Encounter Histories File
Encounter Histories File
The Encounter Histories File is the file that contains the encounter histories, i.e., the raw data needed by Program MARK. This file must consist of records with a length of 240 characters or less, with statements 1 or more records long. Statements are delimited with semi-colons. (NOTE: a common error is to leave off a “;”.) Format of the file depends on the data type. The convention of Program Mark is that this file name ends in the INP suffix. The root part of the file name dictates the name of the dBASE file used to hold model results. For example, the input file MULEDEER.INP would produce a Results File with the name MULEDEER.DBF and 2 additional files (MULEDEER.FPT and MULEDEER.CDX) that would contain the memo fields and index orderings, respectively.
Encounter Histories Files do not contain any proc statements, but only encounter histories or recovery matrices. You can have group label statements and comment statements in the input file, just to help you remember what the file contains. The interactive interface adds the necessary program statements to produce parameter estimates with the numerical algorithm based on the model specified.
The Encounter Histories File is incorporated into the results database created to hold parameter estimates and other results. Because all results in the results database depend on the encounter histories not changing so that the model selection results are comparable, you cannot change the input. Even if you change the values in the Encounter Histories File, the Results File will not change. The only way to produce models from a changed Encounter Histories File is to incorporate the changed file into a new results database. You can view the encounter histories in the results database by having it listed in the results for a model by checking the list data checkbox in the Run Window. You should check this box the first run or so to verify that MARK is reading your encounter history file correctly. Also, check this box to determine what line of your input is causing an error.
Some examples of Encounter Histories Files follow. First, a joint live recapture and dead recovery file is shown, with only one group, but 5 encounter occasions. This example would be data type both. The encounter histories are alternating live recaptures and dead recoveries, i.e.,
LDLDLDLDLD
with 1 indicating a recapture or recovery, and 0 indicating no encounter.
1000000000 41152;
1000000001 1923;
1000000010 557;
1000000011 103;
1000000100 2897;
1000001000 1119;
1000001001 148;
1000001010 378;
1000001011 70;
1000001100 336;
1000010000 4611;
1000100000 2599;
1000100001 237;
1000100010 376;
1000100011 75;
1000100100 434;
1000101000 740;
1000101001 92;
1000101010 273;
1000101011 35;
1000101100 182;
1000110000 897;
1001000000 7676;
1010000000 7102;
1010000001 409;
1010000010 388;
1010000011 62;
1010000100 708;
1010001000 731;
1010001001 98;
1010001010 251;
1010001011 41;
1010001100 200;
1010010000 1293;
1010100000 1713;
1010100001 151;
1010100010 254;
1010100011 48;
1010100100 277;
1010101000 538;
1010101001 66;
1010101010 184;
1010101011 24;
1010101100 144;
1010110000 583;
1011000000 2672;
1100000000 15153;
Next is a live recapture data set with 2 groups and 6 encounter occasions. The data type is live recaptures. The encounter history is coded for just the live encounters, i.e.,
LLLLLL
and the initial capture is counted as an encounter occasion. Again, the encounter histories are given, with 1 indicating a live capture or recapture, and 0 meaning not captured. The number of animals in each group follows the encounter history. Negative values indicate animals that were not released again, i.e., losses on capture. The following example is the input for the example data in the American Fisheries Society Monograph No. 5 by Burnham et al. (1987). The data are available in the AFSMONGR.INP file, with results in AFSMONGR.DBF.
100000 25925 24605;
100001 563 605;
100001 -27 -36;
100010 508 522;
100010 -23 -25;
100011 17 23;
100011 -1 -1;
100100 1500 1678;
100100 -81 -57;
100101 45 48;
100101 -3 -1;
100110 37 44;
100110 -2 -2;
100111 1 2;
101000 193 207;
101000 -14 -10;
101001 5 9;
101010 7 4;
101100 16 14;
101100 -1 -1;
101101 1 1;
101110 1 1;
110000 872 935;
110000 -29 -33;
110001 26 28;
110001 -1 -1;
110010 16 18;
110010 -1 -1;
110100 67 68;
110100 -3 -4;
110101 1 2;
110110 2 1;
111000 10 12;
111001 0 1;
111100 1 0;
The next example is the summarized input for a dead recovery data set. The triangular matrices represent 2 groups; adults, then young. Following each matrix is the number of animals banded each year. This format is similar to that used by Brownie et al. (1985). The following data are available in the input file NPMALES.INP, with results in NPMALES.DBF.
recovery matrix group=1;
7 4 1 0 1 0 0 0 0 0 0 0 0 0 0;
8 5 1 0 0 0 0 0 0 0 0 0 0 0;
10 4 2 0 1 1 0 0 0 0 0 0 0;
16 3 2 0 0 0 0 0 0 0 0 0;
12 3 2 3 0 0 0 0 0 0 0;
10 9 3 0 0 0 0 0 0 0;
14 9 3 3 0 0 0 0 0;
9 5 2 1 0 1 0 0;
16 5 2 0 1 0 0;
19 6 2 1 0 1;
15 3 0 0 0;
8 5 1 0;
10 1 0;
8 1;
10;
99 88 153 114 123 98 146 173 190 190 157 92 88 51 85;
recovery matrix group=2;
6 4 6 1 0 1 0 0 0 0 0 0 0 0 0;
6 5 2 1 0 0 0 0 0 0 0 0 0 0;
18 6 6 2 0 1 0 0 0 0 0 0 0;
17 5 6 2 1 1 0 0 0 0 0 0;
20 9 6 2 1 1 0 0 0 0 0;
14 4 3 1 0 0 0 0 0 0;
13 4 0 1 0 0 0 0 0;
13 5 3 1 0 0 0 0;
13 5 4 0 0 0 0;
7 1 3 1 1 0;
15 10 2 0 0;
12 4 0 0;
16 4 1;
5 2;
8;
80 54 138 120 183 106 111 127 110 110 152 102 163 104 117;
Dead recoveries can also be coded as encounter histories in the
LDLDLDLDLDLD
format. The following is an example of only dead recoveries, because a live animal is never captured alive after its initial capture. That is, none of the encounter histories have more than one 1 in an L column. This example has 15 encounter occasions and 1 group. If you study this example, you will see that 500 animals were banded each banding occasion.
000000000000000000000000000010 465;
000000000000000000000000000011 35;
000000000000000000000000001000 418;
000000000000000000000000001001 15;
000000000000000000000000001100 67;
000000000000000000000000100000 395;
000000000000000000000000100001 3;
000000000000000000000000100100 25;
000000000000000000000000110000 77;
000000000000000000000010000000 399;
000000000000000000000010000001 1;
000000000000000000000010000100 11;
000000000000000000000010010000 36;
000000000000000000000011000000 53;
000000000000000000001000000000 406;
000000000000000000001000000001 1;
000000000000000000001000000100 6;
000000000000000000001000010000 17;
000000000000000000001001000000 27;
000000000000000000001100000000 43;
000000000000000000100000000000 430;
000000000000000000100000000100 1;
000000000000000000100000010000 7;
000000000000000000100001000000 17;
000000000000000000100100000000 27;
000000000000000000110000000000 18;
000000000000000010000000000000 433;
000000000000000010000000010000 4;
000000000000000010000001000000 3;
000000000000000010000100000000 14;
000000000000000010010000000000 9;
000000000000000011000000000000 37;
000000000000001000000000000000 417;
000000000000001000000000000100 3;
000000000000001000000000010000 3;
000000000000001000000001000000 4;
000000000000001000000100000000 8;
000000000000001000010000000000 5;
000000000000001001000000000000 29;
000000000000001100000000000000 31;
000000000000100000000000000000 443;
000000000000100000000000010000 2;
000000000000100000000001000000 1;
000000000000100000000100000000 7;
000000000000100000010000000000 4;
000000000000100001000000000000 8;
000000000000100100000000000000 12;
000000000000110000000000000000 23;
000000000010000000000000000000 427;
000000000010000000000001000000 1;
000000000010000000000100000000 1;
000000000010000001000000000000 7;
000000000010000100000000000000 8;
000000000010010000000000000000 10;
000000000011000000000000000000 46;
000000001000000000000000000000 386;
000000001000000000000001000000 2;
000000001000000000000100000000 4;
000000001000000001000000000000 1;
000000001000000100000000000000 9;
000000001000010000000000000000 4;
000000001001000000000000000000 39;
000000001100000000000000000000 55;
000000100000000000000000000000 393;
000000100000000000000000010000 1;
000000100000000000010000000000 1;
000000100000000100000000000000 1;
000000100000010000000000000000 5;
000000100001000000000000000000 16;
000000100100000000000000000000 34;
000000110000000000000000000000 49;
000010000000000000000000000000 410;
000010000000000000000000010000 1;
000010000000000100000000000000 3;
000010000000010000000000000000 2;
000010000001000000000000000000 12;
000010000100000000000000000000 19;
000010010000000000000000000000 19;
000011000000000000000000000000 34;
001000000000000000000000000000 369;
001000000000000100000000000000 2;
001000000001000000000000000000 7;
001000000100000000000000000000 12;
001000010000000000000000000000 13;
001001000000000000000000000000 16;
001100000000000000000000000000 81;
100000000000000000000000000000 385;
100000000000000001000000000000 1;
100000000000010000000000000000 1;
100000000001000000000000000000 1;
100000000100000000000000000000 8;
100000010000000000000000000000 11;
100001000000000000000000000000 9;
100100000000000000000000000000 51;
110000000000000000000000000000 33;
The next example is the input for a known fate data set. Each line presents the number of animals monitored for one time interval, in this case, a week. The first value is the number of animals monitored, followed by the number that died during the interval. Each group is provided in a separate matrix. In the following example, a group of black ducks are monitored for 8 weeks (Conroy et al. 1989). The data are available in the file KAPMEIER.INP with results in KAPMEIER.DBF.
known fate group=1;
48 1;
47 2;
41 2;
39 5;
32 4;
28 3;
25 1;
24 0;
The following example demonstrates 2 groups. For multiple groups, the number of entries for each group must be the same, i.e., each group must have the same number of time intervals. These data came from Pollock et al. (1989) on staggered-entry Kaplan-Meier models. There are 9 encounter occasions. The data are in the file KM2.INP with results in KM2.DBF.
known fate group=1;
7 1;
6 0;
8 0;
13 0;
18 0;
18 0;
18 0;
18 0;
18 0;
known fate group=2;
7 0;
6 0;
11 1;
10 0;
16 1;
15 0;
15 1;
14 0;
14 3;
Next is an example of known fate data from Conroy et al. (1987), where individual covariates are included. These are the same data as described above, but with individual covariates added. Note that individual covariates cannot have missing values. Comments are given at the start of each line to identify the individual. Then comes the capture history for this individual, in a LDLDLD… sequence. Thus the first capture history is for an animal that was released on occasion 1, and died during the interval. The second animal was released on occasion 1, survived the interval, released again on occasion 2, and died during this second interval. Following the capture history is the count of animals with this history (always 1 in this example). Then, 4 covariates are provided. The first is a dummy variable representing age (0=subadult, 1=adult), then a condition index, wing length, and body weight. These data are available in the file BLCKDUCK.INP with results in BLCKDUCK.DBF. Time covariates have also been included in the analysis. The number of days during the week when the minimum temperature was less than 0 degrees C, labeled “min<0” in the analysis: 4, 6, 7, 7, 7, 6, 5, and 5 for weeks 1-8, respectively. This variable makes some sense biologically because when the temperature is less than freezing, the mud flats used by black ducks to feed are covered with ice, making life more difficult for the ducks. Other time covariates that might be used are average maximum temperature (degrees F) during the week (42,14, 31.43, 37.86, 43.00, 31.00, 25.29, 46.86, and 40.29), average minimum temperature (degrees F) (32.14, 16.29, 19.29, 23.00, 15.00, 8.43, 27.29, and 23.71) and minimum temperature (degrees F) during the week (19, 4, 13, 14, 9, -7, 22, and 9). These data are also used by Skalski et al. (1994) in the SURPH manual as an example data set.
/* 01 */ 1100000000000000 1 1 1.16 27.7 4.19;
/* 04 */ 1011000000000000 1 0 1.16 26.4 4.39;
/* 05 */ 1011000000000000 1 1 1.08 26.7 4.04;
/* 06 */ 1010000000000000 1 0 1.12 26.2 4.27;
/* 07 */ 1010000000000000 1 1 1.14 27.7 4.11;
/* 08 */ 1010110000000000 1 1 1.20 28.3 4.24;
/* 09 */ 1010000000000000 1 1 1.10 26.4 4.17;
/* 10 */ 1010110000000000 1 1 1.42 27.0 5.26;
/* 11 */ 1010000000000000 1 1 1.12 27.2 4.12;
/* 12 */ 1010101100000000 1 1 1.11 27.1 4.10;
/* 13 */ 1010101100000000 1 0 1.07 26.8 3.99;
/* 14 */ 1010101100000000 1 0 0.94 25.2 3.73;
/* 15 */ 1010101100000000 1 0 1.24 27.1 4.58;
/* 16 */ 1010101100000000 1 0 1.12 26.5 4.23;
/* 17 */ 1010101000000000 1 1 1.34 27.5 4.87;
/* 18 */ 1010101011000000 1 0 1.01 27.2 3.71;
/* 19 */ 1010101011000000 1 0 1.04 27.0 3.85;
/* 20 */ 1010101000000000 1 1 1.25 27.6 4.53;
/* 21 */ 1010101011000000 1 0 1.20 27.6 4.35;
/* 22 */ 1010101011000000 1 0 1.28 27.0 4.74;
/* 23 */ 1010101010110000 1 0 1.25 27.2 4.59;
/* 24 */ 1010101010110000 1 0 1.09 27.5 3.96;
/* 25 */ 1010101010110000 1 1 1.05 27.5 3.82;
/* 26 */ 1010101010101100 1 0 1.04 25.5 4.08;
/* 27 */ 1010101010101010 1 0 1.13 26.8 4.22;
/* 28 */ 1010101010101010 1 1 1.32 28.5 4.63;
/* 29 */ 1010101010101010 1 0 1.18 25.9 4.56;
/* 30 */ 1010101010101010 1 0 1.07 26.7 4.01;
/* 31 */ 1010101010101010 1 1 1.26 26.9 4.68;
/* 32 */ 1010101010101010 1 0 1.27 27.6 4.60;
/* 33 */ 1010101010101010 1 0 1.08 26.0 4.15;
/* 34 */ 1010101010101010 1 1 1.11 27.0 4.11;
/* 35 */ 1010101010101010 1 0 1.15 27.1 4.24;
/* 36 */ 1010101010101010 1 0 1.03 26.5 3.89;
/* 37 */ 1010101010101010 1 0 1.16 27.5 4.22;
/* 38 */ 1010101010101010 1 0 1.18 26.3 4.49;
/* 39 */ 1010101010101010 1 0 1.05 27.1 3.87;
/* 40 */ 1010101010101010 1 1 1.28 28.1 4.55;
/* 41 */ 1010101010101010 1 0 1.05 27.5 3.82;
/* 42 */ 1010101010101010 1 0 1.16 26.6 4.36;
/* 43 */ 1010101010101010 1 0 1.15 26.3 4.37;
/* 44 */ 1010101010101010 1 1 1.27 27.0 4.70;
/* 45 */ 1010101010101010 1 1 1.37 27.5 4.98;
/* 46 */ 1010101010101010 1 1 1.22 26.5 4.60;
/* 47 */ 1010101010101010 1 0 1.22 26.8 4.55;
/* 48 */ 1010101010101010 1 0 1.14 26.2 4.35;
/* 49 */ 1010101010101010 1 0 1.14 27.0 4.22;
/* 50 */ 1010101010101010 1 0 1.12 27.4 4.09;
The following input is an example of a closed captures data set. The capture histories are specified as a single 1 or 0 for each occasion, representing captured (=1) or not captured (=0). Following the capture history is the frequency, or count of the number of animals with this capture history, for each group. In the example, 2 groups are provided. Individual covariates are not allowed with closed captures, because you do not have any information on the individuals never captured. This data set could have been stored more compactly by not representing each animal on a separate line of input. The advantage of entering the data as shown is that the input file can also be used with Program CAPTURE. These data are available in the file MCAPTURE.INP, with results in MCAPTURE.DBF. They are simulated data, where the true model is the same Mo for both groups, with p = 0.4, and N = 200 for both groups.
0101010 1 0;
0011000 1 0;
1001100 1 0;
1100101 1 0;
0101010 1 0;
1011011 1 0;
1000010 1 0;
1011110 1 0;
1011010 1 0;
1011000 1 0;
0000001 1 0;
0001010 1 0;
0101110 1 0;
1000101 1 0;
0101000 1 0;
1001000 1 0;
0010011 1 0;
1110000 1 0;
1000010 1 0;
0000100 1 0;
0100000 1 0;
0001010 1 0;
0000110 1 0;
0110100 1 0;
0110100 1 0;
1010101 1 0;
0000101 1 0;
0010001 1 0;
0000010 1 0;
0001010 1 0;
1001000 1 0;
1010000 1 0;
1010111 1 0;
1000000 1 0;
1011100 1 0;
0010000 1 0;
0001101 1 0;
0101111 1 0;
1101010 1 0;
0010101 1 0;
0110011 1 0;
1001001 1 0;
0010110 1 0;
0011011 1 0;
0010100 1 0;
1001000 1 0;
0010111 1 0;
0101100 1 0;
1100100 1 0;
0011100 1 0;
0000100 1 0;
0100000 1 0;
0010010 1 0;
0011000 1 0;
1110000 1 0;
1111010 1 0;
1101010 1 0;
1101011 1 0;
1010000 1 0;
1000000 1 0;
1011001 1 0;
1011000 1 0;
0000111 1 0;
1011100 1 0;
1010100 1 0;
1000000 1 0;
0001100 1 0;
0011110 1 0;
0000001 1 0;
0011100 1 0;
0010000 1 0;
1001100 1 0;
1010101 1 0;
1001000 1 0;
1101000 1 0;
1101000 1 0;
1011001 1 0;
0100000 1 0;
0101000 1 0;
0000101 1 0;
0011001 1 0;
0000111 1 0;
1000001 1 0;
1111001 1 0;
1010001 1 0;
1101011 1 0;
0010100 1 0;
1110101 1 0;
0000100 1 0;
0100000 1 0;
0101010 1 0;
0000101 1 0;
1010001 1 0;
0011000 1 0;
0001001 1 0;
0000100 1 0;
1010011 1 0;
0110000 1 0;
0000001 1 0;
0001100 1 0;
0000111 1 0;
0001001 1 0;
1101000 1 0;
0101001 1 0;
1101000 1 0;
0001111 1 0;
1100010 1 0;
1010000 1 0;
1111100 1 0;
1111000 1 0;
0101110 1 0;
1101001 1 0;
1011001 1 0;
1011100 1 0;
0000001 1 0;
0001100 1 0;
1011001 1 0;
1011100 1 0;
1001100 1 0;
1001010 1 0;
0011001 1 0;
0101001 1 0;
1000100 1 0;
1000100 1 0;
1000101 1 0;
1100101 1 0;
1000010 1 0;
0011100 1 0;
1110000 1 0;
1001000 1 0;
1110100 1 0;
1000100 1 0;
1000000 1 0;
1101001 1 0;
1001011 1 0;
0000010 1 0;
0001100 1 0;
1111110 1 0;
0110011 1 0;
0000001 1 0;
1101101 1 0;
0000101 1 0;
1011101 1 0;
0010110 1 0;
0100010 1 0;
0101101 1 0;
1000000 1 0;
0001010 1 0;
1011100 1 0;
1110001 1 0;
1100010 1 0;
0011001 1 0;
1110110 1 0;
1001010 1 0;
1010000 1 0;
1110000 1 0;
1110100 1 0;
0001000 1 0;
1011010 1 0;
1010000 1 0;
1001110 1 0;
0001100 1 0;
1010100 1 0;
0000010 1 0;
1000100 1 0;
1000000 1 0;
1001000 1 0;
0100001 1 0;
0011000 1 0;
1001001 1 0;
0100010 1 0;
1001100 1 0;
0000001 1 0;
0010000 1 0;
0010101 1 0;
0000001 1 0;
1011100 1 0;
0101001 1 0;
0000100 1 0;
0110001 1 0;
0010100 1 0;
1011000 1 0;
1000110 1 0;
1100011 1 0;
1000000 1 0;
0001101 1 0;
1010100 1 0;
1100010 1 0;
0010000 1 0;
1111001 1 0;
1101100 1 0;
0001000 1 0;
0111111 1 0;
0011000 1 0;
1100000 1 0;
1001001 1 0;
1001110 1 0;
1001011 1 0;
1101111 1 0;
1000101 0 1;
0001001 0 1;
1000000 0 1;
0010110 0 1;
1111001 0 1;
1001000 0 1;
1001000 0 1;
1001001 0 1;
0001101 0 1;
1111101 0 1;
1101100 0 1;
1011011 0 1;
1010001 0 1;
0111001 0 1;
0001000 0 1;
0001010 0 1;
1001001 0 1;
1011001 0 1;
1010101 0 1;
0001001 0 1;
0010110 0 1;
1000000 0 1;
0101111 0 1;
1001101 0 1;
1001111 0 1;
1000001 0 1;
0110000 0 1;
1000001 0 1;
0100100 0 1;
0000100 0 1;
0101000 0 1;
0111110 0 1;
1100000 0 1;
0001001 0 1;
0001101 0 1;
0001100 0 1;
0010000 0 1;
0100001 0 1;
1001000 0 1;
0001100 0 1;
0001101 0 1;
1000001 0 1;
1100000 0 1;
1010010 0 1;
0000010 0 1;
0101100 0 1;
1000001 0 1;
0001000 0 1;
1011001 0 1;
0010000 0 1;
1101000 0 1;
1011101 0 1;
1010001 0 1;
1010100 0 1;
0011001 0 1;
0010100 0 1;
0001000 0 1;
1000100 0 1;
0001001 0 1;
1000101 0 1;
1100101 0 1;
0110000 0 1;
0001001 0 1;
0001100 0 1;
1010010 0 1;
1110000 0 1;
1100000 0 1;
0001010 0 1;
0010101 0 1;
1000110 0 1;
1001100 0 1;
0101001 0 1;
0010000 0 1;
1011100 0 1;
1110100 0 1;
1010101 0 1;
0001101 0 1;
1010001 0 1;
0000010 0 1;
1000100 0 1;
1100000 0 1;
1011000 0 1;
1001111 0 1;
1101101 0 1;
0101101 0 1;
1000101 0 1;
0000001 0 1;
1000000 0 1;
1110000 0 1;
1001011 0 1;
1010000 0 1;
0010000 0 1;
1001100 0 1;
1011101 0 1;
1000110 0 1;
0111001 0 1;
0010000 0 1;
0010101 0 1;
0110001 0 1;
1011110 0 1;
0011000 0 1;
0001100 0 1;
0001000 0 1;
1001000 0 1;
0001010 0 1;
1010000 0 1;
1000011 0 1;
1010000 0 1;
0101111 0 1;
0011101 0 1;
0110000 0 1;
0011101 0 1;
0011000 0 1;
0110011 0 1;
0100110 0 1;
1101000 0 1;
1000000 0 1;
0100000 0 1;
1101101 0 1;
0011101 0 1;
0011100 0 1;
1001101 0 1;
1001010 0 1;
0011100 0 1;
0001000 0 1;
1101101 0 1;
1011011 0 1;
1000110 0 1;
1000101 0 1;
1111010 0 1;
1000110 0 1;
1111000 0 1;
0001001 0 1;
1000110 0 1;
0011010 0 1;
0100100 0 1;
0000110 0 1;
1010111 0 1;
1001000 0 1;
1011011 0 1;
0000101 0 1;
1011000 0 1;
0000100 0 1;
1001100 0 1;
0000101 0 1;
1000011 0 1;
1101111 0 1;
1000001 0 1;
0001101 0 1;
0010001 0 1;
1100000 0 1;
0011000 0 1;
1011010 0 1;
0010001 0 1;
0100010 0 1;
0001001 0 1;
0010000 0 1;
0011100 0 1;
0010000 0 1;
1100011 0 1;
1010111 0 1;
0000101 0 1;
0011000 0 1;
0101100 0 1;
0010010 0 1;
1110100 0 1;
0001011 0 1;
1101101 0 1;
1100011 0 1;
1110110 0 1;
0011010 0 1;
1100000 0 1;
0110100 0 1;
0010000 0 1;
1111000 0 1;
0101000 0 1;
1111101 0 1;
0010110 0 1;
1000011 0 1;
0101100 0 1;
1001000 0 1;
0001010 0 1;
1010010 0 1;
0010001 0 1;
1011001 0 1;
1011101 0 1;
0100000 0 1;
0010001 0 1;
1101011 0 1;
0001111 0 1;
0010000 0 1;
1000101 0 1;
0100000 0 1;
1010100 0 1;
1001010 0 1;
An example of nest survival data is given here.
The encounter histories format for Young Survival from Marked Adults consists of 2-digit counts packed together to form the encounter history.
The density estimation data type requires that the number of radio locations on the grid and the total number of radio locations are also specified after the encounter history.