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ARTICLE

Potential for individual tree monitoring in ponderosa pine
dominated forests using unmanned aerial system structure
from motion point clouds®
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Abstract: Characterization of forest structure is important for management-related decision making, monitoring, and
adaptive management. Increasingly, observations of forest structure are needed at both finer resolutions and across greater
extents to support spatially explicit management planning. Unmanned aerial system (UAS) based photogrammetry provides
an airborne method of forest structure data acquisition at a significantly lower cost and time commitment than existing
methods such as airborne laser scanning (LiDAR). This study utilizes nearly 5000 stem-mapped trees in ponderosa pine
(Pinus ponderosa Lawson & C. Lawson) dominated forests to evaluate several algorithms for detecting individual tree loca-
tions and characterizing crown area across tree sizes. Our results indicate that adaptive variable window detection methods
with UAS-based canopy height models have greater tree detection rates compared with fixed window analysis across a range
of tree sizes. Using the UAS approach, probability of detecting individual trees decreases from 97% for dominant overstory
to 67% for suppressed understory trees. Additionally, crown radii were correctly determined within 0.5 m for approximately
two-thirds of sampled trees. These findings highlight the potential for UAS photogrammetry to characterize forest structure
through the detection of trees and tree groups in open-canopy ponderosa pine forests. Further work should investigate
how these methods transfer to more diverse species compositions and forest structures.

Key words: detection, canopy height model, crown delineation, drone, forest structure.

Résumé : Il est important de caractériser la structure forestiére pour éclairer les décisions de gestion, le suivi et la gestion
adaptative. De plus en plus, des observations de la structure forestiére sont nécessaires, tant a des résolutions plus fines
que sur de plus vastes étendues, pour soutenir une planification de gestion spatialement explicite. La photogrammétrie
basée sur des systemes aériens sans pilote (SASP) fournit une méthode aéroportée d’acquisition de données sur la structure
forestiere a un coft et un investissement en temps nettement inférieurs a ceux des méthodes existantes telles que le balay-
age laser aéroporté. Cette étude utilise pres de 5 000 tiges d’arbre cartographiées, dans des foréts dominées par le pin pon-
derosa (Pinus ponderosa Lawson & C. Lawson), pour évaluer plusieurs algorithmes de détection de I’emplacement des arbres
individuels et de caractérisation de la surface de la couronne des arbres de différentes tailles. Nos résultats indiquent que
les méthodes adaptatives de détection a fenétre variable avec des modeles de hauteur du couvert forestier sur la base des
données de SASP ont des taux de détection d’arbres plus élevés que ’analyse a fenétre fixe pour un assortiment de tailles
d’arbres. Avec I'utilisation des SASP, la probabilité de détecter des arbres individuels passe de 97 % pour I’étage dominant a
67 % pour les arbres opprimés du sous-étage. De plus, les rayons de la couronne ont été correctement déterminés, a moins de
0,5 m, pour environ les deux tiers des arbres échantillonnés. Ces résultats mettent en évidence le potentiel de la photogrammeétrie
basée sur les SASP pour caractériser la structure forestiere grace a la détection d’arbres et de groupes d’arbres dans les foréts de
pins ponderosa dont le couvert n’est pas fermé. Des travaux supplémentaires devraient étudier comment ces méthodes peuvent
s’appliquer a des compositions d’especes et des structures forestiéres plus diverses. [Traduit par la Rédaction]

Mots-clés : détection, modéle de hauteur du couvert forestier, délimitation des couronnes, drone, structure forestiére.

Introduction

Since the early 2000s, ecological management of dry, lower
montane forest systems has increasingly focused on variability
and spatial arrangement of horizontal and vertical forest struc-
ture (Lydersen et al. 2013). This emphasis has grown alongside the
body of literature supporting connections between forest resil-
ience to disturbance and the level of variation in forest structure

(Larson et al. 2012). Silvicultural systems manipulating the hori-
zontal and vertical forest structure in ponderosa pine (Pinus
ponderosa Lawson & C. Lawson) have cascading effects on stand
development pathways, disturbance regimes, and ecosystem
services (Ziegler et al. 2017a). The creation of appropriately sized
gaps and variable size tree groupings directly affects seedling
establishment and competition-based tree mortality (Lydersen
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et al. 2013). Retention of specific forest structures during treat-
ment can fulfill multiple land use objectives, including providing
wildlife habitat (Vogeler et al. 2016), stimulating understory
plant responses (Cannon et al. 2019), and promoting pollinator
communities (Rhoades et al. 2018). Silvicultural prescriptions
promoting appropriately sized snag retention can provide nest-
ing resources for woodpeckers, which are considered keystone
species (Martin et al. 2004) and are often of management and con-
servation interest. The emphasis of forest restoration to balance
ecosystem services with resilience to disturbance has led many
land managers toward treatment strategies that enhance varia-
tion in forest structure (Churchill and Larson 2013; Tinkham
et al. 2017). Although managers have shown a desire to imple-
ment spatially informed silvicultural prescriptions that create
variability, most monitoring tools available to them were not
developed with spatial management objectives in mind.

Fixed- and variable-radius plots have historically been the prece-
dent for quantifying forest structure and have effectively informed
land managers of stand-level averages; however, small distributed
plots (i.e., <1/10th acre) assume forest homogeneity by focusing on av-
erage forest conditions (Dickinson et al. 2016). The limited spatial
extent and data resolution of these plots comes from data collection
protocols not designed for characterizing tree group variation and
spatial arrangement that are critical in contemporary restoration
approaches (Lutz 2015). Although these strategies provide important
tree lists and even estimates of tree size distributions, they lack the
extent or ability to describe spatial variability in forest structure nec-
essary to inform silvicultural prescriptions. A complete enumeration
of tree sizes and locations within a stand would provide the most use-
ful data for restoration prescription development (Belmonte et al.
2020).

To better inform spatial objectives and characterize forest spa-
tial variability, land managers have turned to novel data collec-
tion methods to characterize forest spatial variability (e.g., group
sizes, openings, size distributions; Dickinson et al. 2016; Kane
et al. 2019). Such methods are being called upon to provide com-
prehensive and accurate vertical forest structure data that can
capture inter-tree relationships, variations in groups, and stand-
level dynamics. This need for higher resolution and continuous
spatial coverage of management units creates a unique methodo-
logical challenge. Synthesis of restoration efforts has pointed to
incorporating remote sensing into forest monitoring as an effec-
tive strategy for supporting increased extents and frequencies of
monitoring efforts (Belmonte et al. 2020).

The advent of airborne LiDAR (i.e., Light Detection and Rang-
ing) provided new strategies to characterize horizontal and verti-
cal forest structure heterogeneity across large extents (Wulder
et al. 2012); these data have exhibited value for monitoring a suite
of ecosystem services, including wildlife habitat (Vogeler and
Cohen 2016), timber resources (Tinkham et al. 2012), and water-
shed health (Zurqgani et al. 2020). Individual tree detection (ITD)
methods provide useful approximations of individual tree loca-
tions, with LiDAR data capturing up to >90% of dominant over-
story trees (Mielcarek et al. 2018), which is particularly true for
conifer-dominated systems. The most commonly applied ITD
methods operate by searching a canopy height model (CHM) with
a moving window to identify local maximums characterized as
treetops. Beyond the locations identified as treetops, LiDAR data
provide precise tree height estimates and, when coupled with
crown growing methods, can characterize crown area using a set
of rules on a pixel-by-pixel basis within a CHM where ITD loca-
tions are often used as starting “seeds”. Despite LiDAR’s accurate
estimation of forest structure, the technology’s point density (1-
30 points-m~?) can limit the resolution of derived CHMs and
potentially increases omission errors as clustered crowns fail to
be distinguished, particularly in dense regeneration patches (Li
et al. 2012). Additionally, the cost of airborne LiDAR limits
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repeated acquisitions for timely stand-level monitoring (Hummel
et al. 2011), with financial efficiencies only reached for landscape
monitoring (10s to 100s of thousands of hectares). The high cost of
LiDAR for individual management projects and its limited success in
describing variation in smaller tree size classes has opened the door
for alternative methods of monitoring forest horizontal and vertical
arrangement at fine spatiotemporal scales.

Unmanned aerial systems (UAS) have emerged as an alternative
to airborne LiDAR for supporting local area management activ-
ities due to the low-cost of equipment (i.e., <$2000) that is capa-
ble of characterizing local wall-to-wall horizontal and vertical
forest structure (Fraser and Congalton 2018; Mlambo et al. 2017).
Most commonly, UAS are deployed with standard RGB cameras,
which characterize three-dimensional forest structure through
the application of structure from motion (SfM) photogrammetry
algorithms (Maturbongs et al. 2019). Lower financial barriers to UAS
platforms have incentivized exploration of these new approaches
for improving temporal resolution in forest monitoring (Goodbody
et al. 2017). Additionally, depending on camera and acquisition set-
tings, UAS SfM can provide point densities much greater than air-
borne LiDAR (Iglhaut et al. 2019). The high density of UAS data could
potentially enable accurate spatial characterization of individual
trees within different canopy strata, improving enumeration of tree
sizes and locations across relatively broad areas.

Many studies have evaluated ITD methods using LiDAR-derived
CHMs, with an accuracy of 40%-90% depending on the forest type
and structure (Heurich 2008; Maturbongs et al. 2019; Persson
et al. 2002; Yu et al. 2011). Despite the variety of ITD methods,
most use a fixed moving window to detect local maxima in a
CHM, classifying these as trees (Popescu and Wynne 2004); how-
ever, the literature applying ITD methods to SfM-derived CHMs
has been nominally investigated, with limited cross-comparison
of ITD methods on higher data density UAS SfM-derived CHMs.
Additionally, the choice of CHM crown growing methods starting
from ITD “seed” locations has received limited attention.

The existing literature, especially regarding LiDAR, usually nar-
rows the focus of ITD methods to include only overstory canopy due
to the inherent difficulty of detecting trees with narrower, partially
occluded crowns lower in the canopy (Heurich 2008; Panagiotidis
et al. 2017). Additionally, ITD accuracy assessment is often challenged
by having small validation datasets, data collected with consumer-
grade GPS technology, and visual inspection of remotely acquired im-
agery. Limited validation makes it difficult to examine where ITD
methods might break down in relation to forest structure and a
tree’s size compared with its neighbors. Recent studies have called
for using large (>1 ha) stem-mapped sites for training and validation
of remotely sensed forest observations (Chave et al. 2019). The use of
large stem-mapped sites could allow for more comprehensive assess-
ments of ITD methods across continuous observations of forest
structure; such analysis can help to reveal any biases in the ability of
ITD methods to represent forest structures.

In this study, we evaluate the transference of ITD methods devel-
oped for airborne LiDAR for use with high-resolution, fine-scale UAS
SfM point clouds. Specifically, we use large continuous stem maps of
ponderosa pine dominated forests to (1) examine the accuracy of
individual tree detection methods and subsequent crown growing
algorithms and (2) determine the effect of tree size and local forest
structure on an individual tree’s probability of detection.

Methods

Study area and validation data

We focused our investigation on the influence of forest struc-
ture on UAS tree detection within two ponderosa pine dominated
study areas. Ponderosa pine is characterized by conical crowns
resulting in a singular treetop, with stands comprised of a matrix
of spatially aggregated tree clumps of a single cohort that are all sim-
ilar in height (Ziegler et al. 2017b). The Lookout Canyon forest
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Fig. 1. Relative locations shown on ESRI basemap in ArcMap (A) and example forest structures captured by UAS at MEF (B) and KNF (C).

|Colour online.]

A)

dynamics site on the Kaibab National Forest in Arizona is at an eleva-
tion of ~2400 m on the Kaibab Plateau, hereafter called KNF (Fig. 1).
The site comprises two adjacent 4 ha treatments of pure ponderosa
pine, including one control and one thinned in 1993 to 13.8 m*ha "
of basal area. Utilizing an existing grid of survey points, we stem-
mapped the sites in May 2019, with observations of location, height,
and diameter at breast height (DBH) recorded for all trees taller than
1.37 m. Survey locations within the site were established through a
closed transect established by a total station with the site corners
geolocated by a Trimble GeoXT using differential correction. The rel-
ative geolocation is estimated at 0.60 m, while the relative locations
of trees are estimated at <010 m to each other. Current densities
were 38.2 m*ha ' and 22.3 m*ha ' of basal area in the control and
thinned sites, respectively, with local (5 m plot radius) height coeffi-
cients of variation of 42% and 35% for the two treatments. UAS data
collection straddled the boundary of the two treatments at KNF to
create a single study area.

Our second study area was the N1 forest dynamics site at the
Manitou Experimental Forest on the Pike-San Isabel National For-
est in Colorado, a square 9.3 ha site, hereafter called MEF. The
MEEF site is dominated by ponderosa pine with a minor ingrowth
of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and blue
spruce (Picea pungens Engelm.) with a sparse, grassy understory
and a minor shrub component. The site’s elevation averages
~2500 m, with a slope of ~5% to the southeast. In August 2018, all
trees > 1.37 m in height had their location, height, and DBH
recorded, revealing 25.9 m*-ha ' of basal area and a local height
coefficient of variation of 57%. Surveying was completed follow-
ing the same protocols as the KNF site.

‘We randomly sampled tree crown diameters within the study sites
to assess the accuracy of different crown growing methods. At each
site, six randomly selected plots with a 15 m radius were used to sam-
ple trees. The longest crown axis and the perpendicular axis at 90°
were measured for each selected tree to calculate the area of an
ellipse, resulting in a total of 186 crowns: 97 at KNF and 89 at MEF.

UAS data collection and processing

All images were collected with a DJI Phantom 4 Pro quadcopter
(Déd-Jiang Innovations Science and Technology Co. Ltd., Shenz-
hen, China) equipped with a 20-megapixel RGB camera at an
8.8 mm focal length. The aircraft recorded geolocation (x, y, and z)
and camera parameter values for each captured photo to a manufac-
turer-stated vertical accuracy of +0.5 m and horizontal accuracy of
+1.5 m (https://www.dji.com/phantom-4-pro; accessed 18 March
2019). Preprogrammed flight paths with a 90 m flight height, a flight
speed of 5 m-s ', and side and forward image overlap of 90% were
set for MEF, while KNF was flown with a 100 m flight height, a flight
speed of 4 m-s~', and side and forward image overlap of 90%. All
flights were conducted using the Altizure for IOS (Shenzhen, China)
flight controller as it provides control of camera settings (in case of
lighting changes), which were set to adjust automatically. Differences
in flight parameterization between the sites ensured a constant ratio
of flight height to vegetation height, while also ensuring that each
acquisition could be completed with a single battery (~17 min).
To comply with Part 107 of the United States Federal Aviation
Administration regulations, the remote pilot in command and
visual observer maintained a line of sight with the aircraft
throughout each flight.

Point clouds were produced with Agisoft Metashape version 1.5.3
(www.agisoft.com; Agisoft LLC, St. Petersburg, Russia) through initial
image feature identification, feature matching across photos, and
location of images in three-dimensional space using the 431 and
476 UAS images as inputs from KNF and MEF, respectively. To ensure
the most complete representation of tree crowns, combinations of the
Metashape photo alighment “accuracy” and dense cloud build “quality”
parameters were visually inspected for representation of overstory and
understory trees. The settings used to develop the point cloud used for
subsequent analysis (Table 1) provided sufficient resolution and limited
filtering so that smaller understory trees were visually apparent.
Metashape reported xy errors of 121 and 1.37 m for MEF and KNF,
respectively. The resulting point clouds were processed in LAStools
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Fig. 2. Final acquisition extent clipped to central area of interest at KNF (left) and MEF (right) with MCWS delineated crowns. [Colour

online.]

Table 1. Processing parameters for Agisoft
Metashape SfM point cloud generation.

Parameter Setting
Align photos

Accuracy Highest
Generic preselection Yes
Reference preselection Source
Reset current alignment No

Key point limit 40000
Tie Point Limit 4000
Apply masks to None
Adaptive camera model fitting Yes
Optimize alignment

Adaptive camera model fitting Yes
Build dense cloud

Quality High
Depth filtering Mild
Calculate point colors Yes
Calculate point confidence No

version 12 (http:/lastools.org) by identifying block minimum points
every 0.25 m for spline fitting a digital terrain model. These point clouds
were height normalized against the terrain models as elevation above
ground and then converted to CHMs at 0.25 m resolution. At each site,
the CHM was clipped to a single 4.5 ha area of interest (Fig. 2).

Individual tree detection

Processed CHMs were first searched using the fixed window
and linear and exponential variable window functions to detect
individual tree locations. This study evaluated seven fixed win-
dow parameterizations and 90 combinations of parameters for
variable window local-maxima functions (Table 2) for a total of
97 ITD detections at each site. The fixed window function was
tested at window sizes varying from 1to 7 m in 1 m steps. The vari-
able window function was tested using both linear (eq. 1) and ex-
ponential (eq. 2) functions that define the window radius as a
function of height in the CHM.

(1) WR = by + Hb,

(2)  WR=b xellt

where WR is the window radius (m), H is the height value (m) in the
CHM, and the coefficients b, and b, were tested across a range of val-
ues. In the linear model (eq. 1), b; was tested from 0.3 to 0.6 with a
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0.05 step and b, was tested from 0.05 to 0.09 with a 0.01 step. For the
exponential model, b; was tested from 0.4 to 0.9 with a 0.05 step and
b, was tested from 0.01 to 0.09 with a 0.01 step. Coefficient ranges were
selected based on literature review and guidance from the ForestTools
package (Plowright 2018), which was used to perform all tree detec-
tion in the R statistical programming language (R Core Team 2019).

Accuracy of tree detection and structure parameters

This study utilized 2270 and 2700 stem-mapped trees at the KNF
and MEF sites to assess ITD method accuracy. Prior to evaluation of
tree detection accuracy, the stem-mapped tree locations were overlaid
on the final CHM and visually inspected. This inspection revealed no
distortion within the CHM’s representation of relative tree locations
across the study extent. Following the methods of Silva et al. (2016),
detected trees were matched with stem-mapped trees through a two-
step process evaluating distance and height error between trees in
each dataset. For a detected and stem-mapped tree to be considered a
match, a maximum Euclidean distance (MED) and minimum height
difference (MHD) must be met. This iterative process buffered one
tree at a time according to the MED before checking the MHD. If mul-
tiple trees were found within the buffer, the tree with the smallest
MHD was considered the match to the detected tree. After a match,
both the detected and stem-mapped trees were removed before the
next iterative match was identified. MED was set to 3 m to account for
stem-mapping errors, georeferencing errors, and tree lean. The MHD
was set to 10% of the field-inventoried height to account for observa-
tion errors in dense, mature forests (Andersen et al. 2006).

To assess detection accuracy across tree sizes, stem-mapped
trees were classified into three strata based on their location
within the distribution of heights at each study site (Fig. 3): over-
story (>18 m at MEF; >20 m at KNF), intermediate (heights
between upper and lower bounds), and understory (<6 m at MEF;
<8 m at KNF). Trees were not assessed by any factors other than
canopy strata as other demographic characteristics such as dead
trees were minor components at both sites. The true positive (TP,
correct detection), false positive (FP, commission error), and false
negative (FN, omission error) detection rates were estimated at
each site and by strata. The accuracy of these measurements was
summarized to recall (r; eq. 3), precision (p; eq. 4), and F score
(F; eq. 5) (Goutte and Gaussier 2005):

@ ¢ = TP
TP 1 EN
TP
4 —
@ p TP + FP
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Table 2. Summary of individual tree detection and crown delineation functions and parameters used in this study.

Method R package (function); citation Variables
Individual tree detection
Fixed window ForestTools package (vwf); Window size (3x3, 5x5, 7x7 cells, etc.)

(
Popescu and Wynne (2004)
ForestTools package (vwf);
Popescu and Wynne (2004)

Variable window

Crown delineation

Voronoi tessellation 1idR package;

treetops from best vwf{ ) models;

Silva et al. 2016

Crown growing decision tree  1idR package;

treetops from best vwf{ ) models;

Dalponte and Coomes, 2016

Watershed segmentation 1lidR package;

treetops from best vwf{ ) models

Window size (varies according to user-defined function in
response to height)

Lmf (local maxima filter)

Mac_cr_factor (maximum crown diameter given as a
proportion of tree height)

Lmf (local maxima filter)

Th_tree (minimum tree height threshold)

Th_seed (growing threshold 1)

Th_cr (growing threshold 2)

Max_cr (maximum crown diameter)

Lmf (local maxima filter)

Fig. 3. Histogram of observed tree heights at KNF (left) and MEF (right) colored by canopy stratum. [Colour online.]

KNF MEF
Strata
400
Overstory
. Intermediate
3001
§ Understory
=
%5 200+
*
100 I I I
O -
0 10 20 30 0 10 20 30 40
Height (m)
rp classified as 1 for correctly matched trees and as 0 for omitted trees.
(5) F= Zr Tp Individual measures of a tree’s height and DBH, along with local

Recall is the rate of tree detection, precision is a measure of
detected tree correctness, and F score is overall accuracy of the
method, which incorporates both precision and recall. The values of r,
p, and F range from O to 1. If an ITD method has correctly identified
trees according to its values of p and r, it will result in a higher F score.
In the event of perfect segmentation, all values would be equal to 1.
The best performing ITD methods ideally perform well across size
groups, while minimizing omission and commission errors. There-
fore, to establish the overall best performing equations for individual
tree detection, overall F score was evaluated, and ties were broken
through examining F scores for the overstory, intermediate, and
understory strata. We identified the best overall performing exponen-
tial, linear, and fixed window models at both sites. Additionally, we
compared matched stem-mapped trees with extracted heights to
determine precision on a tree-by-tree basis. Errors were summarized
using mean absolute error (MAE) and percentage root mean square
error (%RMSE). Distributions of tree heights in each stratum were fur-
ther compared using a two-sample Wilcoxon rank sum test.

Probability of tree detection

To understand how forest structure impacts ITD performance, we
used logistic regression to determine the probability of a tree’s detec-
tion based on the ITD method that maximized the F score. Separate
models were fit for each tree size stratum where the response was

neighborhood structural attributes, were used as predictive varia-
bles. Local structure was summarized for a 5 m radius plot centered
on each tree (Table 3) for trees per hectare (TPH), basal area
(m*ha'), nearest-neighbor distance (metres; NND), and height per-
centile (%) calculated as tree height divided by tallest neighboring
tree height x 100. Parameters were tested for collinearity using Pear-
son’s correlation coefficient, with colinear variables removed when
r>0.6. The best subset of remaining variables was identified through
stepwise forward-backward variable selection using the Akaike in-
formation criterion (AIC), where the best model subset was the one
that minimized AIC. We performed logistic regression using the glm
and regsubsets functions in the stats (R Core Team 2019) and leaps
(Lumley 2020) packages of the R statistical programming language.

Crown growing

Most crown growing methods use detected treetops as “seeds”
and evaluate surrounding CHM values to delineate the crown. After
the top performing ITD method was determined by the overall
F score, these “seed” tree locations were used as starting points for
delineating crown areas. All crown growing was run in the R statisti-
cal program using the Dalponte, Silva, and watershed functions
from the lidR package (Romain 2020) and the marker-controlled
watershed function from the ForestTools package (Plowright 2018).
The Dalponte2016() function uses a decision tree to grow crowns
using ITD locations as seeds. Crowns are grown by iteratively adding
surrounding cells if their height value is less than a defined
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Table 3. Summary of tree and neighborhood structural attributes at the two study sites, presented as mean (standard deviation) of individual

tree parameters or from 5 m radius local plots.

Crown Height Basal
Study site Stratum Height (m) DBH(cm) area(m?) NND (m)  percentile(%) area(m*ha™') TPH
KNF(N=2270)  Overstory (1 = 446) 252(35)  545(12.6) 163.8(814) 247(125) 97(6) 64.4 (30.3) 462 (345)
Intermediate (n=820) 13.2(3.3)  239(89) 511(391)  166(1.04) 74(21) 453 (27.5) 1,075 (747)
Understory (1=1004) 4.8 (16) 87(42)  15.6(8) 122(0.99) 51(28) 22.6(20.2) 1,508 (1,163)
MEF (N=2700)  Overstory (1 = 592) 206(16)  407(81)  99.0(60.9) 250(117)  97(5) 43.9 (16.4) 527 (261)
Intermediate (n=689) 11.9(4.0)  22.6(10.0) 58.6(339) 187(116) 76(22) 30.4 (20.8) 852 (639)
Understory (n1=1419) 3.0 (L3) 44(36)  155(13.8)  144(0.98) 39(28) 12.8 (13.9) 1,293 (752)

Note: DBH, diameter at breast height; NND, nearest-neighbor distance; TPH, trees per hectare; MEF, Manitou Experimental Forest; KNF, Kaibab National Forest.

Table 4. Summary of best linear, exponential, and fixed window ITD models for both Manitou Experimental Forest (MEF) and Kaibab National

Forest (KNF).
No.of No. of
F True False False true  detected Height mean Height Height
Rank Model Stratum score Precision Recall positive negative positive trees trees error (m) RMSE (m) RMSE (%)
Manitou Experimental Forest
1 Linear function Overall 0.58 0.71 0.49 049 0.51 0.20 2700 1854 0.10 0.62 11.8
WR=04+H x 0.085 Overstory 075 0.72 0.77 0.77 0.23 0.29 592 630 0.45 0.75 3.7
Intermediate 0.53 0.60 048 0.48 0.52 0.32 689 547 0.10 0.56 5.3
Understory 0.50 0.78 0.37 0.37 0.63 0.11 1419 677 -0.20 0.53 17.8
19 Exponential function Overall 0.57 0.72 047 0.47 0.53 0.18 2,700 1754 012 0.62 11.2
WR = 0.5xe00¢ Overstory 075 0.72 078 0.78 0.22 0.31 592 641 0.45 0.75 3.6
Intermediate 0.52 0.60 0.47 047 0.53 0.32 689 542 0.12 0.56 5.2
Understory 048 0.84 034 0.34 0.66 0.07 1419 571 -0.20 0.52 174
70 Fixed window Overall 0.50 0.57 045 045 0.55 0.34 2,700 2121 013 0.64 9.6
WR=1 Overstory 0.64 0.50 0.86 0.86 0.14 0.85 592 1011 0.33 0.75 3.7
Intermediate 0.49 0.49 049 049 0.51 0.52 689 700 0.16 0.59 4.9
Understory 0.39 0.88 025 0.25 0.75 0.04 1419 410 -018 0.49 16.4
Kaibab National Forest
1 Linear function Overall 0.57 0.65 0.51 0.51 0.49 0.28 2270 1790 0.68 1.80 18.0
WR=0.6+Hx0.065 Overstory 071 0.70 072 0.72 0.28 0.31 446 459 1.63 2.43 10.0
Intermediate 0.57 0.79 045 045 0.56 0.12 820 460 0.83 191 15.0
Understory 0.51 0.55 0.47 047 0.53 0.39 1004 871 -0.08 1.07 235
n Exponential function Overall 0.57 0.67 049 049 0.51 0.24 2270 1667 0.70 1.81 17.3
WR = 0.4 xe'*006 Overstory 0.70 0.70 071 071 0.29 0.31 446 454 1.62 2.42 10.0
Intermediate 0.57 0.81 044 044 0.56 011 820 450 0.84 191 14.9
Understory 0.50 0.58 044 044 0.56 0.32 1004 763 -0.08 1.06 22.5
63 Fixed window Overall 0.52 0.64 044 044 0.56 0.25 2270 1560 0.89 1.84 14.7
WR=1 Overstory 0.60 0.49 078 0.78 0.22 0.81 446 713 1.40 2.34 9.6
Intermediate 0.56 0.83 043 043 0.57 0.09 820 420 118 1.89 141
Understory 042 0.70 0.30 0.30 0.70 013 1004 427 -0.03 0.87 19.4

Note: Models rank is based on all possible model parameterizations tested at each site. Accuracy results for all model parameterizations are presented in

Supplemental Table S1.>

maximum difference from the seed’s height, less than a maximum
crown ratio, or a maximum crown diameter is reached (Dalponte
and Coomes 2016). The Silva et al. (2016) function starts with a buffer
around each ITD tree point and separates the crowns using the cen-
troidal Voronoi tessellation (Silva et al. 2016). Values within a result-
ing tree crown below a user-defined percentage of the tree’s height
are then removed from the crown region. Lastly, the watershed)
function of the lidR package uses an inverted watershed segmenta-
tion method. Watershed-based ITD functions can either use input
tree locations using a “marker-controlled” approach or find local
maxima independently. The mcws() function (marker-controlled
watershed) from the ForestTools package was also run. The user-
defined parameters within each function are summarized in Table 2
and set to the default except where noted. The extracted tree
crown area was compared with matched stem-mapped tree
crown area to determine precision on a tree-by-tree basis. Errors
were summarized using MAE and %RMSE. Crown radius of a

circle was also back-calculated from field inventory and detected
crown areas for further comparison.

Results

Observed forest structure

Both study sites exhibited complex vertical and horizontal forest
structure with high levels of variation in the individual tree and
local neighborhood structural attributes (Table 3). Trees at KNF
tended to be ~20% taller in each canopy stratum than those at MEF,
with the KNF overstory stratum having twice the variation within
it. Across the site strata, the only substantial differences in the rela-
tive height of a tree compared with its neighbors was that under-
story trees at KNF tended to be taller in both relative and absolute
terms than understory trees at MEF. Despite having larger trees,
KNF tended to have trees arranged closer to neighboring trees
across all strata. KNF’s height distribution appears unimodal and
skewed to the right, typical of a multiage or all-age forest structure

2Supplemental Table S1 is available with the article at https://doi.org/10.1139/cjfr-2020-0433.
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Fig. 4. Violin plots of F scores for the three model forms across the four canopy strata. Inset box plots represent median and quartile
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Fig. 5. Density distributions of tree heights at the two study sites with field-observed data outlined in blue and the top-ranked individual
tree detection model values outlined in red. Overlapping segments of the distributions appear darker. [Colour online.]
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(Fig. 3). Conversely, the bimodal appearance of the MEF height dis-
tribution is more indicative of a two-age forest structure. Although
the overall distributions of height differ slightly between the sites,
both sites have large local (5 m radius) coefficients of variation in
height at an average of 39% and 57% for KNF and MEF, respectively.

ITD model performance

Evaluation of the ITD process showed that linear models fit
within the variable window function produced the 12 and 7 highest
ranked models based on the overall F score at MEF and KNF, respec-
tively (Table 4). The linear models also provided a narrower range
and consistently higher F scores for each canopy stratum (Fig. 4).
Additionally, each model form at the two respective sites had simi-
lar overall performance, although the best model parameters var-
ied slightly. At both sites, exponential models performed similarly
to the linear models, except that exponential models tended to
have greater omission rates in the understory stratum. Consis-
tently, 1 m was the best fixed window size, as determined by
F score, but consistently performed substantially worse than both
the linear and exponential variable window functions (Table 3).
The linear model’s performance was the least sensitive to parame-
ter selection (Fig. 4), while the fixed window F scores fluctuated
from a high 0f 0.74 to 0.0 in the different canopy strata.

The total number of overstory stratum trees detected (TP + FP)
in the best models was over by 6.4% and 2.9% of the inventoried

tree counts at MEF and KNF, respectively (Table 4); however,
detection accuracy varied across the canopy strata. Errors shift to
an underdetection of the total number of trees by 20.6% and
43.9% in the intermediate stratum and 59.8% and 13.2% in the
understory stratum for MEF and KNF, respectively. Both the linear
and exponential variable window functions provided similar mean
height errors for each of the canopy strata, with the overall error
being less than 0.70 m. This positive bias in extracted tree height
tended to be two to six times larger at KNF than at MEF (Table 4).
Height RMSE was 4%-10% in the overstory, increasing through the
shorter canopy strata to 16%-24% in the understory.

Probability of tree detection

Visual comparison of height distributions for the stem-mapped
trees and trees extracted with the best linear model follow similar
trends (Fig. 5). The largest departure in the distributions occurred at
the KNF study site, with overstory and intermediate extracted tree
heights being slightly taller than the field-observed values. Extracted
heights for all strata pairs are different except for the KNF under-
story (P = 0.9856) and MEF intermediate (P = 0.3629) strata, according
to the Wilcoxon rank sum test.

Regression modeling indicates that the factors influencing the
probability of detecting individual trees varied across canopy strata
(Table 5). Regardless of strata, trees that were relatively taller than
their local neighbors (height percentile) had a greater probability of
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Table 5. Best model subset from logistic regression to predict the probability of extracting a
tree given local forest structure in a 5 m radius of a tree, broken out by canopy stratum.

Parameter Coefficient SE Z value Pvalue
Overstory stratum

Intercept —4.5404 1.2743 -3.563 <0.001
Height percentile 0.0659 0.0127 5.170 <0.001
Basal area (m* ha ) -0.0106 0.0029  -3.645 <0.001
Intermediate stratum

Intercept -0.8171 0.5939 -1.376 0.1689
Height percentile 0.0223 0.0069 3.215 0.0013
Basal area (m* ha ) -0.0668 0.0148  -4.504 <0.001
Height percentile : basal area (m*ha™")  0.0005 0.0002 2770 0.0056
Understory stratum

Intercept -1.1015 0.1346 -8.186 <0.001
Height percentile 0.0164 0.0018 9.323 <0.001
Basal area (m” ha ') -0.0176 0.0033  -5.302 <0.001
Distance to nearest neighbor (m) 0.1693 0.0407 4.161 <0.001

Fig. 6. Probability of detecting understory stratum trees based on a tree’s height compared with neighbors within 5 m, nearest-neighbor
distance (m; NND), and basal area per hectare estimated from a 5 m radius plot set to 0 m? ha~* (left) and 20 m? ha ! (right).
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Fig. 7. Probability of detecting overstory stratum trees (left) and intermediate stratum trees (right), based on a tree’s height compared
with neighbors within 5 m and basal area per hectare estimated from a 5 m radius plot.
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detection (Figs. 6 and 7). In the overstory and intermediate strata, detection. This effect in the intermediate stratum also interacted

the probability of detection was negatively related to basal area per with height percentile such that increasing stand density could
hectare (Table 5). The influence of basal area for intermediate trees reduce the probability of detection to 0% for trees less than half the
had a six times greater effect on reducing the probability of height of a neighboring tree (Fig. 7).
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The understory stratum shows similar dynamics (Fig. 6), except
that increasing the distance to the nearest neighboring tree increases
the probability of detecting understory trees (Table 5). For every
metre of distance to the nearest neighbor, there is an almost 4%
increase in the probability of detection, indicating that open-grown
trees have a significantly greater likelihood of being detected (Fig. 6).

Crown growth

Individual tree crown growing methods were tested using cor-
rectly detected trees only. Of the tested crown growing methods,
all but the lidR watershed method consistently underestimated
the crown area (Table 6) using the tested UAS data acquisition
and processing parameters. Overall, the lidR watershed method
provided the smallest crown area bias at 3.68 and 1.40 m? at KNF
and MEF, respectively. The lidR watershed method tended to
overestimate small crowns and underestimate larger crowns
(Fig. 8). Crown radius RMSE across all methods ranged from 0.76
to 0.82 m at KNF and from 0.55 to 0.65 m at MEF. The lidR water-
shed method was the best performing method, correctly extract-
ing 41% of crown radii to within 0.25 m and 64% to within 0.50 m.
The lidR watershed method also provided the best predictions of
the total crown area, underestimating the total crown area by
24.8% at KNF and 13.3% at MEF (Table 6). Although some of the
other evaluated methods performed similarly for an individual
metric, none of these methods consistently minimized bias and
precision as well as the lidR watershed method.

Discussion

Tree detection and crown growing performance

This study evaluated three individual tree detection algorithms
with 97 different parameterizations at two study sites to identify the
best strategy for detecting trees in complex uneven-aged ponderosa
pine forest structures. The best performing parameterization, accord-
ing to F score, provided overall tree detection accuracies of 78.8% at
KNF and 68.7% at MEF. Standard ITD methods performed on LiDAR or
StM-derived CHM have detected real trees with accuracies ranging
from 40% to 90% (Heurich 2008; Maturbongs et al. 2019; Persson et al.
2002). The wide range of tree matching success in the literature can
be attributed to variation in forest structures, the methods tested,
and the size of trees included for analysis, which typically target only
overstory trees (Zhen et al. 2016). The overstory tree detection accu-
racy in this study was 97.2% and 93.9% at KNF and MEF, respectively,
which exceeds expectations based on previous literature (e.g.,
Belmonte et al. 2020; Yu et al. 2011). The increased overstory detec-
tion accuracy is attributed to the variable window approach pro-
viding a range of search window sizes that better fit the crowns of
trees ~10-30 m tall, as opposed to the more commonly applied
fixed window approach that only applies a single window size.

The literature on individual tree detection has evolved to use
F score as a more holistic measure of accuracy assessment as it
integrates the TP, FP, and FN rates (Goutte and Gaussier 2005).
Our best overall F scores were 0.57 and 0.58 at KNF and MEF,
respectively. With improved detection of larger trees, the over-
story F scores increase to 0.71 and 0.75 for KNF and MEF, respec-
tively. By comparison, Mohan et al. (2017) matched detected trees
with real trees through a visual assessment that identified 367 trees
and resulted in an F score of 0.86, but only visually discernible trees
from the imagery were included. More rigorously, Silva et al. (2016)
achieved an F score of 0.83 by applying a similar tree-based match-
ing logic used in this study but allowed trees to match within a
10 m distance to accommodate GPS errors and only tested forest
densities up to 200 trees per hectare. The small reduction in F score
in the present study is attributed the use of stem-mapped trees
across a wide range of forest structures and rigorous tree-level
matching to determine TP detections (i.e., 3 m horizontally and
10% of field height), resulting in stricter accuracy assessments than
the aforementioned studies. Given that these studies evaluated the

Table 6. Assessment of the ability of crown-growing methods to
characterize individual tree crown area and radius for only extracted
trees, as well as total extracted crown area error as a proportion of
field-observed crown area (Manitou Experimental Forest (MEF) and
Kaibab National Forest (KNF)).

Crown delineation

method KNF MEF
Crown area mean error (m?) lidR Watershed 3.68 1.40
ForestTools MCWS  -4.79  -218
lidR Dalponte =730 —4.04
lidR Silva -7.48 -4.01
Crown area RMSE (m?) lidR Watershed 16.53 1045
ForestTools MCWS  16.16 8.46
lidR Dalponte 15.85 9.58
lidR Silva 16.03 9.74
Crown radius mean error (m)  lidR Watershed 0.21 0.09
ForestTools MCWS  -0.32  -014
lidR Dalponte -0.44 -0.26
lidR Silva -0.43 -0.24
Crown radius RMSE (m) lidR Watershed 0.76 0.65
ForestTools MCWS  0.85 0.55
lidR Dalponte 0.83 0.61
lidR Silva 0.82 0.61
Total crown area error (%) lidR Watershed -24.8 -133
ForestTools MCWS  -37.6  -35.0
lidR Dalponte -443 -41.6
lidR Silva -44.3 —42.2

Fig. 8. Observed versus lidR watershed extracted individual tree
crown area. Dashed lines represent linear regression for each of
the study sites; the solid line represents a one-to-one relationship

for reference.
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ability of fixed window detection to observe dominant tree struc-
tures, it is promising to see that the current study was able to pro-
vide similar results in the overstory while maintaining reasonable
detection throughout all tree size strata.

Of the tested individual tree detection methods, linear models
used in the variable window function provided the 18 highest
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Fig. 9. Contour plot of F scores based on linear (left panels) and
exponential (right panels) model coefficients, with higher F scores
indicated by lighter colors. F scores have been averaged across the
two study sites for each set of unique model coefficients and are
arranged top to bottom as overall, overstory, intermediate, and
understory strata. [Colour online.]
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ranked outputs at MEF and 10 at KNF. Despite the consistently
greater performance of the linear models, the best exponential
models were similar in performance. The consistently high
F scores found through the top 20 models at both sites implies
some flexibility in ITD formula coefficients that improve over-
story and intermediate strata detections (Fig. 9); however, when
considering all trees > 1.37 m tall, the ITD formula coefficient
space narrows for both the linear and exponential models to
intercept values of <0.4 and slope or exponents around 0.07

Can. J. For. Res. Vol. 51, 2021

(Fig. 9). This use of a small intercept term appears to allow for rea-
sonable detection of smaller understory trees, and when used in
combination with a relatively steep slope term, they can scale
the search window to be large enough to not over-segment indi-
vidual tree crowns in the overstory stratum. The optimal parame-
ter search conducted in this study likely achieved higher
accuracy estimates than might be expected if the parameters
were applied to another ponderosa pine dominated site due to
variations in tree size distributions and densities; however, the
narrow range in F scores produced by the linear model (Fig. 4)
suggests that this approach may have broader application within
ponderosa pine forest systems. Application of these results to
other ponderosa pine systems will require visual inspection of
detected tree locations against the high-resolution orthophoto-
graphs provided by the UAS system to ensure that trees do not
appear over- or under-segmented in their detection. Although
our results indicate improved performance in tree detection
from variable window functions compared with fixed windows,
future studies should explore adaptive variable window func-
tions such as piecewise regression to achieve more consistent
accuracies across tree sizes. It is unclear how ITD conducted with
variable window functions will perform in coniferous forest sys-
tems with greater species diversity or vertical heterogeneity, and
further testing of these methods is needed across a range of
ecosystems.

Crown area mean error varied widely across methods, with the
lidR watershed method being the most accurate and producing a
more natural crown representation (Fig. 10). The more natural
crown shapes are attributed to the method’s decision-making
process on a pixel-by-pixel level. Comparatively, the lidr Silva
and lidr Dalponte methods both utilize geometric processes to
divide interlocking crowns that produce straight lines between
trees.

This study’s precision in extracted crown radii slightly improves
on findings in Panagiotidis et al. (2017), who found a crown diameter
RMSEs of 0.82 and 1.04 m for two study sites. Despite being in a
conifer-dominated system, this difference is likely due to greater
canopy cover and vertical forest structural variation in the area
studied by Panagiotidis et al. (2017), both of which are known to
occlude intermediate and understory trees, resulting in increased
ITD and crown delineation errors. Average crown areas at KNF
were much larger than crowns tested at MEF; therefore, the
smaller pixel size may have helped to mitigate error that could
have been present with a larger pixel size of >0.5 m. As crowns
were grown in our study from detected tree X and Y coordinates,
there are instances where field-measured trees were not correctly
matched with detected trees. This error is restricted in calculating
crown area and radii errors at the individual tree level but could
explain the positive bias in our best performing method. Addi-
tionally, the total crown area was directly compared regardless of
whether a tree was detected or not. This omission error propa-
gated through to cause an underestimation of the total crown
area across methods from —44.3% to —24.8% at KNF and —33.2% to
—13.3% at MEF (Table 6).

Omission modeling

The best performing ITD methods closely matched the total num-
ber of trees in the overstory and intermediate strata (Table 4) with
minimal errors in tree heights; however, distributions of tree
heights only matched for the KNF understory and MEF intermediate
strata, with the other canopy strata significantly differing from field
values (Fig. 5). The large omission error for intermediate stratum
trees at KNF is attributed to greater spatial aggregation of trees that
can be seen through the increase local neighborhood basal areas
compared with MEF (Table 3). Most of these omitted trees were in a
dense group and at least 20% shorter than a neighbor (Fig. 7). The rel-
atively high basal areas seen in this study are typical of untreated
ponderosa pine forests (Tinkham et al. 2017) and indicate that UAS
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Fig. 10. Visual representation of the four crown growing methods: (A) lidR watershed; (B) ForestTools marker-controlled watershed;

(C) lidR Silva; and (D) lidR Dalponte. [Colour online.]

single tree monitoring performance should increase in post-treat-
ment environments for dominant and codominant trees.

Although relative distributions of heights were maintained between
observed and detected trees, understory trees experienced higher
under-detection rates at MEF compared with KNF (Table 4). The differ-
ences in detection accuracy of the understory canopy stratum between
the two sites are attributed to the greater density of small trees at MEF,
where the stand is experiencing a re-initiation phase with dense regen-
eration making it difficult to distinguish each individual due to its
small size and growing in dense patches. Additionally, previous work
has shown spatial clustering of understory trees at MEF (Boyden et al.
2005), likely making it difficult to separate these interlocked crowns
and increasing the omission rate. The conical crown shape of most co-
niferous species make them suitable for the types of tree detection
and crown delineation used in this study; however, as crowns become
more interlocked or greater proportions of deciduous trees occupy an
area, these methods are generally expected to perform worse. This
under-detection of understory trees most likely propagates through
the crown growing methods, where the crowns of smaller trees are
under-segmented, which results in a positive bias in the estimated
crown area for smaller trees (Fig. 8). Being able to describe the range of
forest environments in which different tree size classes can be reliably
detected provides a basis for discussing potential forest management
applications.

Applications in forest monitoring

Due to the fine-scale nature of ecological processes within for-
ested ecosystems, capturing variation across tree-to-tree, local
neighborhood, and stand-level scales is crucial for understanding
forest dynamics. Forest managers of public lands face the

challenge of managing for a variety of land uses, and detailed for-
est structure information with high temporal frequency can aid
in spatial forest planning demands. Within open-canopy systems
such as ponderosa pine forests, individual tree monitoring
through UAS SfM photogrammetry has the potential to provide tree
locations and heights with sufficient accuracy and temporal fre-
quency for tracking forest management and disturbance. These tree-
level data are a valuable tool in silvicultural prescription development
as they enable planning of forest opening and residual groups
(Tinkham et al. 2017), as well as facilitating the characterization
and monitoring of additional ecological services at a range of spa-
tial scales. For instance, species-specific wildlife habitat, as well as
diversity patterns, are often correlated with vertical and horizon-
tal forest structure (Merrick et al. 2013), which can be summarized
with tree-level data across landscapes. Additionally, consistent
data efficiently acquired through time such as with UAS collec-
tions may aid in the monitoring of habitat distributions for spe-
cies of conservation interest (Vogeler et al. 2016) or for assessing
the outcomes of forest restoration activities (Almeida et al. 2019).
Our UAS ITD detection was within 2% and 6% of the number of
overstory trees at KNF and MEF, respectively; however, our
results reflect the difficulty that ITD methods face when detect-
ing trees in the understory. This high accuracy is promising given
the significance of large trees in regulating ecological processes.
Larger trees are known to disproportionately impact their sur-
roundings and, in many ecosystems, account for nearly half of all
on-site biomass (Hudak et al. 2020). Successful characterization
of parameters for large overstory trees is critical for developing
mapped estimates of timber volume and aboveground biomass
through the application of tree-based allometries (Tinkham et al.
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2016a). Although RMSE for extracted heights were only 4% at MEF
and 10% at KNF, we believe that the true precision of these values
is even better as field observations of height typically have —5%
bias and 10% precision (Vastaranta et al. 2009).

The tested ITD methods provided reliable detection of over-
story and intermediate strata tree locations and heights; how-
ever, these methods under-segmented the understory stratum,
where small trees in close proximity were identified as a single
tree, creating a biased underprediction of small tree densities.
Similar under-segmentation has been dealt with through con-
cepts of tree approximate objects to describe ecologically impor-
tant forest structures in fuels management (Jeronimo et al. 2018).
The concept of tree approximate objects suggests that each ITD
result may represent a group of trees as each detected tree in the
dominant canopy could also represent smaller subordinate trees
that are occluded from detection. This more abstract approach
still allows for describing the relative variation in forest structure
across size classes, which has far-reaching consequences for eco-
logical processes and management prescription development. In
planning restoration treatments in pine-dominated forests, the rela-
tive density of different tree size classes is important for prescribing
the location of openings and retention groups (Addington et al.
2018; Kane et al. 2019). Developing maps that identify areas with
dense groups of small trees can help during treatment marking and
implementation (Tinkham et al. 2017). Additionally, understanding
variation in large tree densities following disturbances such as wild-
fires could guide reforestation planting efforts (Cannon et al. 2018),
as well as facilitate the monitoring of habitat resources for post-fire
wildlife species of conservation interest (Vogeler et al. 2016). The ap-
proximate observations of tree heights, locations, and crown areas
that UAS ITD approaches provide could be a valuable tool for treat-
ment prescription development, marking, and implementation.
Furthermore, spatiotemporal data sets of forest structure may con-
tribute to investigations of forest vulnerability to disturbances such
as insect outbreaks (Smith et al. 2014).

Most ponderosa pine dominated forests within the central and
southern Rocky Mountains with intact disturbance regimes or under-
going restoration have local basal areas of <4.6 to 184 m*ha '
(Addington et al. 2018). These restored densities are much lower than
basal areas seen at the KNF and MEF study areas, giving reason to
believe that UAS single tree methods should perform even better
across tree sizes when monitoring post-treatment forest conditions.
Given the increased potential temporal resolution of UAS monitoring,
repeated post-treatment observations could advance our understand-
ing of forest stand and fuel dynamics regarding seedling establish-
ment, seedling and juvenile mortality, and treatment longevity
(Tinkham et al. 2016b). Further investigation is needed to evaluate
these methods for monitoring treated environments and to assess the
potential for both identifying new tree recruitment and tracking the
growth of individual trees through repeat UAS observations.

Forest monitoring through UAS SfM photogrammetry is still a
growing field with further opportunities using multispectral SfM
point clouds to unlock other tree characteristics. Recent studies
have highlighted the use of multispectral SfM point clouds to
classify vegetation (Prosek and Simova 2019), with similar techni-
ques having the potential to monitor forest health or locate
standing dead trees. Coupling ITD and crown growing methods
could provide ways of assigning these spectral data to individual
trees for deriving a range of additional metrics. Tying this extra
information at the individual tree level would enable manage-
ment prescriptions to target the removal of stressed or sick trees
while ensuring retention of snags as critical wildlife habitat. Reliable
characterization of tree height, crown area, and the associated spec-
tral signature could provide low-cost and more accessible UAS stand-
level observations of forest structure and ecosystem services that
cannot be readily captured by traditional field surveys.
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Conclusion

This study found that using adaptive variable window ITD meth-
ods with UAS-based CHMs increases tree detection rates across tree
sizes compared with fixed window methods. The use of UAS SfM-
derived high-resolution CHMs allowed for accurate mapping of tree
height distributions and tree-level estimation of the crown area.
Such characterizations of tree-level forest structure distributions
would be valuable for monitoring growth and recruitment dynamics
in the face of a changing climate and altered fire and insect disturb-
ance regimes. Further work should explore if the accuracy that we
observed for UAS-based ITD methods using variable window func-
tions translates to other forest systems.
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