
cedure that computes the estimates.  A graph of the
original estimates and their confidence intervals, plus
the “shrunk” estimates (S

~
) will be displayed (Fig. 3).

Tiled behind this graph is a listing of the “shrunk” esti-
mates.  After you close this set of windows, the full
output from the variance component estimation rou-
tine will be displayed in a NotePad window, including
the estimate of σ̂2 and its 95% confidence interval, σ̂
and its 95% confidence interval, the vector βˆ (the esti-
mated parameters for the linear model) and its vari-
ance–covariance matrix, and the vector S

~
and its vari-

ance–covariance matrix and standard errors (Fig. 4).
The column labeled RMSE(S-tilde) are the values that
would normally be used for computing confidence
intervals on S

~
.
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The variance reported for S
–

from the variance com-
ponents analysis can be written as:

where the variance for S
–

provided by the design matrix
approach discussed above would be just

The procedure used in MARK differs from the pro-
cedures presented by Link and Nichols (1994) and
Gould and Nichols (1998) in that the estimator in
MARK weights the estimates of Ŝ by their estimated

sampling variance–covariance matrix (W) whereas the
other procedures give equal weight to each estimate.
The procedure in MARK is an extension of the proce-
dure described in Burnham et al. (1987).

BOOTSTRAP GOODNESS-OF-FIT
PROCEDURE
The goodness-of-fit of the global model can be evalu-
ated in 3 ways: (1) assume that the deviance for the
model is χ2 distributed and compute a goodness-of-fit
test from this statistic; (2) use program RELEASE (for
live-recapture data with no age effects and only time-
and group-specific survival and recapture rates) to
compute the goodness-of-fit tests provided by that pro-
gram and developed in Burnham et al. (1987); or (3)
use the parametric bootstrap procedure provided in
MARK.

The first approach generally is not valid because
the assumption of the deviance being approximately
χ2 distributed seldom is met.  This approach only
seems to be reasonable for band recovery data sets
with large numbers of animals marked.  This approach
has never been reasonable for live-recapture data
because the number of potential encounter histories is
so large that most of them are not observed, even for
studies with a large number of animals marked.   Use
of program RELEASE for live animal encounter stud-
ies is reasonable, but usually lacks statistical power to
detect lack-of-fit because of the amount of pooling
required to compute chi-square distributed test statis-
tics.  Further, these tests use a restricted set of models.
For example, RELEASE TEST3 asks whether the mij
array is sufficient for the data set concerned, and
TEST2 is conditional on the mij array being sufficient.
Although goodness-of-fit procedures like that pro-
grammed in RELEASE could be developed theoreti-
cally for other data types, such as joint live and dead
recoveries (Barker 1995), they generally have not been
to date.  For these reasons, the bootstrap procedure was
implemented in MARK under the Results Browser
Tests menu.  The bootstrap procedure provides a
method to assess goodness-of-fit of all the data types
in MARK, and provides ĉ for inflating variances and
quasi-likelihood model selection.

With the bootstrap procedure, the estimates of the
model being evaluated for goodness-of-fit (generally
something like a “global” model) are used to generate
bootstrap data sets (i.e., a parametric bootstrap).  The
simulated data exactly meet the assumptions of the
model (i.e., no overdispersion is included, animals are
totally independent, and no violations of model
assumptions are included).  Simulated data are gener-
ated based on the number of animals released at each
occasion.  For each release, a simulated encounter his-
tory is constructed, conditional on first release.  As an
example, consider a live-recapture data set with 3
occasions (2 survival intervals) and an animal first
released at time 1.  The animal starts off with an

Fig. 4.  Portion of the numerical output for the variance components
analysis from program MARK.  Estimates of βˆ and its unconditional
variance–covariance (i.e., this variance–covariance matrix has σ̂2

included as well as sampling variation), Sˆ and associated sampling
SE, S

~ 
and associated process SE, and both σ̂2 and σ̂ with 95% confi-

dence intervals.  The estimates in the column labeled SE(S-tilde) are
too small, so that the standard error of S

~
should be taken from the col-

umn labeled RMSE(S-tilde).

Fig. 3.  Example of the variance components analysis from program
MARK.  The lighter line and confidence intervals are for Sˆ, whereas the
darker line and confidence intervals are for the shrinkage estimator S

~
.
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encounter history of 100 because it was released on
occasion 1.  Does the animal survive the interval from
the release occasion until the next recapture occasion?
The probability of survival is φ1, provided from the
estimates obtained with the original data.  A uniform
random number in the interval (0, 1) is generated, and
compared to φ̂1 from the original data.  If the random
number is less than or equal to φ̂1, then the animal is
considered to have survived the interval.  If the random
value is greater than φ̂1, then the animal has died.
Thus, the encounter history would be complete and
would be 100.  Suppose instead that the animal sur-
vives the first interval.  Then, is it recaptured on the
second occasion?  Again, a new random number is
generated and compared to the capture probability p̂2
from the parameter estimates of the model being test-
ed.  If the random value is less than p̂2, then the animal
is considered to be captured, and the encounter history
would become 110.  If not captured, the encounter his-
tory would remain 100.  Next, whether the animal sur-
vives the second survival interval is determined, again
by comparing a new random value with φ̂2.  If the ani-
mal dies, the current encounter history is complete
and would be either 100 or 110.  If the animal lives,
then a new random value is used to determine if the
animal is recaptured on occasion 3 with probability p̂3.
If recaptured, the third occasion in the encounter his-
tory is given a 1. If not recaptured, the third occasion
is left with a zero value.

Once the encounter history is complete, it is saved
for input to the numerical estimation procedure.  Once
encounter histories have been generated for all the ani-
mals released, the numerical estimation procedure is
run to compute the deviance and its degrees of free-
dom.  These values along with ĉ (= deviance / df) are
saved to a simulation output file.  The entire process is
repeated for the number of simulations requested,
often 1,000.

In MARK, the bootstrap goodness-of-fit procedure
is accessed from the Results Browser with the menu
choices TESTS > BOOTSTRAP GOF.  Parameter esti-
mates will be taken from the currently highlighted
model in the Results Browser window, so you should
click on the appropriate model before selecting the
bootstrap procedure.  You have a choice of only com-
puting the deviance of the bootstrap simulations or of
also computing ĉ.  Computing ĉ requires that the num-
ber of parameters estimated in the model be computed
from the variance–covariance matrix of the parameter
estimates, which can be quite expensive in terms of
computer time.  Thus, only taking the deviance from
each simulation is the fastest approach.  You next have
to specify the name of a file to hold the simulation out-
put.  Typically, a good choice is a file name with the
same name as the MARK results file you are operating
from, but with GOF added to the end of the name to
signify that the file contains goodness-of-fit results.
Next, you specify the number of bootstrap simulations

to perform.  The default is 100, but you may want to
just run 1 or 2 to see if the procedure works correctly
for your problem specification.  When you click OK to
accept the number of simulations shown in this dialog,
MARK begins the simulation process.  You will notice
that the numerical estimation procedure is being exe-
cuted for each simulation, and a progress bar shows
the number of the simulations completed.

When the simulations are completed, the progress
bar disappears.  To view the results, you must select SIM-
ULATIONS > VIEW SIMULATION RESULTS from the Results
Browser window, and then select the file that you previ-
ously specified to hold the simulation results.  A brows-
er window will appear with the simulation results.  You
can manipulate the bootstrap results in several ways.

You will probably want to first sort the file by 1 of
the variables, likely deviance.  You do this by clicking
on the button with the “A–Z down arrow” label, and
selecting the variable to sort on as deviance.  You can
then locate the position in the file where the deviance
from the original data would fall and identify the rank-
ing of this value by clicking the icon with the diagonal
arrow.  This ranking can be used as the P value of a
goodness-of-fit test.  For example, suppose that the
deviance of the original model was 101.01, whereas
the largest deviance from 1,000 simulations was only
90.90.  Then you can conclude that the probability of
observing a value as large as 101.01 was less than
1/1,000 under the null hypothesis.  As another exam-
ple, suppose the 801th simulated deviance in the sort-
ed deviance file is 100.90, and the 802nd value was
101.50.  Then, you would conclude that your observed
deviance was reasonably likely to be observed, with
probability of 198/1,000 (because 198 of the simulat-
ed values exceeded the observed value).

A similar procedure may be used to evaluate the
observed ĉ by comparing its rank to the simulated val-
ues of ĉ.  Typically, conclusions using ĉ and deviance
are equivalent, but different results may be obtained
with sparse data sets where the degrees of freedom
associated with the deviance vary a lot across the sim-
ulations.  We prefer to use the procedure based on
deviance because this approach avoids the numerical
difficulties of computing the number of parameters
estimated.

The bootstrap simulations also can be used to esti-
mate the overdispersion parameter, c.  Two approach-
es are possible, either based on the deviance directly,
or on ĉ.  For the approach based on deviance, the
deviance estimate from the original data is divided by
the mean of the simulated deviances to compute ĉ for
the data.  The logic is that the mean of the simulated
deviances represents the expected value of the
deviance under the null model of no violations of
assumptions (i.e., perfect fit of the model to the data).
Thus, ĉ = observed deviance divided by expected
deviance provides a measure of the amount of overdis-
persion in the original data.  Typically, you would
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examine the standard error of the mean deviance to be
sure that the value is estimated adequately based on the
number of simulations conducted.  The third button in
the simulation results window of immediate interest is
the “Calculator” button, which will compute the mean,
SE, and confidence interval for each of the variables in
the file.  Thus, you can compute the mean of the sim-
ulated deviances and compute the value of ĉ.

The second approach to estimating ĉ for the original
data is to divide the observed value of ĉ from the orig-
inal data by the mean of the simulated values of ĉ from
the bootstraps.  Again, the mean of the simulated values
provides an estimate of the expected value of ĉ under
the assumption of perfect fit of the model to the data.

We are not sure the benefits/disadvantages of the 2
procedures, but results are about the same for data sets
with a reasonable number of animals.  Results can be
different when the degrees of freedom of the deviance
varies a lot across the bootstrap simulations (caused by
few releases).  This discrepancy suggests that the
deviance of the observed data divided by the mean of
the simulated deviances is the preferred approach.

Currently, several limitations exist with the boot-
strap procedure as implemented in program MARK.
The procedure does not handle losses on capture (i.e.,
for animals with live recaptures where animals may be
accidentally killed in the trapping process).  Second, the
observed values of individual covariates are not incor-
porated into the analysis.  Third, the only way to esti-
mate ĉ for the Pradel (1996) models is to assume that the
lack-of-fit is from the recaptures of previously marked
animals.  Thus, the data must be analyzed with the live-
recaptures model and ĉ estimated from that analysis.

Estimates of c can be <1.  We suggest not using ĉ <
1, but rather truncating ĉ to 1.

FUTURE IMPROVEMENTS
Program MARK is being improved.  Several enhance-
ments are expected with respect to the features dis-
cussed here.  Some alternative estimators of process
variance likely will be implemented.  Better graphics
will be developed for the variance components proce-
dure.  Improvements in the bootstrap procedure to han-
dle individual covariates and losses on capture will be
developed.  The simulation capability of MARK, of
which the bootstrap procedure is a small part, will be
improved.  A capability for users to incorporate new
data types and model structures into MARK will be
developed, which will lead to many new models.

CONCLUSION
An extensive and growing set of procedures are avail-
able in program MARK. These procedures provide
sophisticated analyses of parameter estimates obtained
from encounter history data.  The analysis of marked
animal encounter data combined with these advanced
procedures will provide the answers needed for main-
taining and managing numerous species in the future.
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